| OLD | NEW |
| (Empty) |
| 1 #!/usr/bin/env perl | |
| 2 # | |
| 3 # ==================================================================== | |
| 4 # Written by David Mosberger <David.Mosberger@acm.org> based on the | |
| 5 # Itanium optimized Crypto code which was released by HP Labs at | |
| 6 # http://www.hpl.hp.com/research/linux/crypto/. | |
| 7 # | |
| 8 # Copyright (c) 2005 Hewlett-Packard Development Company, L.P. | |
| 9 # | |
| 10 # Permission is hereby granted, free of charge, to any person obtaining | |
| 11 # a copy of this software and associated documentation files (the | |
| 12 # "Software"), to deal in the Software without restriction, including | |
| 13 # without limitation the rights to use, copy, modify, merge, publish, | |
| 14 # distribute, sublicense, and/or sell copies of the Software, and to | |
| 15 # permit persons to whom the Software is furnished to do so, subject to | |
| 16 # the following conditions: | |
| 17 # | |
| 18 # The above copyright notice and this permission notice shall be | |
| 19 # included in all copies or substantial portions of the Software. | |
| 20 | |
| 21 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| 22 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
| 23 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
| 24 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |
| 25 # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
| 26 # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
| 27 # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ | |
| 28 | |
| 29 | |
| 30 | |
| 31 # This is a little helper program which generates a software-pipelined | |
| 32 # for RC4 encryption. The basic algorithm looks like this: | |
| 33 # | |
| 34 # for (counter = 0; counter < len; ++counter) | |
| 35 # { | |
| 36 # in = inp[counter]; | |
| 37 # SI = S[I]; | |
| 38 # J = (SI + J) & 0xff; | |
| 39 # SJ = S[J]; | |
| 40 # T = (SI + SJ) & 0xff; | |
| 41 # S[I] = SJ, S[J] = SI; | |
| 42 # ST = S[T]; | |
| 43 # outp[counter] = in ^ ST; | |
| 44 # I = (I + 1) & 0xff; | |
| 45 # } | |
| 46 # | |
| 47 # Pipelining this loop isn't easy, because the stores to the S[] array | |
| 48 # need to be observed in the right order. The loop generated by the | |
| 49 # code below has the following pipeline diagram: | |
| 50 # | |
| 51 # cycle | |
| 52 # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | | |
| 53 # iter | |
| 54 # 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | |
| 55 # 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | |
| 56 # 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | |
| 57 # | |
| 58 # where: | |
| 59 # LDI = load of S[I] | |
| 60 # LDJ = load of S[J] | |
| 61 # SWP = swap of S[I] and S[J] | |
| 62 # LDT = load of S[T] | |
| 63 # | |
| 64 # Note that in the above diagram, the major trouble-spot is that LDI | |
| 65 # of the 2nd iteration is performed BEFORE the SWP of the first | |
| 66 # iteration. Fortunately, this is easy to detect (I of the 1st | |
| 67 # iteration will be equal to J of the 2nd iteration) and when this | |
| 68 # happens, we simply forward the proper value from the 1st iteration | |
| 69 # to the 2nd one. The proper value in this case is simply the value | |
| 70 # of S[I] from the first iteration (thanks to the fact that SWP | |
| 71 # simply swaps the contents of S[I] and S[J]). | |
