Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(330)

Side by Side Diff: openssl/crypto/jpake/jpake.c

Issue 2072073002: Delete bundled copy of OpenSSL and replace with README. (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/openssl@master
Patch Set: Delete bundled copy of OpenSSL and replace with README. Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « openssl/crypto/jpake/jpake.h ('k') | openssl/crypto/jpake/jpake_err.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 #include "jpake.h"
2
3 #include <openssl/crypto.h>
4 #include <openssl/sha.h>
5 #include <openssl/err.h>
6 #include <memory.h>
7
8 /*
9 * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
10 * Bob's (x3, x4, x1, x2). If you see what I mean.
11 */
12
13 typedef struct
14 {
15 char *name; /* Must be unique */
16 char *peer_name;
17 BIGNUM *p;
18 BIGNUM *g;
19 BIGNUM *q;
20 BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */
21 BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */
22 } JPAKE_CTX_PUBLIC;
23
24 struct JPAKE_CTX
25 {
26 JPAKE_CTX_PUBLIC p;
27 BIGNUM *secret; /* The shared secret */
28 BN_CTX *ctx;
29 BIGNUM *xa; /* Alice's x1 or Bob's x3 */
30 BIGNUM *xb; /* Alice's x2 or Bob's x4 */
31 BIGNUM *key; /* The calculated (shared) key */
32 };
33
34 static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
35 {
36 zkp->gr = BN_new();
37 zkp->b = BN_new();
38 }
39
40 static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
41 {
42 BN_free(zkp->b);
43 BN_free(zkp->gr);
44 }
45
46 /* Two birds with one stone - make the global name as expected */
47 #define JPAKE_STEP_PART_init JPAKE_STEP2_init
48 #define JPAKE_STEP_PART_release JPAKE_STEP2_release
49
50 void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
51 {
52 p->gx = BN_new();
53 JPAKE_ZKP_init(&p->zkpx);
54 }
55
56 void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
57 {
58 JPAKE_ZKP_release(&p->zkpx);
59 BN_free(p->gx);
60 }
61
62 void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
63 {
64 JPAKE_STEP_PART_init(&s1->p1);
65 JPAKE_STEP_PART_init(&s1->p2);
66 }
67
68 void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
69 {
70 JPAKE_STEP_PART_release(&s1->p2);
71 JPAKE_STEP_PART_release(&s1->p1);
72 }
73
74 static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
75 const char *peer_name, const BIGNUM *p,
76 const BIGNUM *g, const BIGNUM *q,
77 const BIGNUM *secret)
78 {
79 ctx->p.name = OPENSSL_strdup(name);
80 ctx->p.peer_name = OPENSSL_strdup(peer_name);
81 ctx->p.p = BN_dup(p);
82 ctx->p.g = BN_dup(g);
83 ctx->p.q = BN_dup(q);
84 ctx->secret = BN_dup(secret);
85
86 ctx->p.gxc = BN_new();
87 ctx->p.gxd = BN_new();
88
89 ctx->xa = BN_new();
90 ctx->xb = BN_new();
91 ctx->key = BN_new();
92 ctx->ctx = BN_CTX_new();
93 }
94
95 static void JPAKE_CTX_release(JPAKE_CTX *ctx)
96 {
97 BN_CTX_free(ctx->ctx);
98 BN_clear_free(ctx->key);
99 BN_clear_free(ctx->xb);
100 BN_clear_free(ctx->xa);
101
102 BN_free(ctx->p.gxd);
103 BN_free(ctx->p.gxc);
104
105 BN_clear_free(ctx->secret);
106 BN_free(ctx->p.q);
107 BN_free(ctx->p.g);
108 BN_free(ctx->p.p);
109 OPENSSL_free(ctx->p.peer_name);
110 OPENSSL_free(ctx->p.name);
111
112 memset(ctx, '\0', sizeof *ctx);
113 }
114
115 JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
116 const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
117 const BIGNUM *secret)
118 {
119 JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx);
120
121 JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
122
123 return ctx;
124 }
125
126 void JPAKE_CTX_free(JPAKE_CTX *ctx)
127 {
128 JPAKE_CTX_release(ctx);
129 OPENSSL_free(ctx);
130 }
131
132 static void hashlength(SHA_CTX *sha, size_t l)
133 {
134 unsigned char b[2];
135
136 OPENSSL_assert(l <= 0xffff);
137 b[0] = l >> 8;
138 b[1] = l&0xff;
139 SHA1_Update(sha, b, 2);
140 }
141
142 static void hashstring(SHA_CTX *sha, const char *string)
143 {
144 size_t l = strlen(string);
145
146 hashlength(sha, l);
147 SHA1_Update(sha, string, l);
148 }
149
150 static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
151 {
152 size_t l = BN_num_bytes(bn);
153 unsigned char *bin = OPENSSL_malloc(l);
154
155 hashlength(sha, l);
156 BN_bn2bin(bn, bin);
157 SHA1_Update(sha, bin, l);
158 OPENSSL_free(bin);
159 }
160
161 /* h=hash(g, g^r, g^x, name) */
162 static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
163 const char *proof_name)
164 {
165 unsigned char md[SHA_DIGEST_LENGTH];
166 SHA_CTX sha;
167
168 /*
169 * XXX: hash should not allow moving of the boundaries - Java code
170 * is flawed in this respect. Length encoding seems simplest.
