Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(539)

Side by Side Diff: openssl/crypto/aes/asm/aes-586.pl

Issue 2072073002: Delete bundled copy of OpenSSL and replace with README. (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/openssl@master
Patch Set: Delete bundled copy of OpenSSL and replace with README. Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « openssl/crypto/aes/asm/aes-586.S ('k') | openssl/crypto/aes/asm/aes-586-mac.S » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 #!/usr/bin/env perl
2 #
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
9 #
10 # Version 4.3.
11 #
12 # You might fail to appreciate this module performance from the first
13 # try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
14 # to be *the* best Intel C compiler without -KPIC, performance appears
15 # to be virtually identical... But try to re-configure with shared
16 # library support... Aha! Intel compiler "suddenly" lags behind by 30%
17 # [on P4, more on others]:-) And if compared to position-independent
18 # code generated by GNU C, this code performs *more* than *twice* as
19 # fast! Yes, all this buzz about PIC means that unlike other hand-
20 # coded implementations, this one was explicitly designed to be safe
21 # to use even in shared library context... This also means that this
22 # code isn't necessarily absolutely fastest "ever," because in order
23 # to achieve position independence an extra register has to be
24 # off-loaded to stack, which affects the benchmark result.
25 #
26 # Special note about instruction choice. Do you recall RC4_INT code
27 # performing poorly on P4? It might be the time to figure out why.
28 # RC4_INT code implies effective address calculations in base+offset*4
29 # form. Trouble is that it seems that offset scaling turned to be
30 # critical path... At least eliminating scaling resulted in 2.8x RC4
31 # performance improvement [as you might recall]. As AES code is hungry
32 # for scaling too, I [try to] avoid the latter by favoring off-by-2
33 # shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
34 #
35 # As was shown by Dean Gaudet <dean@arctic.org>, the above note turned
36 # void. Performance improvement with off-by-2 shifts was observed on
37 # intermediate implementation, which was spilling yet another register
38 # to stack... Final offset*4 code below runs just a tad faster on P4,
39 # but exhibits up to 10% improvement on other cores.
40 #
41 # Second version is "monolithic" replacement for aes_core.c, which in
42 # addition to AES_[de|en]crypt implements private_AES_set_[de|en]cryption_key.
43 # This made it possible to implement little-endian variant of the
44 # algorithm without modifying the base C code. Motivating factor for
45 # the undertaken effort was that it appeared that in tight IA-32
46 # register window little-endian flavor could achieve slightly higher
47 # Instruction Level Parallelism, and it indeed resulted in up to 15%
48 # better performance on most recent µ-archs...
49 #
50 # Third version adds AES_cbc_encrypt implementation, which resulted in
51 # up to 40% performance imrovement of CBC benchmark results. 40% was
52 # observed on P4 core, where "overall" imrovement coefficient, i.e. if
53 # compared to PIC generated by GCC and in CBC mode, was observed to be
54 # as large as 4x:-) CBC performance is virtually identical to ECB now
55 # and on some platforms even better, e.g. 17.6 "small" cycles/byte on
56 # Opteron, because certain function prologues and epilogues are
57 # effectively taken out of the loop...
58 #
59 # Version 3.2 implements compressed tables and prefetch of these tables
60 # in CBC[!] mode. Former means that 3/4 of table references are now
61 # misaligned, which unfortunately has negative impact on elder IA-32
62 # implementations, Pentium suffered 30% penalty, PIII - 10%.
63 #
64 # Version 3.3 avoids L1 cache aliasing between stack frame and
65 # S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
66 # latter is achieved by copying the key schedule to controlled place in
67 # stack. This unfortunately has rather strong impact on small block CBC
68 # performance, ~2x deterioration on 16-byte block if compared to 3.3.
69 #
70 # Version 3.5 checks if there is L1 cache aliasing between user-supplied
71 # key schedule and S-boxes and abstains from copying the former if
72 # there is no. This allows end-user to consciously retain small block
73 # performance by aligning key schedule in specific manner.
74 #
75 # Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
76 #
77 # Current ECB performance numbers for 128-bit key in CPU cycles per
78 # processed byte [measure commonly used by AES benchmarkers] are:
79 #
80 # small footprint fully unrolled
81 # P4 24 22
82 # AMD K8 20 19
83 # PIII 25 23
84 # Pentium 81 78
85 #
86 # Version 3.7 reimplements outer rounds as "compact." Meaning that
87 # first and last rounds reference compact 256 bytes S-box. This means
88 # that first round consumes a lot more CPU cycles and that encrypt
89 # and decrypt performance becomes asymmetric. Encrypt performance
90 # drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
91 # aggressively pre-fetched.
92 #
93 # Version 4.0 effectively rolls back to 3.6 and instead implements
94 # additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
95 # which use exclusively 256 byte S-box. These functions are to be
96 # called in modes not concealing plain text, such as ECB, or when
97 # we're asked to process smaller amount of data [or unconditionally
98 # on hyper-threading CPU]. Currently it's called unconditionally from
99 # AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
100 # still needs to be modified to switch between slower and faster
101 # mode when appropriate... But in either case benchmark landscape
102 # changes dramatically and below numbers are CPU cycles per processed
103 # byte for 128-bit key.
104 #
105 # ECB encrypt ECB decrypt CBC large chunk
106 # P4 56[60] 84[100] 23
107 # AMD K8 48[44] 70[79] 18
108 # PIII 41[50] 61[91] 24
109 # Core 2 32[38] 45[70] 18.5
110 # Pentium 120 160 77
111 #
112 # Version 4.1 switches to compact S-box even in key schedule setup.
113 #
114 # Version 4.2 prefetches compact S-box in every SSE round or in other
115 # words every cache-line is *guaranteed* to be accessed within ~50
116 # cycles window. Why just SSE? Because it's needed on hyper-threading
117 # CPU! Which is also why it's prefetched with 64 byte stride. Best
118 # part is that it has no negative effect on performance:-)
119 #
120 # Version 4.3 implements switch between compact and non-compact block
121 # functions in AES_cbc_encrypt depending on how much data was asked
122 # to be processed in one stroke.
123 #
124 ######################################################################
125 # Timing attacks are classified in two classes: synchronous when
126 # attacker consciously initiates cryptographic operation and collects
127 # timing data of various character afterwards, and asynchronous when
128 # malicious code is executed on same CPU simultaneously with AES,
129 # instruments itself and performs statistical analysis of this data.
130 #
131 # As far as synchronous attacks go the root to the AES timing
132 # vulnerability is twofold. Firstly, of 256 S-box elements at most 160
133 # are referred to in single 128-bit block operation. Well, in C
134 # implementation with 4 distinct tables it's actually as little as 40
135 # references per 256 elements table, but anyway... Secondly, even
136 # though S-box elements are clustered into smaller amount of cache-
137 # lines, smaller than 160 and even 40, it turned out that for certain
138 # plain-text pattern[s] or simply put chosen plain-text and given key
139 # few cache-lines remain unaccessed during block operation. Now, if
140 # attacker can figure out this access pattern, he can deduct the key
141 # [or at least part of it]. The natural way to mitigate this kind of
142 # attacks is to minimize the amount of cache-lines in S-box and/or
143 # prefetch them to ensure that every one is accessed for more uniform
144 # timing. But note that *if* plain-text was concealed in such way that
145 # input to block function is distributed *uniformly*, then attack
146 # wouldn't apply. Now note that some encryption modes, most notably
147 # CBC, do mask the plain-text in this exact way [secure cipher output
148 # is distributed uniformly]. Yes, one still might find input that
149 # would reveal the information about given key, but if amount of
150 # candidate inputs to be tried is larger than amount of possible key
151 # combinations then attack becomes infeasible. This is why revised
152 # AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
153 # of data is to be processed in one stroke. The current size limit of
154 # 512 bytes is chosen to provide same [diminishigly low] probability
155 # for cache-line to remain untouched in large chunk operation with
156 # large S-box as for single block operation with compact S-box and
157 # surely needs more careful consideration...