| 72 # | |
| 73 # Another potential trouble-spot is in cycle 7, where SWP of the 1st | |
| 74 # iteration issues at the same time as the LDI of the 3rd iteration. | |
| 75 # However, thanks to IA-64 execution semantics, this can be taken | |
| 76 # care of simply by placing LDI later in the instruction-group than | |
| 77 # SWP. IA-64 CPUs will automatically forward the value if they | |
| 78 # detect that the SWP and LDI are accessing the same memory-location. | |
| 79 | |
| 80 # The core-loop that can be pipelined then looks like this (annotated | |
| 81 # with McKinley/Madison issue port & latency numbers, assuming L1 | |
| 82 # cache hits for the most part): | |
| 83 | |
| 84 # operation: instruction: issue-ports: latency | |
| 85 # ------------------ ----------------------------- ------------- ------- | |
| 86 | |
| 87 # Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 | |
| 88 # shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc | |
| 89 # I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc | |
| 90 # ;; | |
| 91 # SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1
* after SWAP! | |
| 92 # ;; | |
| 93 # cmp.eq.unc pBypass = I, J
* after J is valid! | |
| 94 # J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 | |
| 95 # (pBypass) br.cond.spnt Bypass | |
| 96 # ;; | |
| 97 # ------------------------------------------------------------------------------
--------- | |
| 98 # J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 | |
| 99 # ;; | |
| 100 # shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 | |
| 101 # ;; | |
| 102 # SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 | |
| 103 # ;; | |
| 104 # ------------------------------------------------------------------------------
--------- | |
| 105 # T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 | |
| 106 # ;; | |
| 107 # T = T & 0xff zxt1 T = T I0, I1 1 cyc | |
| 108 # S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 | |
| 109 # S[J] = SI st8 [Jptr] = SI M2-M3 | |
| 110 # ;; | |
| 111 # shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 | |
| 112 # ;; | |
| 113 # ------------------------------------------------------------------------------
--------- | |
| 114 # T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 | |
| 115 # ;; | |
| 116 # data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c1
0 | |
| 117 # ;; | |
| 118 # *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c1
1 | |
| 119 # ;; | |
| 120 # ------------------------------------------------------------------------------
--------- | |
| 121 | |
| 122 # There are several points worth making here: | |
| 123 | |
| 124 # - Note that due to the bypass/forwarding-path, the first two | |
| 125 # phases of the loop are strangly mingled together. In | |
| 126 # particular, note that the first stage of the pipeline is | |
| 127 # using the value of "J", as calculated by the second stage. | |
| 128 # - Each bundle-pair will have exactly 6 instructions. | |
| 129 # - Pipelined, the loop can execute in 3 cycles/iteration and | |
| 130 # 4 stages. However, McKinley/Madison can issue "st1" to | |
| 131 # the same bank at a rate of at most one per 4 cycles. Thus, | |
| 132 # instead of storing each byte, we accumulate them in a word | |
| 133 # and then write them back at once with a single "st8" (this | |