171 */
172 SHA1_Init(&sha);
173 hashbn(&sha, zkpg);
174 OPENSSL_assert(!BN_is_zero(p->zkpx.gr));
175 hashbn(&sha, p->zkpx.gr);
176 hashbn(&sha, p->gx);
177 hashstring(&sha, proof_name);
178 SHA1_Final(md, &sha);
179 BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
180 }
181
182 /*
183 * Prove knowledge of x
184 * Note that p->gx has already been calculated
185 */
186 static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
187 const BIGNUM *zkpg, JPAKE_CTX *ctx)
188 {
189 BIGNUM *r = BN_new();
190 BIGNUM *h = BN_new();
191 BIGNUM *t = BN_new();
192
193 /*
194 * r in [0,q)
195 * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
196 */
197 BN_rand_range(r, ctx->p.q);
198 /* g^r */
199 BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
200
201 /* h=hash... */
202 zkp_hash(h, zkpg, p, ctx->p.name);
203
204 /* b = r - x*h */
205 BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
206 BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
207
208 /* cleanup */
209 BN_free(t);
210 BN_free(h);
211 BN_free(r);
212 }
213
214 static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
215 JPAKE_CTX *ctx)
216 {
217 BIGNUM *h = BN_new();
218 BIGNUM *t1 = BN_new();
219 BIGNUM *t2 = BN_new();
220 BIGNUM *t3 = BN_new();
221 int ret = 0;
222
223 zkp_hash(h, zkpg, p, ctx->p.peer_name);
224
225 /* t1 = g^b */
226 BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
227 /* t2 = (g^x)^h = g^{hx} */
228 BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
229 /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
230 BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
231
232 /* verify t3 == g^r */
233 if(BN_cmp(t3, p->zkpx.gr) == 0)
234 ret = 1;
235 else
236 JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
237
238 /* cleanup */
239 BN_free(t3);
240 BN_free(t2);
241 BN_free(t1);
242 BN_free(h);
243
244 return ret;
245 }
246
247 static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
248 const BIGNUM *g, JPAKE_CTX *ctx)
249 {
250 BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
251 generate_zkp(p, x, g, ctx);
252 }
253
254 /* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
255 static void genrand(JPAKE_CTX *ctx)
256 {
257 BIGNUM *qm1;
258
259 /* xa in [0, q) */
260 BN_rand_range(ctx->xa, ctx->p.q);
261
262 /* q-1 */
263 qm1 = BN_new();
264 BN_copy(qm1, ctx->p.q);
265 BN_sub_word(qm1, 1);
266
267 /* ... and xb in [0, q-1) */
268 BN_rand_range(ctx->xb, qm1);
269 /* [1, q) */
270 BN_add_word(ctx->xb, 1);
271
272 /* cleanup */
273 BN_free(qm1);
274 }
275
276 int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
277 {
278 genrand(ctx);
279 generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
280 generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
281
282 return 1;
283 }
284
285 /* g^x is a legal value */
286 static int is_legal(const BIGNUM *gx, const JPAKE_CTX *ctx)
287 {
288 BIGNUM *t;
289 int res;
290
291 if(BN_is_negative(gx) || BN_is_zero(gx) || BN_cmp(gx, ctx->p.p) >= 0)
292 return 0;
293
294 t = BN_new();
295 BN_mod_exp(t, gx, ctx->p.q, ctx->p.p, ctx->ctx);
296 res = BN_is_one(t);
297 BN_free(t);
298
299 return res;
300 }
301
302 int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
303 {
304 if(!is_legal(received->p1.gx, ctx))
305 {
306 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X3_IS_NOT_LEGAL);
307 return 0;
308 }
309
310 if(!is_legal(received->p2.gx, ctx))
311 {
312 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_NOT_LEGAL);
313 return 0;
314 }
315
316 /* verify their ZKP(xc) */
317 if(!verify_zkp(&received->p1, ctx->p.g, ctx))
318 {
319 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
320 return 0;
321 }
322
323 /* verify their ZKP(xd) */
324 if(!verify_zkp(&received->p2, ctx->p.g, ctx))
325 {
326 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
327 return 0;
328 }
329
330 /* g^xd != 1 */
331 if(BN_is_one(received->p2.gx))
332 {
333 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
334 return 0;
335 }
336
337 /* Save the bits we need for later */
338 BN_copy(ctx->p.gxc, received->p1.gx);
339 BN_copy(ctx->p.gxd, received->p2.gx);
340
341 return 1;
342 }
343
344
345 int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
346 {
347 BIGNUM *t1 = BN_new();
348 BIGNUM *t2 = BN_new();
349
350 /*