158 #
159 # As for asynchronous attacks. There are two flavours: attacker code
160 # being interleaved with AES on hyper-threading CPU at *instruction*
161 # level, and two processes time sharing single core. As for latter.
162 # Two vectors. 1. Given that attacker process has higher priority,
163 # yield execution to process performing AES just before timer fires
164 # off the scheduler, immediately regain control of CPU and analyze the
165 # cache state. For this attack to be efficient attacker would have to
166 # effectively slow down the operation by several *orders* of magnitute,
167 # by ratio of time slice to duration of handful of AES rounds, which
168 # unlikely to remain unnoticed. Not to mention that this also means
169 # that he would spend correspondigly more time to collect enough
170 # statistical data to mount the attack. It's probably appropriate to
171 # say that if adeversary reckons that this attack is beneficial and
172 # risks to be noticed, you probably have larger problems having him
173 # mere opportunity. In other words suggested code design expects you
174 # to preclude/mitigate this attack by overall system security design.
175 # 2. Attacker manages to make his code interrupt driven. In order for
176 # this kind of attack to be feasible, interrupt rate has to be high
177 # enough, again comparable to duration of handful of AES rounds. But
178 # is there interrupt source of such rate? Hardly, not even 1Gbps NIC
179 # generates interrupts at such raging rate...
180 #
181 # And now back to the former, hyper-threading CPU or more specifically
182 # Intel P4. Recall that asynchronous attack implies that malicious
183 # code instruments itself. And naturally instrumentation granularity
184 # has be noticeably lower than duration of codepath accessing S-box.
185 # Given that all cache-lines are accessed during that time that is.
186 # Current implementation accesses *all* cache-lines within ~50 cycles
187 # window, which is actually *less* than RDTSC latency on Intel P4!
188
189 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
190 push(@INC,"${dir}","${dir}../../perlasm");
191 require "x86asm.pl";
192
193 &asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
194 &static_label("AES_Te");
195 &static_label("AES_Td");
196
197 $s0="eax";
198 $s1="ebx";
199 $s2="ecx";
200 $s3="edx";
201 $key="edi";
202 $acc="esi";
203 $tbl="ebp";
204
205 # stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
206 # by caller
207 $__ra=&DWP(0,"esp"); # return address
208 $__s0=&DWP(4,"esp"); # s0 backing store
209 $__s1=&DWP(8,"esp"); # s1 backing store
210 $__s2=&DWP(12,"esp"); # s2 backing store
211 $__s3=&DWP(16,"esp"); # s3 backing store
212 $__key=&DWP(20,"esp"); # pointer to key schedule
213 $__end=&DWP(24,"esp"); # pointer to end of key schedule
214 $__tbl=&DWP(28,"esp"); # %ebp backing store
215
216 # stack frame layout in AES_[en|crypt] routines, which differs from
217 # above by 4 and overlaps by %ebp backing store
218 $_tbl=&DWP(24,"esp");
219 $_esp=&DWP(28,"esp");
220
221 sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
222
223 $speed_limit=512; # chunks smaller than $speed_limit are
224 # processed with compact routine in CBC mode
225 $small_footprint=1; # $small_footprint=1 code is ~5% slower [on
226 # recent µ-archs], but ~5 times smaller!
227 # I favor compact code to minimize cache
228 # contention and in hope to "collect" 5% back
229 # in real-life applications...
230
231 $vertical_spin=0; # shift "verticaly" defaults to 0, because of
232 # its proof-of-concept status...
233 # Note that there is no decvert(), as well as last encryption round is
234 # performed with "horizontal" shifts. This is because this "vertical"
235 # implementation [one which groups shifts on a given $s[i] to form a
236 # "column," unlike "horizontal" one, which groups shifts on different
237 # $s[i] to form a "row"] is work in progress. It was observed to run
238 # few percents faster on Intel cores, but not AMD. On AMD K8 core it's
239 # whole 12% slower:-( So we face a trade-off... Shall it be resolved
240 # some day? Till then the code is considered experimental and by
241 # default remains dormant...
242
243 sub encvert()
244 { my ($te,@s) = @_;
245 my $v0 = $acc, $v1 = $key;
246
247 &mov ($v0,$s[3]); # copy s3
248 &mov (&DWP(4,"esp"),$s[2]); # save s2
249 &mov ($v1,$s[0]); # copy s0
250 &mov (&DWP(8,"esp"),$s[1]); # save s1
251
252 &movz ($s[2],&HB($s[0]));
253 &and ($s[0],0xFF);
254 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0
255 &shr ($v1,16);
256 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8
257 &movz ($s[1],&HB($v1));
258 &and ($v1,0xFF);
259 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16
260 &mov ($v1,$v0);
261 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24
262
263 &and ($v0,0xFF);
264 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0
265 &movz ($v0,&HB($v1));
266 &shr ($v1,16);
267 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8
268 &movz ($v0,&HB($v1));
269 &and ($v1,0xFF);
270 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16
271 &mov ($v1,&DWP(4,"esp")); # restore s2
272 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24
273
274 &mov ($v0,$v1);
275 &and ($v1,0xFF);
276 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0
277 &movz ($v1,&HB($v0));
278 &shr ($v0,16);
279 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8
280 &movz ($v1,&HB($v0));
281 &and ($v0,0xFF);
282 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16
283 &mov ($v0,&DWP(8,"esp")); # restore s1
284 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24
285
286 &mov ($v1,$v0);
287 &and ($v0,0xFF);
288 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0
289 &movz ($v0,&HB($v1));
290 &shr ($v1,16);
291 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8
292 &movz ($v0,&HB($v1));
293 &and ($v1,0xFF);
294 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16
295 &mov ($key,$__key); # reincarnate v1 as key
296 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24
297 }
298
299 # Another experimental routine, which features "horizontal spin," but
300 # eliminates one reference to stack. Strangely enough runs slower...
301 sub enchoriz()
302 { my $v0 = $key, $v1 = $acc;
303
304 &movz ($v0,&LB($s0)); # 3, 2, 1, 0*
305 &rotr ($s2,8); # 8,11,10, 9
306 &mov ($v1,&DWP(0,$te,$v0,8)); # 0
307 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4
308 &rotr ($s3,16); # 13,12,15,14
309 &xor ($v1,&DWP(3,$te,$v0,8)); # 5
310 &movz ($v0,&HB($s2)); # 8,11,10*, 9
311 &rotr ($s0,16); # 1, 0, 3, 2
312 &xor ($v1,&DWP(2,$te,$v0,8)); # 10
313 &movz ($v0,&HB($s3)); # 13,12,15*,14
314 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected
315 &mov ($__s0,$v1); # t[0] saved
316
317 &movz ($v0,&LB($s1)); # 7, 6, 5, 4*
318 &shr ($s1,16); # -, -, 7, 6
319 &mov ($v1,&DWP(0,$te,$v0,8)); # 4
320 &movz ($v0,&LB($s3)); # 13,12,15,14*
321 &xor ($v1,&DWP(2,$te,$v0,8)); # 14
322 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2
323 &and ($s3,0xffff0000); # 13,12, -, -
324 &xor ($v1,&DWP(1,$te,$v0,8)); # 3
325 &movz ($v0,&LB($s2)); # 8,11,10, 9*
326 &or ($s3,$s1); # 13,12, 7, 6
327 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected
328 &mov ($s1,$v1); # s[1]=t[1]
329
330 &movz ($v0,&LB($s0)); # 1, 0, 3, 2*
331 &shr ($s2,16); # -, -, 8,11
332 &mov ($v1,&DWP(2,$te,$v0,8)); # 2
333 &movz ($v0,&HB($s3)); # 13,12, 7*, 6
334 &xor ($v1,&DWP(1,$te,$v0,8)); # 7
335 &movz ($v0,&HB($s2)); # -, -, 8*,11
336 &xor ($v1,&DWP(0,$te,$v0,8)); # 8
337 &mov ($v0,$s3);
338 &shr ($v0,24); # 13
339 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected
340
341 &movz ($v0,&LB($s2)); # -, -, 8,11*
342 &shr ($s0,24); # 1*
343 &mov ($s2,&DWP(1,$te,$v0,8)); # 11
344 &xor ($s2,&DWP(3,$te,$s0,8)); # 1
345 &mov ($s0,$__s0); # s[0]=t[0]
346 &movz ($v0,&LB($s3)); # 13,12, 7, 6*
347 &shr ($s3,16); # , ,13,12
348 &xor ($s2,&DWP(2,$te,$v0,8)); # 6
349 &mov ($key,$__key); # reincarnate v0 as key
350 &and ($s3,0xff); # , ,13,12*
351 &mov ($s3,&DWP(0,$te,$s3,8)); # 12
352 &xor ($s3,$s2); # s[2]=t[3] collected
353 &mov ($s2,$v1); # s[2]=t[2]
354 }
355
356 # More experimental code... SSE one... Even though this one eliminates
357 # *all* references to stack, it's not faster...