| 134 # implies that the setup code needs to ensure that the output | |
| 135 # buffer is properly aligned, if need be, by encoding the | |
| 136 # first few bytes separately). | |
| 137 # - There is no space for a "br.ctop" instruction. For this | |
| 138 # reason we can't use module-loop support in IA-64 and have | |
| 139 # to do a traditional, purely software-pipelined loop. | |
| 140 # - We can't replace any of the remaining "add/zxt1" pairs with | |
| 141 # "padd1" because the latency for that instruction is too high | |
| 142 # and would push the loop to the point where more bypasses | |
| 143 # would be needed, which we don't have space for. | |
| 144 # - The above loop runs at around 3.26 cycles/byte, or roughly | |
| 145 # 440 MByte/sec on a 1.5GHz Madison. This is well below the | |
| 146 # system bus bandwidth and hence with judicious use of | |
| 147 # "lfetch" this loop can run at (almost) peak speed even when | |
| 148 # the input and output data reside in memory. The | |
| 149 # max. latency that can be tolerated is (PREFETCH_DISTANCE * | |
| 150 # L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at | |
| 151 # least) 1-ahead prefetching of 128 byte cache-lines. Note | |
| 152 # that we do NOT prefetch into L1, since that would only | |
| 153 # interfere with the S[] table values stored there. This is | |
| 154 # acceptable because there is a 10 cycle latency between | |
| 155 # load and first use of the input data. | |
| 156 # - We use a branch to out-of-line bypass-code of cycle-pressure: | |
| 157 # we calculate the next J, check for the need to activate the | |
| 158 # bypass path, and activate the bypass path ALL IN THE SAME | |
| 159 # CYCLE. If we didn't have these constraints, we could do | |
| 160 # the bypass with a simple conditional move instruction. | |
| 161 # Fortunately, the bypass paths get activated relatively | |
| 162 # infrequently, so the extra branches don't cost all that much | |
| 163 # (about 0.04 cycles/byte, measured on a 16396 byte file with | |
| 164 # random input data). | |
| 165 # | |
| 166 | |
| 167 $phases = 4; # number of stages/phases in the pipelined-loop | |
| 168 $unroll_count = 6; # number of times we unrolled it | |
| 169 $pComI = (1 << 0); | |
| 170 $pComJ = (1 << 1); | |
| 171 $pComT = (1 << 2); | |
| 172 $pOut = (1 << 3); | |
| 173 | |
| 174 $NData = 4; | |
| 175 $NIP = 3; | |
| 176 $NJP = 2; | |
| 177 $NI = 2; | |
| 178 $NSI = 3; | |
| 179 $NSJ = 2; | |
| 180 $NT = 2; | |
| 181 $NOutWord = 2; | |
| 182 | |
| 183 # | |
| 184 # $threshold is the minimum length before we attempt to use the | |
| 185 # big software-pipelined loop. It MUST be greater-or-equal | |
| 186 # to: | |
| 187 # PHASES * (UNROLL_COUNT + 1) + 7 | |
| 188 # | |
| 189 # The "+ 7" comes from the fact we may have to encode up to | |
| 190 # 7 bytes separately before the output pointer is aligned. | |
| 191 # | |
| 192 $threshold = (3 * ($phases * ($unroll_count + 1)) + 7); | |
| 193 | |
| 194 sub I { | |
| 195 local *code = shift; | |
| 196 local $format = shift; | |
| 197 $code .= sprintf ("\t\t".$format."\n", @_); | |
| 198 } | |
| 199 | |
| 200 sub P { | |
| 201 local *code = shift; | |
| 202 local $format = shift; | |
| 203 $code .= sprintf ($format."\n", @_); | |
| 204 } | |
| 205 | |
| 206 sub STOP { | |
| 207 local *code = shift; | |
| 208 $code .=<<___; | |