351 * X = g^{(xa + xc + xd) * xb * s}
352 * t1 = g^xa
353 */
354 BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
355 /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
356 BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
357 /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
358 BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
359 /* t2 = xb * s */
360 BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
361
362 /*
363 * ZKP(xb * s)
364 * XXX: this is kinda funky, because we're using
365 *
366 * g' = g^{xa + xc + xd}
367 *
368 * as the generator, which means X is g'^{xb * s}
369 * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
370 */
371 generate_step_part(send, t2, t1, ctx);
372
373 /* cleanup */
374 BN_free(t1);
375 BN_free(t2);
376
377 return 1;
378 }
379
380 /* gx = g^{xc + xa + xb} * xd * s */
381 static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
382 {
383 BIGNUM *t1 = BN_new();
384 BIGNUM *t2 = BN_new();
385 BIGNUM *t3 = BN_new();
386
387 /*
388 * K = (gx/g^{xb * xd * s})^{xb}
389 * = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
390 * = (g^{(xa + xc) * xd * s})^{xb}
391 * = g^{(xa + xc) * xb * xd * s}
392 * [which is the same regardless of who calculates it]
393 */
394
395 /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
396 BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
397 /* t2 = -s = q-s */
398 BN_sub(t2, ctx->p.q, ctx->secret);
399 /* t3 = t1^t2 = g^{-xb * xd * s} */
400 BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
401 /* t1 = gx * t3 = X/g^{xb * xd * s} */
402 BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
403 /* K = t1^{xb} */
404 BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
405
406 /* cleanup */
407 BN_free(t3);
408 BN_free(t2);
409 BN_free(t1);
410
411 return 1;
412 }
413
414 int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
415 {
416 BIGNUM *t1 = BN_new();
417 BIGNUM *t2 = BN_new();
418 int ret = 0;
419
420 /*
421 * g' = g^{xc + xa + xb} [from our POV]
422 * t1 = xa + xb
423 */
424 BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
425 /* t2 = g^{t1} = g^{xa+xb} */
426 BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
427 /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
428 BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
429
430 if(verify_zkp(received, t1, ctx))
431 ret = 1;
432 else
433 JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
434
435 compute_key(ctx, received->gx);
436
437 /* cleanup */
438 BN_free(t2);
439 BN_free(t1);
440
441 return ret;
442 }
443
444 static void quickhashbn(unsigned char *md, const BIGNUM *bn)
445 {
446 SHA_CTX sha;
447
448 SHA1_Init(&sha);
449 hashbn(&sha, bn);
450 SHA1_Final(md, &sha);
451 }
452
453 void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
454 {}
455
456 int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
457 {
458 quickhashbn(send->hhk, ctx->key);
459 SHA1(send->hhk, sizeof send->hhk, send->hhk);
460
461 return 1;
462 }
463
464 int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
465 {
466 unsigned char hhk[SHA_DIGEST_LENGTH];
467
468 quickhashbn(hhk, ctx->key);
469 SHA1(hhk, sizeof hhk, hhk);
470 if(memcmp(hhk, received->hhk, sizeof hhk))
471 {
472 JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS, JPAKE_R_HASH_OF_HASH_OF_KEY_MISMA TCH);
473 return 0;
474 }
475 return 1;
476 }
477
478 void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
479 {}
480
481 void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
482 {}
483
484 int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
485 {
486 quickhashbn(send->hk, ctx->key);
487
488 return 1;
489 }
490
491 int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
492 {
493 unsigned char hk[SHA_DIGEST_LENGTH];
494
495 quickhashbn(hk, ctx->key);
496 if(memcmp(hk, received->hk, sizeof hk))
497 {
498 JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
499 return 0;
500 }
501 return 1;
502 }
503
504 void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
505 {}
506
507 const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
508 {
509 return ctx->key;
510 }
511
OLDNEW
« no previous file with comments | « openssl/crypto/jpake/jpake.h ('k') | openssl/crypto/jpake/jpake_err.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698