358 sub sse_encbody()
359 {
360 &movz ($acc,&LB("eax")); # 0
361 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0
362 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
363 &movz ("edx",&HB("eax")); # 1
364 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1
365 &shr ("eax",16); # 5, 4
366
367 &movz ($acc,&LB("ebx")); # 10
368 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10
369 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
370 &movz ($acc,&HB("ebx")); # 11
371 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11
372 &shr ("ebx",16); # 15,14
373
374 &movz ($acc,&HB("eax")); # 5
375 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5
376 &movq ("mm3",QWP(16,$key));
377 &movz ($acc,&HB("ebx")); # 15
378 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15
379 &movd ("mm0","ecx"); # t[0] collected
380
381 &movz ($acc,&LB("eax")); # 4
382 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4
383 &movd ("eax","mm2"); # 7, 6, 3, 2
384 &movz ($acc,&LB("ebx")); # 14
385 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14
386 &movd ("ebx","mm6"); # 13,12, 9, 8
387
388 &movz ($acc,&HB("eax")); # 3
389 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3
390 &movz ($acc,&HB("ebx")); # 9
391 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9
392 &movd ("mm1","ecx"); # t[1] collected
393
394 &movz ($acc,&LB("eax")); # 2
395 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2
396 &shr ("eax",16); # 7, 6
397 &punpckldq ("mm0","mm1"); # t[0,1] collected
398 &movz ($acc,&LB("ebx")); # 8
399 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8
400 &shr ("ebx",16); # 13,12
401
402 &movz ($acc,&HB("eax")); # 7
403 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7
404 &pxor ("mm0","mm3");
405 &movz ("eax",&LB("eax")); # 6
406 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6
407 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
408 &movz ($acc,&HB("ebx")); # 13
409 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13
410 &xor ("ecx",&DWP(24,$key)); # t[2]
411 &movd ("mm4","ecx"); # t[2] collected
412 &movz ("ebx",&LB("ebx")); # 12
413 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12
414 &shr ("ecx",16);
415 &movd ("eax","mm1"); # 5, 4, 1, 0
416 &mov ("ebx",&DWP(28,$key)); # t[3]
417 &xor ("ebx","edx");
418 &movd ("mm5","ebx"); # t[3] collected
419 &and ("ebx",0xffff0000);
420 &or ("ebx","ecx");
421
422 &punpckldq ("mm4","mm5"); # t[2,3] collected
423 }
424
425 ######################################################################
426 # "Compact" block function
427 ######################################################################
428
429 sub enccompact()
430 { my $Fn = mov;
431 while ($#_>5) { pop(@_); $Fn=sub{}; }
432 my ($i,$te,@s)=@_;
433 my $tmp = $key;
434 my $out = $i==3?$s[0]:$acc;
435
436 # $Fn is used in first compact round and its purpose is to
437 # void restoration of some values from stack, so that after
438 # 4xenccompact with extra argument $key value is left there...
439 if ($i==3) { &$Fn ($key,$__key); }##%edx
440 else { &mov ($out,$s[0]); }
441 &and ($out,0xFF);
442 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
443 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
444 &movz ($out,&BP(-128,$te,$out,1));
445
446 if ($i==3) { $tmp=$s[1]; }##%eax
447 &movz ($tmp,&HB($s[1]));
448 &movz ($tmp,&BP(-128,$te,$tmp,1));
449 &shl ($tmp,8);
450 &xor ($out,$tmp);
451
452 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
453 else { &mov ($tmp,$s[2]);
454 &shr ($tmp,16); }
455 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
456 &and ($tmp,0xFF);
457 &movz ($tmp,&BP(-128,$te,$tmp,1));
458 &shl ($tmp,16);
459 &xor ($out,$tmp);
460
461 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
462 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
463 else { &mov ($tmp,$s[3]);
464 &shr ($tmp,24); }
465 &movz ($tmp,&BP(-128,$te,$tmp,1));
466 &shl ($tmp,24);
467 &xor ($out,$tmp);
468 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
469 if ($i==3) { &mov ($s[3],$acc); }
470 &comment();
471 }
472
473 sub enctransform()
474 { my @s = ($s0,$s1,$s2,$s3);
475 my $i = shift;
476 my $tmp = $tbl;
477 my $r2 = $key ;
478
479 &mov ($acc,$s[$i]);
480 &and ($acc,0x80808080);
481 &mov ($tmp,$acc);
482 &shr ($tmp,7);
483 &lea ($r2,&DWP(0,$s[$i],$s[$i]));
484 &sub ($acc,$tmp);
485 &and ($r2,0xfefefefe);
486 &and ($acc,0x1b1b1b1b);
487 &mov ($tmp,$s[$i]);
488 &xor ($acc,$r2); # r2
489
490 &xor ($s[$i],$acc); # r0 ^ r2
491 &rotl ($s[$i],24);
492 &xor ($s[$i],$acc) # ROTATE(r2^r0,24) ^ r2
493 &rotr ($tmp,16);
494 &xor ($s[$i],$tmp);
495 &rotr ($tmp,8);
496 &xor ($s[$i],$tmp);
497 }
498
499 &function_begin_B("_x86_AES_encrypt_compact");
500 # note that caller is expected to allocate stack frame for me!