| 209 ;; | |
| 210 ___ | |
| 211 } | |
| 212 | |
| 213 sub emit_body { | |
| 214 local *c = shift; | |
| 215 local *bypass = shift; | |
| 216 local ($iteration, $p) = @_; | |
| 217 | |
| 218 local $i0 = $iteration; | |
| 219 local $i1 = $iteration - 1; | |
| 220 local $i2 = $iteration - 2; | |
| 221 local $i3 = $iteration - 3; | |
| 222 local $iw0 = ($iteration - 3) / 8; | |
| 223 local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; | |
| 224 local $byte_num = ($iteration - 3) % 8; | |
| 225 local $label = $iteration + 1; | |
| 226 local $pAny = ($p & 0xf) == 0xf; | |
| 227 local $pByp = (($p & $pComI) && ($iteration > 0)); | |
| 228 | |
| 229 $c.=<<___; | |
| 230 ////////////////////////////////////////////////// | |
| 231 ___ | |
| 232 | |
| 233 if (($p & 0xf) == 0) { | |
| 234 $c.="#ifdef HOST_IS_BIG_ENDIAN\n"; | |
| 235 &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", | |
| 236 $iw1 % $NOutWord, $iw1 % $NOutWord); | |
| 237 $c.="#endif\n"; | |
| 238 &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); | |
| 239 return; | |
| 240 } | |
| 241 | |
| 242 # Cycle 0 | |
| 243 &I(\$c, "{ .mmi") if ($pAny); | |
| 244 &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); | |
| 245 &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); | |
| 246 &I(\$c, "zxt1 J = J") if ($p & $pComJ); | |
| 247 &I(\$c, "}") if ($pAny); | |
| 248 &I(\$c, "{ .mmi") if ($pAny); | |
| 249 &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); | |
| 250 &I(\$c, "add T[%u] = SI[%u], SJ[%u]", | |
| 251 $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); | |
| 252 &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); | |
| 253 &I(\$c, "}") if ($pAny); | |
| 254 &STOP(\$c); | |
| 255 | |
| 256 # Cycle 1 | |
| 257 &I(\$c, "{ .mmi") if ($pAny); | |
| 258 &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); | |
| 259 &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); | |
| 260 &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | |
| 261 &I(\$c, "}") if ($pAny); | |
| 262 &I(\$c, "{ .mmi") if ($pAny); | |
| 263 &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); | |
| 264 &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); | |
| 265 &I(\$c, "xor Data[%u] = Data[%u], T[%u]", | |
| 266 $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); | |
| 267 &I(\$c, "}") if ($pAny); | |
| 268 &STOP(\$c); | |
| 269 | |
| 270 # Cycle 2 | |
| 271 &I(\$c, "{ .mmi") if ($pAny); | |
| 272 &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); | |
| 273 &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); | |
| 274 &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", | |
| 275 $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); | |
| 276 &I(\$c, "}") if ($pAny); | |
| 277 &I(\$c, "{ .mmb") if ($pAny); | |
| 278 &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); | |
| 279 &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | |
| 280 &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); | |
| 281 &I(\$c, "}") if ($pAny); | |
| 282 &STOP(\$c); | |
| 283 | |
| 284 &P(\$c, ".rc4Resume%u:", $label) if ($pByp); | |
| 285 if ($byte_num == 0 && $iteration >= $phases) { | |
| 286 &I(\$c, "st8 [OutPtr] = OutWord[%u], 8", | |
| 287 $iw1 % $NOutWord) if ($p & $pOut); | |
| 288 if ($iteration == (1 + $unroll_count) * $phases - 1) { | |
| 289 if ($unroll_count == 6) { | |
| 290 &I(\$c, "mov OutWord[%u] = OutWord[%u]", | |
| 291 $iw1 % $NOutWord, $iw0 % $NOutWord); | |
| 292 } | |
| 293 &I(\$c, "lfetch.nt1 [InPrefetch], %u", | |
| 294 $unroll_count * $phases); | |
| 295 &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", | |
| 296 $unroll_count * $phases); | |
| 297 &I(\$c, "br.cloop.sptk.few .rc4Loop"); | |
| 298 } | |
| 299 } | |
| 300 | |
| 301 if ($pByp) { | |
| 302 &P(\$bypass, ".rc4Bypass%u:", $label); | |
| 303 &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); | |
| 304 &I(\$bypass, "nop 0"); | |
| 305 &I(\$bypass, "nop 0"); | |
| 306 &I(\$bypass, ";;"); | |
| 307 &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); | |
| 308 &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); | |
| 309 &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); | |
| 310 &I(\$bypass, ";;"); | |
| 311 } | |
| 312 } | |
| 313 | |
| 314 $code=<<___; | |
| 315 .ident \"rc4-ia64.s, version 3.0\" | |
| 316 .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" | |
| 317 | |
| 318 #define LCSave r8 | |
| 319 #define PRSave r9 | |
| 320 | |
| 321 /* Inputs become invalid once rotation begins! */ | |
| 322 | |
| 323 #define StateTable in0 | |
| 324 #define DataLen in1 | |
| 325 #define InputBuffer in2 | |
| 326 #define OutputBuffer in3 | |
| 327 | |
| 328 #define KTable r14 | |
| 329 #define J r15 | |
| 330 #define InPtr r16 | |
| 331 #define OutPtr r17 | |
| 332 #define InPrefetch r18 | |
| 333 #define OutPrefetch r19 | |
| 334 #define One r20 | |
| 335 #define LoopCount r21 | |
| 336 #define Remainder r22 | |
| 337 #define IFinal r23 | |
| 338 #define EndPtr r24 | |
| 339 | |
| 340 #define tmp0 r25 | |
| 341 #define tmp1 r26 | |
| 342 | |
| 343 #define pBypass p6 | |
| 344 #define pDone p7 | |
| 345 #define pSmall p8 | |
| 346 #define pAligned p9 | |
| 347 #define pUnaligned p10 | |
| 348 | |
| 349 #define pComputeI pPhase[0] | |
| 350 #define pComputeJ pPhase[1] | |
| 351 #define pComputeT pPhase[2] | |
| 352 #define pOutput pPhase[3] | |
| 353 | |
| 354 #define RetVal r8 | |
| 355 #define L_OK p7 | |
| 356 #define L_NOK p8 | |
| 357 | |
| 358 #define _NINPUTS 4 | |
| 359 #define _NOUTPUT 0 | |
| 360 | |
| 361 #define _NROTATE 24 | |
| 362 #define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) | |
| 363 | |
| 364 #ifndef SZ | |
| 365 # define SZ 4 // this must be set to sizeof(RC4_INT) | |
| 366 #endif | |
| 367 | |
| 368 #if SZ == 1 | |
| 369 # define LKEY ld1 | |
| 370 # define SKEY st1 | |
| 371 # define KEYADDR(dst, i) add dst = i, KTable | |
| 372 #elif SZ == 2 | |
| 373 # define LKEY ld2 | |
| 374 # define SKEY st2 | |
| 375 # define KEYADDR(dst, i) shladd dst = i, 1, KTable | |
| 376 #elif SZ == 4 | |
| 377 # define LKEY ld4 | |
| 378 # define SKEY st4 | |
| 379 # define KEYADDR(dst, i) shladd dst = i, 2, KTable | |
| 380 #else | |
| 381 # define LKEY ld8 | |
| 382 # define SKEY st8 | |
| 383 # define KEYADDR(dst, i) shladd dst = i, 3, KTable | |
| 384 #endif | |
| 385 | |
| 386 #if defined(_HPUX_SOURCE) && !defined(_LP64) | |
| 387 # define ADDP addp4 | |
| 388 #else | |
| 389 # define ADDP add | |
| 390 #endif | |
| 391 | |
| 392 /* Define a macro for the bit number of the n-th byte: */ | |
| 393 | |
| 394 #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) | |
| 395 # define HOST_IS_BIG_ENDIAN | |