501 &mov ($__key,$key); # save key
502
503 &xor ($s0,&DWP(0,$key)); # xor with key
504 &xor ($s1,&DWP(4,$key));
505 &xor ($s2,&DWP(8,$key));
506 &xor ($s3,&DWP(12,$key));
507
508 &mov ($acc,&DWP(240,$key)); # load key->rounds
509 &lea ($acc,&DWP(-2,$acc,$acc));
510 &lea ($acc,&DWP(0,$key,$acc,8));
511 &mov ($__end,$acc); # end of key schedule
512
513 # prefetch Te4
514 &mov ($key,&DWP(0-128,$tbl));
515 &mov ($acc,&DWP(32-128,$tbl));
516 &mov ($key,&DWP(64-128,$tbl));
517 &mov ($acc,&DWP(96-128,$tbl));
518 &mov ($key,&DWP(128-128,$tbl));
519 &mov ($acc,&DWP(160-128,$tbl));
520 &mov ($key,&DWP(192-128,$tbl));
521 &mov ($acc,&DWP(224-128,$tbl));
522
523 &set_label("loop",16);
524
525 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
526 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
527 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
528 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
529 &enctransform(2);
530 &enctransform(3);
531 &enctransform(0);
532 &enctransform(1);
533 &mov ($key,$__key);
534 &mov ($tbl,$__tbl);
535 &add ($key,16); # advance rd_key
536 &xor ($s0,&DWP(0,$key));
537 &xor ($s1,&DWP(4,$key));
538 &xor ($s2,&DWP(8,$key));
539 &xor ($s3,&DWP(12,$key));
540
541 &cmp ($key,$__end);
542 &mov ($__key,$key);
543 &jb (&label("loop"));
544
545 &enccompact(0,$tbl,$s0,$s1,$s2,$s3);
546 &enccompact(1,$tbl,$s1,$s2,$s3,$s0);
547 &enccompact(2,$tbl,$s2,$s3,$s0,$s1);
548 &enccompact(3,$tbl,$s3,$s0,$s1,$s2);
549
550 &xor ($s0,&DWP(16,$key));
551 &xor ($s1,&DWP(20,$key));
552 &xor ($s2,&DWP(24,$key));
553 &xor ($s3,&DWP(28,$key));
554
555 &ret ();
556 &function_end_B("_x86_AES_encrypt_compact");
557
558 ######################################################################
559 # "Compact" SSE block function.
560 ######################################################################
561 #
562 # Performance is not actually extraordinary in comparison to pure
563 # x86 code. In particular encrypt performance is virtually the same.
564 # Decrypt performance on the other hand is 15-20% better on newer
565 # µ-archs [but we're thankful for *any* improvement here], and ~50%
566 # better on PIII:-) And additionally on the pros side this code
567 # eliminates redundant references to stack and thus relieves/
568 # minimizes the pressure on the memory bus.
569 #
570 # MMX register layout lsb
571 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
572 # | mm4 | mm0 |
573 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
574 # | s3 | s2 | s1 | s0 |
575 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
576 # |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
577 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
578 #
579 # Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
580 # In this terms encryption and decryption "compact" permutation
581 # matrices can be depicted as following:
582 #
583 # encryption lsb # decryption lsb
584 # +----++----+----+----+----+ # +----++----+----+----+----+
585 # | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 |
586 # +----++----+----+----+----+ # +----++----+----+----+----+
587 # | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 |
588 # +----++----+----+----+----+ # +----++----+----+----+----+
589 # | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 |
590 # +----++----+----+----+----+ # +----++----+----+----+----+
591 # | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 |
592 # +----++----+----+----+----+ # +----++----+----+----+----+
593 #
594 ######################################################################
595 # Why not xmm registers? Short answer. It was actually tested and
596 # was not any faster, but *contrary*, most notably on Intel CPUs.
597 # Longer answer. Main advantage of using mm registers is that movd
598 # latency is lower, especially on Intel P4. While arithmetic
599 # instructions are twice as many, they can be scheduled every cycle
600 # and not every second one when they are operating on xmm register,
601 # so that "arithmetic throughput" remains virtually the same. And
602 # finally the code can be executed even on elder SSE-only CPUs:-)
603
604 sub sse_enccompact()
605 {
606 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
607 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10
608 &movd ("eax","mm1"); # 5, 4, 1, 0
609 &movd ("ebx","mm5"); # 15,14,11,10
610
611 &movz ($acc,&LB("eax")); # 0
612 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
613 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
614 &movz ("edx",&HB("eax")); # 1
615 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
616 &shl ("edx",8); # 1
617 &shr ("eax",16); # 5, 4
618
619 &movz ($acc,&LB("ebx")); # 10
620 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 10
621 &shl ($acc,16); # 10
622 &or ("ecx",$acc); # 10
623 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
624 &movz ($acc,&HB("ebx")); # 11
625 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 11
626 &shl ($acc,24); # 11
627 &or ("edx",$acc); # 11
628 &shr ("ebx",16); # 15,14
629
630 &movz ($acc,&HB("eax")); # 5
631 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 5
632 &shl ($acc,8); # 5
633 &or ("ecx",$acc); # 5
634 &movz ($acc,&HB("ebx")); # 15
635 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 15
636 &shl ($acc,24); # 15
637 &or ("ecx",$acc); # 15
638 &movd ("mm0","ecx"); # t[0] collected
639
640 &movz ($acc,&LB("eax")); # 4
641 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 4
642 &movd ("eax","mm2"); # 7, 6, 3, 2
643 &movz ($acc,&LB("ebx")); # 14
644 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 14
645 &shl ($acc,16); # 14
646 &or ("ecx",$acc); # 14
647
648 &movd ("ebx","mm6"); # 13,12, 9, 8
649 &movz ($acc,&HB("eax")); # 3
650 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 3
651 &shl ($acc,24); # 3
652 &or ("ecx",$acc); # 3
653 &movz ($acc,&HB("ebx")); # 9
654 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 9
655 &shl ($acc,8); # 9
656 &or ("ecx",$acc); # 9
657 &movd ("mm1","ecx"); # t[1] collected
658
659 &movz ($acc,&LB("ebx")); # 8
660 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 8
661 &shr ("ebx",16); # 13,12
662 &movz ($acc,&LB("eax")); # 2
663 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 2
664 &shl ($acc,16); # 2
665 &or ("ecx",$acc); # 2
666 &shr ("eax",16); # 7, 6
667
668 &punpckldq ("mm0","mm1"); # t[0,1] collected
669
670 &movz ($acc,&HB("eax")); # 7
671 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 7
672 &shl ($acc,24); # 7
673 &or ("ecx",$acc); # 7
674 &and ("eax",0xff); # 6
675 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6
676 &shl ("eax",16); # 6
677 &or ("edx","eax"); # 6
678 &movz ($acc,&HB("ebx")); # 13
679 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 13
680 &shl ($acc,8); # 13
681 &or ("ecx",$acc); # 13
682 &movd ("mm4","ecx"); # t[2] collected
683 &and ("ebx",0xff); # 12
684 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12
685 &or ("edx","ebx"); # 12
686 &movd ("mm5","edx"); # t[3] collected
687
688 &punpckldq ("mm4","mm5"); # t[2,3] collected
689 }
690
691 if (!$x86only) {
692 &function_begin_B("_sse_AES_encrypt_compact");
693 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
694 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
695
696 # note that caller is expected to allocate stack frame for me!