| 396 # define BYTE_POS(n) (56 - (8 * (n))) | |
| 397 #else | |
| 398 # define BYTE_POS(n) (8 * (n)) | |
| 399 #endif | |
| 400 | |
| 401 /* | |
| 402 We must perform the first phase of the pipeline explicitly since | |
| 403 we will always load from the stable the first time. The br.cexit | |
| 404 will never be taken since regardless of the number of bytes because | |
| 405 the epilogue count is 4. | |
| 406 */ | |
| 407 /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX | |
| 408 assembler failed on original macro with syntax error. <appro> */ | |
| 409 #define MODSCHED_RC4_PROLOGUE \\ | |
| 410 { \\ | |
| 411 ld1 Data[0] = [InPtr], 1; \\ | |
| 412 add IFinal = 1, I[1]; \\ | |
| 413 KEYADDR(IPr[0], I[1]); \\ | |
| 414 } ;; \\ | |
| 415 { \\ | |
| 416 LKEY SI[0] = [IPr[0]]; \\ | |
| 417 mov pr.rot = 0x10000; \\ | |
| 418 mov ar.ec = 4; \\ | |
| 419 } ;; \\ | |
| 420 { \\ | |
| 421 add J = J, SI[0]; \\ | |
| 422 zxt1 I[0] = IFinal; \\ | |
| 423 br.cexit.spnt.few .+16; /* never taken */ \\ | |
| 424 } ;; | |
| 425 #define MODSCHED_RC4_LOOP(label) \\ | |
| 426 label: \\ | |
| 427 { .mmi; \\ | |
| 428 (pComputeI) ld1 Data[0] = [InPtr], 1; \\ | |
| 429 (pComputeI) add IFinal = 1, I[1]; \\ | |
| 430 (pComputeJ) zxt1 J = J; \\ | |
| 431 }{ .mmi; \\ | |
| 432 (pOutput) LKEY T[1] = [T[1]]; \\ | |
| 433 (pComputeT) add T[0] = SI[2], SJ[1]; \\ | |
| 434 (pComputeI) KEYADDR(IPr[0], I[1]); \\ | |
| 435 } ;; \\ | |
| 436 { .mmi; \\ | |
| 437 (pComputeT) SKEY [IPr[2]] = SJ[1]; \\ | |
| 438 (pComputeT) SKEY [JP[1]] = SI[2]; \\ | |
| 439 (pComputeT) zxt1 T[0] = T[0]; \\ | |
| 440 }{ .mmi; \\ | |
| 441 (pComputeI) LKEY SI[0] = [IPr[0]]; \\ | |
| 442 (pComputeJ) KEYADDR(JP[0], J); \\ | |
| 443 (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ | |
| 444 } ;; \\ | |
| 445 { .mmi; \\ | |
| 446 (pComputeJ) LKEY SJ[0] = [JP[0]]; \\ | |
| 447 (pOutput) xor Data[3] = Data[3], T[1]; \\ | |
| 448 nop 0x0; \\ | |
| 449 }{ .mmi; \\ | |
| 450 (pComputeT) KEYADDR(T[0], T[0]); \\ | |
| 451 (pBypass) mov SI[0] = SI[1]; \\ | |
| 452 (pComputeI) zxt1 I[0] = IFinal; \\ | |
| 453 } ;; \\ | |
| 454 { .mmb; \\ | |
| 455 (pOutput) st1 [OutPtr] = Data[3], 1; \\ | |
| 456 (pComputeI) add J = J, SI[0]; \\ | |
| 457 br.ctop.sptk.few label; \\ | |
| 458 } ;; | |
| 459 | |
| 460 .text | |
| 461 | |
| 462 .align 32 | |
| 463 | |
| 464 .type RC4, \@function | |
| 465 .global RC4 | |
| 466 | |
| 467 .proc RC4 | |
| 468 .prologue | |
| 469 | |
| 470 RC4: | |
| 471 { | |
| 472 .mmi | |
| 473 alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE | |
| 474 | |
| 475 .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ | |
| 476 OutWord[2] | |
| 477 .rotp pPhase[4] | |
| 478 | |
| 479 ADDP InPrefetch = 0, InputBuffer | |
| 480 ADDP KTable = 0, StateTable | |
| 481 } | |
| 482 { | |
| 483 .mmi | |
| 484 ADDP InPtr = 0, InputBuffer | |
| 485 ADDP OutPtr = 0, OutputBuffer | |
| 486 mov RetVal = r0 | |
| 487 } | |
| 488 ;; | |
| 489 { | |
| 490 .mmi | |
| 491 lfetch.nt1 [InPrefetch], 0x80 | |
| 492 ADDP OutPrefetch = 0, OutputBuffer | |
| 493 } | |
| 494 { // Return 0 if the input length is nonsensical | |
| 495 .mib | |
| 496 ADDP StateTable = 0, StateTable | |
| 497 cmp.ge.unc L_NOK, L_OK = r0, DataLen | |
| 498 (L_NOK) br.ret.sptk.few rp | |
| 499 } | |
| 500 ;; | |
| 501 { | |
| 502 .mib | |
| 503 cmp.eq.or L_NOK, L_OK = r0, InPtr | |