697 &mov ($acc,&DWP(240,$key)); # load key->rounds
698 &lea ($acc,&DWP(-2,$acc,$acc));
699 &lea ($acc,&DWP(0,$key,$acc,8));
700 &mov ($__end,$acc); # end of key schedule
701
702 &mov ($s0,0x1b1b1b1b); # magic constant
703 &mov (&DWP(8,"esp"),$s0);
704 &mov (&DWP(12,"esp"),$s0);
705
706 # prefetch Te4
707 &mov ($s0,&DWP(0-128,$tbl));
708 &mov ($s1,&DWP(32-128,$tbl));
709 &mov ($s2,&DWP(64-128,$tbl));
710 &mov ($s3,&DWP(96-128,$tbl));
711 &mov ($s0,&DWP(128-128,$tbl));
712 &mov ($s1,&DWP(160-128,$tbl));
713 &mov ($s2,&DWP(192-128,$tbl));
714 &mov ($s3,&DWP(224-128,$tbl));
715
716 &set_label("loop",16);
717 &sse_enccompact();
718 &add ($key,16);
719 &cmp ($key,$__end);
720 &ja (&label("out"));
721
722 &movq ("mm2",&QWP(8,"esp"));
723 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
724 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0
725 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4");
726 &pand ("mm3","mm2"); &pand ("mm7","mm2");
727 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROT ATE(r0,16)
728 &paddb ("mm0","mm0"); &paddb ("mm4","mm4");
729 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2
730 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0
731 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2
732 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROT ATE(r0,16)
733
734 &movq ("mm2","mm3"); &movq ("mm6","mm7");
735 &pslld ("mm3",8); &pslld ("mm7",8);
736 &psrld ("mm2",24); &psrld ("mm6",24);
737 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0< <8
738 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0> >24
739
740 &movq ("mm3","mm1"); &movq ("mm7","mm5");
741 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
742 &psrld ("mm1",8); &psrld ("mm5",8);
743 &mov ($s0,&DWP(0-128,$tbl));
744 &pslld ("mm3",24); &pslld ("mm7",24);
745 &mov ($s1,&DWP(64-128,$tbl));
746 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2 ^r0)<<8
747 &mov ($s2,&DWP(128-128,$tbl));
748 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2 ^r0)>>24
749 &mov ($s3,&DWP(192-128,$tbl));
750
751 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
752 &jmp (&label("loop"));
753
754 &set_label("out",16);
755 &pxor ("mm0",&QWP(0,$key));
756 &pxor ("mm4",&QWP(8,$key));
757
758 &ret ();
759 &function_end_B("_sse_AES_encrypt_compact");
760 }
761
762 ######################################################################
763 # Vanilla block function.
764 ######################################################################
765
766 sub encstep()
767 { my ($i,$te,@s) = @_;
768 my $tmp = $key;
769 my $out = $i==3?$s[0]:$acc;
770
771 # lines marked with #%e?x[i] denote "reordered" instructions...
772 if ($i==3) { &mov ($key,$__key); }##%edx
773 else { &mov ($out,$s[0]);
774 &and ($out,0xFF); }
775 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
776 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
777 &mov ($out,&DWP(0,$te,$out,8));
778
779 if ($i==3) { $tmp=$s[1]; }##%eax
780 &movz ($tmp,&HB($s[1]));
781 &xor ($out,&DWP(3,$te,$tmp,8));
782
783 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
784 else { &mov ($tmp,$s[2]);
785 &shr ($tmp,16); }
786 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
787 &and ($tmp,0xFF);
788 &xor ($out,&DWP(2,$te,$tmp,8));
789
790 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
791 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
792 else { &mov ($tmp,$s[3]);
793 &shr ($tmp,24) }
794 &xor ($out,&DWP(1,$te,$tmp,8));
795 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
796 if ($i==3) { &mov ($s[3],$acc); }
797 &comment();
798 }
799
800 sub enclast()
801 { my ($i,$te,@s)=@_;
802 my $tmp = $key;
803 my $out = $i==3?$s[0]:$acc;
804
805 if ($i==3) { &mov ($key,$__key); }##%edx
806 else { &mov ($out,$s[0]); }
807 &and ($out,0xFF);
808 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
809 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
810 &mov ($out,&DWP(2,$te,$out,8));
811 &and ($out,0x000000ff);
812
813 if ($i==3) { $tmp=$s[1]; }##%eax
814 &movz ($tmp,&HB($s[1]));
815 &mov ($tmp,&DWP(0,$te,$tmp,8));
816 &and ($tmp,0x0000ff00);
817 &xor ($out,$tmp);
818
819 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
820 else { &mov ($tmp,$s[2]);
821 &shr ($tmp,16); }
822 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
823 &and ($tmp,0xFF);
824 &mov ($tmp,&DWP(0,$te,$tmp,8));
825 &and ($tmp,0x00ff0000);
826 &xor ($out,$tmp);
827
828 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
829 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
830 else { &mov ($tmp,$s[3]);
831 &shr ($tmp,24); }
832 &mov ($tmp,&DWP(2,$te,$tmp,8));
833 &and ($tmp,0xff000000);
834 &xor ($out,$tmp);
835 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
836 if ($i==3) { &mov ($s[3],$acc); }
837 }
838
839 &function_begin_B("_x86_AES_encrypt");
840 if ($vertical_spin) {
841 # I need high parts of volatile registers to be accessible...
842 &exch ($s1="edi",$key="ebx");
843 &mov ($s2="esi",$acc="ecx");
844 }
845
846 # note that caller is expected to allocate stack frame for me!
847 &mov ($__key,$key); # save key
848
849 &xor ($s0,&DWP(0,$key)); # xor with key
850 &xor ($s1,&DWP(4,$key));
851 &xor ($s2,&DWP(8,$key));
852 &xor ($s3,&DWP(12,$key));
853
854 &mov ($acc,&DWP(240,$key)); # load key->rounds
855
856 if ($small_footprint) {
857 &lea ($acc,&DWP(-2,$acc,$acc));
858 &lea ($acc,&DWP(0,$key,$acc,8));
859 &mov ($__end,$acc); # end of key schedule
860
861 &set_label("loop",16);
862 if ($vertical_spin) {
863 &encvert($tbl,$s0,$s1,$s2,$s3);
864 } else {
865 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
866 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
867 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
868 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
869 }
870 &add ($key,16); # advance rd_key
871 &xor ($s0,&DWP(0,$key));
872 &xor ($s1,&DWP(4,$key));
873 &xor ($s2,&DWP(8,$key));
874 &xor ($s3,&DWP(12,$key));
875 &cmp ($key,$__end);
876 &mov ($__key,$key);
877 &jb (&label("loop"));
878 }
879 else {
880 &cmp ($acc,10);
881 &jle (&label("10rounds"));
882 &cmp ($acc,12);
883 &jle (&label("12rounds"));
884
885 &set_label("14rounds",4);
886 for ($i=1;$i<3;$i++) {
887 if ($vertical_spin) {
888 &encvert($tbl,$s0,$s1,$s2,$s3);
889 } else {
890 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
891 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
892 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
893 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
894 }
895 &xor ($s0,&DWP(16*$i+0,$key));
896 &xor ($s1,&DWP(16*$i+4,$key));
897 &xor ($s2,&DWP(16*$i+8,$key));
898 &xor ($s3,&DWP(16*$i+12,$key));
899 }
900 &add ($key,32);
901 &mov ($__key,$key); # advance rd_key
902 &set_label("12rounds",4);
903 for ($i=1;$i<3;$i++) {
904 if ($vertical_spin) {
905 &encvert($tbl,$s0,$s1,$s2,$s3);
906 } else {
907 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
908 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
909 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
910 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
911 }
912 &xor ($s0,&DWP(16*$i+0,$key));
913 &xor ($s1,&DWP(16*$i+4,$key));
914 &xor ($s2,&DWP(16*$i+8,$key));
915 &xor ($s3,&DWP(16*$i+12,$key));
916 }
917 &add ($key,32);
918 &mov ($__key,$key); # advance rd_key
919 &set_label("10rounds",4);
920 for ($i=1;$i<10;$i++) {
921 if ($vertical_spin) {
922 &encvert($tbl,$s0,$s1,$s2,$s3);
923 } else {
924 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
925 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
926 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
927 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
928 }
929 &xor ($s0,&DWP(16*$i+0,$key));
930 &xor ($s1,&DWP(16*$i+4,$key));
931 &xor ($s2,&DWP(16*$i+8,$key));
932 &xor ($s3,&DWP(16*$i+12,$key));
933 }
934 }
935
936 if ($vertical_spin) {
937 # "reincarnate" some registers for "horizontal" spin...
938 &mov ($s1="ebx",$key="edi");
939 &mov ($s2="ecx",$acc="esi");
940 }
941 &enclast(0,$tbl,$s0,$s1,$s2,$s3);
942 &enclast(1,$tbl,$s1,$s2,$s3,$s0);
943 &enclast(2,$tbl,$s2,$s3,$s0,$s1);
944 &enclast(3,$tbl,$s3,$s0,$s1,$s2);
945
946 &add ($key,$small_footprint?16:160);
947 &xor ($s0,&DWP(0,$key));
948 &xor ($s1,&DWP(4,$key));
949 &xor ($s2,&DWP(8,$key));
950 &xor ($s3,&DWP(12,$key));
951
952 &ret ();
953
954 &set_label("AES_Te",64); # Yes! I keep it in the code segment!
955 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
956 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
957 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
958 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
959 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
960 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
961 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
962 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
963 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
964 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
965 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
966 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
967 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
968 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
969 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
970 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
971 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
972 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
973 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
974 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
975 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
976 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
977 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
978 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
979 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
980 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
981 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
982 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
983 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
984 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
985 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
986 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
987 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
988 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
989 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
990 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
991 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
992 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
993 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
994 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
995 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
996 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
997 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
998 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
999 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
1000 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1001 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1002 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1003 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1004 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1005 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1006 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1007 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1008 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1009 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1010 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1011 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1012 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1013 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1014 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1015 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1016 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1017 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1018 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
1019
1020 #Te4 # four copies of Te4 to choose from to avoid L1 aliasing
1021 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1022 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1023 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1024 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1025 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1026 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1027 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1028 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1029 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1030 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1031 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1032 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1033 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1034 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1035 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1036 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1037 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1038 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1039 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1040 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1041 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1042 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1043 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1044 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1045 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1046 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1047 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1048 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1049 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1050 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1051 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1052 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1053
1054 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1055 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1056 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1057 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1058 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1059 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1060 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1061 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1062 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1063 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1064 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1065 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1066 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1067 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1068 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1069 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1070 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1071 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1072 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1073 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1074 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1075 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1076 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1077 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1078 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1079 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1080 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1081 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1082 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1083 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1084 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1085 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1086
1087 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1088 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1089 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1090 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1091 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1092 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1093 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1094 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1095 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1096 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1097 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1098 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1099 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1100 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1101 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1102 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1103 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1104 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1105 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1106 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1107 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1108 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1109 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1110 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1111 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1112 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1113 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1114 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1115 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1116 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1117 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1118 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1119
1120 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1121 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1122 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1123 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1124 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1125 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1126 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1127 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1128 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1129 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1130 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1131 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1132 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1133 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1134 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1135 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1136 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1137 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1138 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1139 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1140 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1141 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1142 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1143 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1144 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1145 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1146 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1147 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1148 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1149 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1150 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1151 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1152 #rcon:
1153 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1154 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1155 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1156 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1157 &function_end_B("_x86_AES_encrypt");
1158
1159 # void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1160 &function_begin("AES_encrypt");
1161 &mov ($acc,&wparam(0)); # load inp
1162 &mov ($key,&wparam(2)); # load key
1163
1164 &mov ($s0,"esp");
1165 &sub ("esp",36);
1166 &and ("esp",-64); # align to cache-line
1167
1168 # place stack frame just "above" the key schedule
1169 &lea ($s1,&DWP(-64-63,$key));
1170 &sub ($s1,"esp");
1171 &neg ($s1);
1172 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1173 &sub ("esp",$s1);
1174 &add ("esp",4); # 4 is reserved for caller's return address
1175 &mov ($_esp,$s0); # save stack pointer
1176
1177 &call (&label("pic_point")); # make it PIC!
1178 &set_label("pic_point");
1179 &blindpop($tbl);
1180 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only );
1181 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
1182
1183 # pick Te4 copy which can't "overlap" with stack frame or key schedule
1184 &lea ($s1,&DWP(768-4,"esp"));
1185 &sub ($s1,$tbl);
1186 &and ($s1,0x300);
1187 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1188
1189 if (!$x86only) {
1190 &bt (&DWP(0,$s0),25); # check for SSE bit
1191 &jnc (&label("x86"));
1192
1193 &movq ("mm0",&QWP(0,$acc));
1194 &movq ("mm4",&QWP(8,$acc));
1195 &call ("_sse_AES_encrypt_compact");
1196 &mov ("esp",$_esp); # restore stack pointer
1197 &mov ($acc,&wparam(1)); # load out
1198 &movq (&QWP(0,$acc),"mm0"); # write output data
1199 &movq (&QWP(8,$acc),"mm4");
1200 &emms ();
1201 &function_end_A();
1202 }
1203 &set_label("x86",16);
1204 &mov ($_tbl,$tbl);
1205 &mov ($s0,&DWP(0,$acc)); # load input data
1206 &mov ($s1,&DWP(4,$acc));
1207 &mov ($s2,&DWP(8,$acc));
1208 &mov ($s3,&DWP(12,$acc));
1209 &call ("_x86_AES_encrypt_compact");
1210 &mov ("esp",$_esp); # restore stack pointer
1211 &mov ($acc,&wparam(1)); # load out
1212 &mov (&DWP(0,$acc),$s0); # write output data
1213 &mov (&DWP(4,$acc),$s1);
1214 &mov (&DWP(8,$acc),$s2);
1215 &mov (&DWP(12,$acc),$s3);
1216 &function_end("AES_encrypt");
1217
1218 #--------------------------------------------------------------------#
1219
1220 ######################################################################
1221 # "Compact" block function
1222 ######################################################################
1223
1224 sub deccompact()
1225 { my $Fn = mov;
1226 while ($#_>5) { pop(@_); $Fn=sub{}; }
1227 my ($i,$td,@s)=@_;
1228 my $tmp = $key;
1229 my $out = $i==3?$s[0]:$acc;
1230
1231 # $Fn is used in first compact round and its purpose is to
1232 # void restoration of some values from stack, so that after
1233 # 4xdeccompact with extra argument $key, $s0 and $s1 values
1234 # are left there...
1235 if($i==3) { &$Fn ($key,$__key); }
1236 else { &mov ($out,$s[0]); }
1237 &and ($out,0xFF);
1238 &movz ($out,&BP(-128,$td,$out,1));
1239
1240 if ($i==3) { $tmp=$s[1]; }
1241 &movz ($tmp,&HB($s[1]));
1242 &movz ($tmp,&BP(-128,$td,$tmp,1));
1243 &shl ($tmp,8);
1244 &xor ($out,$tmp);
1245
1246 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1247 else { mov ($tmp,$s[2]); }
1248 &shr ($tmp,16);
1249 &and ($tmp,0xFF);
1250 &movz ($tmp,&BP(-128,$td,$tmp,1));
1251 &shl ($tmp,16);
1252 &xor ($out,$tmp);
1253
1254 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); }
1255 else { &mov ($tmp,$s[3]); }
1256 &shr ($tmp,24);
1257 &movz ($tmp,&BP(-128,$td,$tmp,1));
1258 &shl ($tmp,24);
1259 &xor ($out,$tmp);
1260 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1261 if ($i==3) { &$Fn ($s[3],$__s0); }
1262 }
1263
1264 # must be called with 2,3,0,1 as argument sequence!!!