| 504 cmp.eq.or L_NOK, L_OK = r0, OutPtr | |
| 505 nop 0x0 | |
| 506 } | |
| 507 { | |
| 508 .mib | |
| 509 cmp.eq.or L_NOK, L_OK = r0, StateTable | |
| 510 nop 0x0 | |
| 511 (L_NOK) br.ret.sptk.few rp | |
| 512 } | |
| 513 ;; | |
| 514 LKEY I[1] = [KTable], SZ | |
| 515 /* Prefetch the state-table. It contains 256 elements of size SZ */ | |
| 516 | |
| 517 #if SZ == 1 | |
| 518 ADDP tmp0 = 1*128, StateTable | |
| 519 #elif SZ == 2 | |
| 520 ADDP tmp0 = 3*128, StateTable | |
| 521 ADDP tmp1 = 2*128, StateTable | |
| 522 #elif SZ == 4 | |
| 523 ADDP tmp0 = 7*128, StateTable | |
| 524 ADDP tmp1 = 6*128, StateTable | |
| 525 #elif SZ == 8 | |
| 526 ADDP tmp0 = 15*128, StateTable | |
| 527 ADDP tmp1 = 14*128, StateTable | |
| 528 #endif | |
| 529 ;; | |
| 530 #if SZ >= 8 | |
| 531 lfetch.fault.nt1 [tmp0], -256 // 15 | |
| 532 lfetch.fault.nt1 [tmp1], -256;; | |
| 533 lfetch.fault.nt1 [tmp0], -256 // 13 | |
| 534 lfetch.fault.nt1 [tmp1], -256;; | |
| 535 lfetch.fault.nt1 [tmp0], -256 // 11 | |
| 536 lfetch.fault.nt1 [tmp1], -256;; | |
| 537 lfetch.fault.nt1 [tmp0], -256 // 9 | |
| 538 lfetch.fault.nt1 [tmp1], -256;; | |
| 539 #endif | |
| 540 #if SZ >= 4 | |
| 541 lfetch.fault.nt1 [tmp0], -256 // 7 | |
| 542 lfetch.fault.nt1 [tmp1], -256;; | |
| 543 lfetch.fault.nt1 [tmp0], -256 // 5 | |
| 544 lfetch.fault.nt1 [tmp1], -256;; | |
| 545 #endif | |
| 546 #if SZ >= 2 | |
| 547 lfetch.fault.nt1 [tmp0], -256 // 3 | |
| 548 lfetch.fault.nt1 [tmp1], -256;; | |
| 549 #endif | |
| 550 { | |
| 551 .mii | |
| 552 lfetch.fault.nt1 [tmp0] // 1 | |
| 553 add I[1]=1,I[1];; | |
| 554 zxt1 I[1]=I[1] | |
| 555 } | |
| 556 { | |
| 557 .mmi | |
| 558 lfetch.nt1 [InPrefetch], 0x80 | |
| 559 lfetch.excl.nt1 [OutPrefetch], 0x80 | |
| 560 .save pr, PRSave | |
| 561 mov PRSave = pr | |
| 562 } ;; | |
| 563 { | |
| 564 .mmi | |
| 565 lfetch.excl.nt1 [OutPrefetch], 0x80 | |
| 566 LKEY J = [KTable], SZ | |
| 567 ADDP EndPtr = DataLen, InPtr | |
| 568 } ;; | |
| 569 { | |
| 570 .mmi | |
| 571 ADDP EndPtr = -1, EndPtr // Make it point to | |
| 572 // last data byte. | |
| 573 mov One = 1 | |
| 574 .save ar.lc, LCSave | |
| 575 mov LCSave = ar.lc | |
| 576 .body | |
| 577 } ;; | |
| 578 { | |
| 579 .mmb | |
| 580 sub Remainder = 0, OutPtr | |
| 581 cmp.gtu pSmall, p0 = $threshold, DataLen | |
| 582 (pSmall) br.cond.dpnt .rc4Remainder // Data too small for | |
| 583 // big loop. | |
| 584 } ;; | |
| 585 { | |
| 586 .mmi | |
| 587 and Remainder = 0x7, Remainder | |
| 588 ;; | |
| 589 cmp.eq pAligned, pUnaligned = Remainder, r0 | |
| 590 nop 0x0 | |
| 591 } ;; | |
| 592 { | |
| 593 .mmb | |
| 594 .pred.rel "mutex",pUnaligned,pAligned | |
| 595 (pUnaligned) add Remainder = -1, Remainder | |
| 596 (pAligned) sub Remainder = EndPtr, InPtr | |
| 597 (pAligned) br.cond.dptk.many .rc4Aligned | |
| 598 } ;; | |
| 599 { | |
| 600 .mmi | |
| 601 nop 0x0 | |
| 602 nop 0x0 | |
| 603 mov.i ar.lc = Remainder | |
| 604 } | |
| 605 | |
| 606 /* Do the initial few bytes via the compact, modulo-scheduled loop | |
| 607 until the output pointer is 8-byte-aligned. */ | |
| 608 | |
| 609 MODSCHED_RC4_PROLOGUE | |
| 610 MODSCHED_RC4_LOOP(.RC4AlignLoop) | |
| 611 | |
| 612 { | |
| 613 .mib | |
| 614 sub Remainder = EndPtr, InPtr | |
| 615 zxt1 IFinal = IFinal | |
| 616 clrrrb // Clear CFM.rrb.pr so | |
| 617 ;; // next "mov pr.rot = N" | |