1265 sub dectransform()
1266 { my @s = ($s0,$s1,$s2,$s3);
1267 my $i = shift;
1268 my $tmp = $key;
1269 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1270 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1271 my $tp8 = $tbl;
1272
1273 &mov ($acc,$s[$i]);
1274 &and ($acc,0x80808080);
1275 &mov ($tmp,$acc);
1276 &shr ($tmp,7);
1277 &lea ($tp2,&DWP(0,$s[$i],$s[$i]));
1278 &sub ($acc,$tmp);
1279 &and ($tp2,0xfefefefe);
1280 &and ($acc,0x1b1b1b1b);
1281 &xor ($acc,$tp2);
1282 &mov ($tp2,$acc);
1283
1284 &and ($acc,0x80808080);
1285 &mov ($tmp,$acc);
1286 &shr ($tmp,7);
1287 &lea ($tp4,&DWP(0,$tp2,$tp2));
1288 &sub ($acc,$tmp);
1289 &and ($tp4,0xfefefefe);
1290 &and ($acc,0x1b1b1b1b);
1291 &xor ($tp2,$s[$i]); # tp2^tp1
1292 &xor ($acc,$tp4);
1293 &mov ($tp4,$acc);
1294
1295 &and ($acc,0x80808080);
1296 &mov ($tmp,$acc);
1297 &shr ($tmp,7);
1298 &lea ($tp8,&DWP(0,$tp4,$tp4));
1299 &sub ($acc,$tmp);
1300 &and ($tp8,0xfefefefe);
1301 &and ($acc,0x1b1b1b1b);
1302 &xor ($tp4,$s[$i]); # tp4^tp1
1303 &rotl ($s[$i],8); # = ROTATE(tp1,8)
1304 &xor ($tp8,$acc);
1305
1306 &xor ($s[$i],$tp2);
1307 &xor ($tp2,$tp8);
1308 &rotl ($tp2,24);
1309 &xor ($s[$i],$tp4);
1310 &xor ($tp4,$tp8);
1311 &rotl ($tp4,16);
1312 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
1313 &rotl ($tp8,8);
1314 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
1315 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
1316 &mov ($s[0],$__s0) if($i==2); #prefetch $s0
1317 &mov ($s[1],$__s1) if($i==3); #prefetch $s1
1318 &mov ($s[2],$__s2) if($i==1);
1319 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8)
1320
1321 &mov ($s[3],$__s3) if($i==1);
1322 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2);
1323 }
1324
1325 &function_begin_B("_x86_AES_decrypt_compact");
1326 # note that caller is expected to allocate stack frame for me!
1327 &mov ($__key,$key); # save key
1328
1329 &xor ($s0,&DWP(0,$key)); # xor with key
1330 &xor ($s1,&DWP(4,$key));
1331 &xor ($s2,&DWP(8,$key));
1332 &xor ($s3,&DWP(12,$key));
1333
1334 &mov ($acc,&DWP(240,$key)); # load key->rounds
1335
1336 &lea ($acc,&DWP(-2,$acc,$acc));
1337 &lea ($acc,&DWP(0,$key,$acc,8));
1338 &mov ($__end,$acc); # end of key schedule
1339
1340 # prefetch Td4
1341 &mov ($key,&DWP(0-128,$tbl));
1342 &mov ($acc,&DWP(32-128,$tbl));
1343 &mov ($key,&DWP(64-128,$tbl));
1344 &mov ($acc,&DWP(96-128,$tbl));
1345 &mov ($key,&DWP(128-128,$tbl));
1346 &mov ($acc,&DWP(160-128,$tbl));
1347 &mov ($key,&DWP(192-128,$tbl));
1348 &mov ($acc,&DWP(224-128,$tbl));
1349
1350 &set_label("loop",16);
1351
1352 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1353 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1354 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1355 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1356 &dectransform(2);
1357 &dectransform(3);
1358 &dectransform(0);
1359 &dectransform(1);
1360 &mov ($key,$__key);
1361 &mov ($tbl,$__tbl);
1362 &add ($key,16); # advance rd_key
1363 &xor ($s0,&DWP(0,$key));
1364 &xor ($s1,&DWP(4,$key));
1365 &xor ($s2,&DWP(8,$key));
1366 &xor ($s3,&DWP(12,$key));
1367
1368 &cmp ($key,$__end);
1369 &mov ($__key,$key);
1370 &jb (&label("loop"));
1371
1372 &deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1373 &deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1374 &deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1375 &deccompact(3,$tbl,$s3,$s2,$s1,$s0);
1376
1377 &xor ($s0,&DWP(16,$key));
1378 &xor ($s1,&DWP(20,$key));
1379 &xor ($s2,&DWP(24,$key));
1380 &xor ($s3,&DWP(28,$key));
1381
1382 &ret ();
1383 &function_end_B("_x86_AES_decrypt_compact");
1384
1385 ######################################################################
1386 # "Compact" SSE block function.
1387 ######################################################################
1388
1389 sub sse_deccompact()
1390 {
1391 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0
1392 &movd ("eax","mm1"); # 7, 6, 1, 0
1393
1394 &pshufw ("mm5","mm4",0x09); # 13,12,11,10
1395 &movz ($acc,&LB("eax")); # 0
1396 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
1397 &movd ("ebx","mm5"); # 13,12,11,10
1398 &movz ("edx",&HB("eax")); # 1
1399 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
1400 &shl ("edx",8); # 1
1401
1402 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4
1403 &movz ($acc,&LB("ebx")); # 10
1404 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 10
1405 &shl ($acc,16); # 10
1406 &or ("ecx",$acc); # 10
1407 &shr ("eax",16); # 7, 6
1408 &movz ($acc,&HB("ebx")); # 11
1409 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 11
1410 &shl ($acc,24); # 11
1411 &or ("edx",$acc); # 11
1412 &shr ("ebx",16); # 13,12
1413
1414 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14
1415 &movz ($acc,&HB("eax")); # 7
1416 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 7
1417 &shl ($acc,24); # 7
1418 &or ("ecx",$acc); # 7
1419 &movz ($acc,&HB("ebx")); # 13
1420 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 13
1421 &shl ($acc,8); # 13
1422 &or ("ecx",$acc); # 13
1423 &movd ("mm0","ecx"); # t[0] collected
1424
1425 &movz ($acc,&LB("eax")); # 6
1426 &movd ("eax","mm2"); # 3, 2, 5, 4
1427 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 6
1428 &shl ("ecx",16); # 6
1429 &movz ($acc,&LB("ebx")); # 12
1430 &movd ("ebx","mm6"); # 9, 8,15,14
1431 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 12
1432 &or ("ecx",$acc); # 12
1433
1434 &movz ($acc,&LB("eax")); # 4
1435 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 4
1436 &or ("edx",$acc); # 4
1437 &movz ($acc,&LB("ebx")); # 14
1438 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 14
1439 &shl ($acc,16); # 14
1440 &or ("edx",$acc); # 14
1441 &movd ("mm1","edx"); # t[1] collected
1442
1443 &movz ($acc,&HB("eax")); # 5
1444 &movz ("edx",&BP(-128,$tbl,$acc,1)); # 5
1445 &shl ("edx",8); # 5
1446 &movz ($acc,&HB("ebx")); # 15
1447 &shr ("eax",16); # 3, 2
1448 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 15
1449 &shl ($acc,24); # 15
1450 &or ("edx",$acc); # 15
1451 &shr ("ebx",16); # 9, 8
1452
1453 &punpckldq ("mm0","mm1"); # t[0,1] collected
1454
1455 &movz ($acc,&HB("ebx")); # 9
1456 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 9
1457 &shl ($acc,8); # 9
1458 &or ("ecx",$acc); # 9
1459 &and ("ebx",0xff); # 8
1460 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8
1461 &or ("edx","ebx"); # 8
1462 &movz ($acc,&LB("eax")); # 2
1463 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 2
1464 &shl ($acc,16); # 2
1465 &or ("edx",$acc); # 2
1466 &movd ("mm4","edx"); # t[2] collected
1467 &movz ("eax",&HB("eax")); # 3
1468 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3
1469 &shl ("eax",24); # 3
1470 &or ("ecx","eax"); # 3
1471 &movd ("mm5","ecx"); # t[3] collected
1472
1473 &punpckldq ("mm4","mm5"); # t[2,3] collected
1474 }
1475
1476 if (!$x86only) {
1477 &function_begin_B("_sse_AES_decrypt_compact");
1478 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
1479 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
1480
1481 # note that caller is expected to allocate stack frame for me!