| 618 // does the right thing. | |
| 619 } | |
| 620 { | |
| 621 .mmi | |
| 622 mov I[1] = IFinal | |
| 623 nop 0x0 | |
| 624 nop 0x0 | |
| 625 } ;; | |
| 626 | |
| 627 | |
| 628 .rc4Aligned: | |
| 629 | |
| 630 /* | |
| 631 Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*
$phases) | |
| 632 */ | |
| 633 | |
| 634 { | |
| 635 .mlx | |
| 636 add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder | |
| 637 movl Remainder = 0xaaaaaaaaaaaaaaab | |
| 638 } ;; | |
| 639 { | |
| 640 .mmi | |
| 641 setf.sig f6 = LoopCount // M2, M3 6 cyc | |
| 642 setf.sig f7 = Remainder // M2, M3 6 cyc | |
| 643 nop 0x0 | |
| 644 } ;; | |
| 645 { | |
| 646 .mfb | |
| 647 nop 0x0 | |
| 648 xmpy.hu f6 = f6, f7 | |
| 649 nop 0x0 | |
| 650 } ;; | |
| 651 { | |
| 652 .mmi | |
| 653 getf.sig LoopCount = f6;; // M2 5 cyc | |
| 654 nop 0x0 | |
| 655 shr.u LoopCount = LoopCount, 4 | |
| 656 } ;; | |
| 657 { | |
| 658 .mmi | |
| 659 nop 0x0 | |
| 660 nop 0x0 | |
| 661 mov.i ar.lc = LoopCount | |
| 662 } ;; | |
| 663 | |
| 664 /* Now comes the unrolled loop: */ | |
| 665 | |
| 666 .rc4Prologue: | |
| 667 ___ | |
| 668 | |
| 669 $iteration = 0; | |
| 670 | |
| 671 # Generate the prologue: | |
| 672 $predicates = 1; | |
| 673 for ($i = 0; $i < $phases; ++$i) { | |
| 674 &emit_body (\$code, \$bypass, $iteration++, $predicates); | |
| 675 $predicates = ($predicates << 1) | 1; | |
| 676 } | |
| 677 | |
| 678 $code.=<<___; | |
| 679 .rc4Loop: | |
| 680 ___ | |
| 681 | |
| 682 # Generate the body: | |
| 683 for ($i = 0; $i < $unroll_count*$phases; ++$i) { | |
| 684 &emit_body (\$code, \$bypass, $iteration++, $predicates); | |
| 685 } | |
| 686 | |
| 687 $code.=<<___; | |
| 688 .rc4Epilogue: | |
| 689 ___ | |
| 690 | |
| 691 # Generate the epilogue: | |
| 692 for ($i = 0; $i < $phases; ++$i) { | |
| 693 $predicates <<= 1; | |
| 694 &emit_body (\$code, \$bypass, $iteration++, $predicates); | |
| 695 } | |
| 696 | |
| 697 $code.=<<___; | |
| 698 { | |
| 699 .mmi | |
| 700 lfetch.nt1 [EndPtr] // fetch line with last byte | |
| 701 mov IFinal = I[1] | |
| 702 nop 0x0 | |
| 703 } | |
| 704 | |
| 705 .rc4Remainder: | |
| 706 { | |
| 707 .mmi | |
| 708 sub Remainder = EndPtr, InPtr // Calculate | |
| 709 // # of bytes | |
| 710 // left - 1 | |
| 711 nop 0x0 | |
| 712 nop 0x0 | |
| 713 } ;; | |
| 714 { | |
| 715 .mib | |
| 716 cmp.eq pDone, p0 = -1, Remainder // done already? | |
| 717 mov.i ar.lc = Remainder | |
| 718 (pDone) br.cond.dptk.few .rc4Complete | |
| 719 } | |
| 720 | |
| 721 /* Do the remaining bytes via the compact, modulo-scheduled loop */ | |
| 722 | |
| 723 MODSCHED_RC4_PROLOGUE | |
| 724 MODSCHED_RC4_LOOP(.RC4RestLoop) | |
| 725 | |
| 726 .rc4Complete: | |
| 727 { | |
| 728 .mmi | |
| 729 add KTable = -SZ, KTable | |
| 730 add IFinal = -1, IFinal | |
| 731 mov ar.lc = LCSave | |
| 732 } ;; | |
| 733 { | |
| 734 .mii | |
| 735 SKEY [KTable] = J,-SZ | |
| 736 zxt1 IFinal = IFinal | |
| 737 mov pr = PRSave, 0x1FFFF | |
| 738 } ;; | |
| 739 { | |
| 740 .mib | |
| 741 SKEY [KTable] = IFinal | |
| 742 add RetVal = 1, r0 | |
| 743 br.ret.sptk.few rp | |
| 744 } ;; | |
| 745 ___ | |
| 746 | |
| 747 # Last but not least, emit the code for the bypass-code of the unrolled loop: | |
| 748 | |
| 749 $code.=$bypass; | |
| 750 | |
| 751 $code.=<<___; | |
| 752 .endp RC4 | |
| 753 ___ | |
| 754 | |
| 755 print $code; | |
| OLD | NEW |