1482 &mov ($acc,&DWP(240,$key)); # load key->rounds
1483 &lea ($acc,&DWP(-2,$acc,$acc));
1484 &lea ($acc,&DWP(0,$key,$acc,8));
1485 &mov ($__end,$acc); # end of key schedule
1486
1487 &mov ($s0,0x1b1b1b1b); # magic constant
1488 &mov (&DWP(8,"esp"),$s0);
1489 &mov (&DWP(12,"esp"),$s0);
1490
1491 # prefetch Td4
1492 &mov ($s0,&DWP(0-128,$tbl));
1493 &mov ($s1,&DWP(32-128,$tbl));
1494 &mov ($s2,&DWP(64-128,$tbl));
1495 &mov ($s3,&DWP(96-128,$tbl));
1496 &mov ($s0,&DWP(128-128,$tbl));
1497 &mov ($s1,&DWP(160-128,$tbl));
1498 &mov ($s2,&DWP(192-128,$tbl));
1499 &mov ($s3,&DWP(224-128,$tbl));
1500
1501 &set_label("loop",16);
1502 &sse_deccompact();
1503 &add ($key,16);
1504 &cmp ($key,$__end);
1505 &ja (&label("out"));
1506
1507 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1508 &movq ("mm3","mm0"); &movq ("mm7","mm4");
1509 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1);
1510 &movq ("mm1","mm0"); &movq ("mm5","mm4");
1511 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = R OTATE(tp0,16)
1512 &pslld ("mm2",8); &pslld ("mm6",8);
1513 &psrld ("mm3",8); &psrld ("mm7",8);
1514 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0 <<8
1515 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0 >>8
1516 &pslld ("mm2",16); &pslld ("mm6",16);
1517 &psrld ("mm3",16); &psrld ("mm7",16);
1518 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0 <<24
1519 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0 >>24
1520
1521 &movq ("mm3",&QWP(8,"esp"));
1522 &pxor ("mm2","mm2"); &pxor ("mm6","mm6");
1523 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5");
1524 &pand ("mm2","mm3"); &pand ("mm6","mm3");
1525 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1526 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2
1527 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1528 &movq ("mm2","mm1"); &movq ("mm6","mm5");
1529 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2
1530 &pslld ("mm3",24); &pslld ("mm7",24);
1531 &psrld ("mm2",8); &psrld ("mm6",8);
1532 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2 <<24
1533 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2 >>8
1534
1535 &movq ("mm2",&QWP(8,"esp"));
1536 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1537 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1538 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1539 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1540 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4
1541 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1);
1542 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4
1543 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROT ATE(tp4,16)
1544
1545 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1546 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1547 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1548 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1549 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8
1550 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
1551 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1552 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1);
1553 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROT ATE(tp8,16)
1554 &pslld ("mm1",8); &pslld ("mm5",8);
1555 &psrld ("mm3",8); &psrld ("mm7",8);
1556 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
1557 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 <<8
1558 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8 >>8
1559 &mov ($s0,&DWP(0-128,$tbl));
1560 &pslld ("mm1",16); &pslld ("mm5",16);
1561 &mov ($s1,&DWP(64-128,$tbl));
1562 &psrld ("mm3",16); &psrld ("mm7",16);
1563 &mov ($s2,&DWP(128-128,$tbl));
1564 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8 <<24
1565 &mov ($s3,&DWP(192-128,$tbl));
1566 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8 >>24
1567
1568 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
1569 &jmp (&label("loop"));
1570
1571 &set_label("out",16);
1572 &pxor ("mm0",&QWP(0,$key));
1573 &pxor ("mm4",&QWP(8,$key));
1574
1575 &ret ();
1576 &function_end_B("_sse_AES_decrypt_compact");
1577 }
1578
1579 ######################################################################
1580 # Vanilla block function.
1581 ######################################################################
1582
1583 sub decstep()
1584 { my ($i,$td,@s) = @_;
1585 my $tmp = $key;
1586 my $out = $i==3?$s[0]:$acc;
1587
1588 # no instructions are reordered, as performance appears
1589 # optimal... or rather that all attempts to reorder didn't
1590 # result in better performance [which by the way is not a
1591 # bit lower than ecryption].
1592 if($i==3) { &mov ($key,$__key); }
1593 else { &mov ($out,$s[0]); }
1594 &and ($out,0xFF);
1595 &mov ($out,&DWP(0,$td,$out,8));
1596
1597 if ($i==3) { $tmp=$s[1]; }
1598 &movz ($tmp,&HB($s[1]));
1599 &xor ($out,&DWP(3,$td,$tmp,8));
1600
1601 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1602 else { &mov ($tmp,$s[2]); }
1603 &shr ($tmp,16);
1604 &and ($tmp,0xFF);
1605 &xor ($out,&DWP(2,$td,$tmp,8));
1606
1607 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1608 else { &mov ($tmp,$s[3]); }
1609 &shr ($tmp,24);
1610 &xor ($out,&DWP(1,$td,$tmp,8));
1611 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1612 if ($i==3) { &mov ($s[3],$__s0); }
1613 &comment();
1614 }
1615
1616 sub declast()
1617 { my ($i,$td,@s)=@_;
1618 my $tmp = $key;
1619 my $out = $i==3?$s[0]:$acc;
1620
1621 if($i==0) { &lea ($td,&DWP(2048+128,$td));
1622 &mov ($tmp,&DWP(0-128,$td));
1623 &mov ($acc,&DWP(32-128,$td));
1624 &mov ($tmp,&DWP(64-128,$td));
1625 &mov ($acc,&DWP(96-128,$td));
1626 &mov ($tmp,&DWP(128-128,$td));
1627 &mov ($acc,&DWP(160-128,$td));
1628 &mov ($tmp,&DWP(192-128,$td));
1629 &mov ($acc,&DWP(224-128,$td));
1630 &lea ($td,&DWP(-128,$td)); }
1631 if($i==3) { &mov ($key,$__key); }
1632 else { &mov ($out,$s[0]); }
1633 &and ($out,0xFF);
1634 &movz ($out,&BP(0,$td,$out,1));
1635
1636 if ($i==3) { $tmp=$s[1]; }
1637 &movz ($tmp,&HB($s[1]));
1638 &movz ($tmp,&BP(0,$td,$tmp,1));
1639 &shl ($tmp,8);
1640 &xor ($out,$tmp);
1641
1642 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1643 else { mov ($tmp,$s[2]); }
1644 &shr ($tmp,16);
1645 &and ($tmp,0xFF);
1646 &movz ($tmp,&BP(0,$td,$tmp,1));
1647 &shl ($tmp,16);
1648 &xor ($out,$tmp);
1649
1650 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1651 else { &mov ($tmp,$s[3]); }
1652 &shr ($tmp,24);
1653 &movz ($tmp,&BP(0,$td,$tmp,1));
1654 &shl ($tmp,24);
1655 &xor ($out,$tmp);
1656 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1657 if ($i==3) { &mov ($s[3],$__s0);
1658 &lea ($td,&DWP(-2048,$td)); }
1659 }
1660
1661 &function_begin_B("_x86_AES_decrypt");
1662 # note that caller is expected to allocate stack frame for me!
1663 &mov ($__key,$key); # save key
1664
1665 &xor ($s0,&DWP(0,$key)); # xor with key
1666 &xor ($s1,&DWP(4,$key));
1667 &xor ($s2,&DWP(8,$key));
1668 &xor ($s3,&DWP(12,$key));
1669
1670 &mov ($acc,&DWP(240,$key)); # load key->rounds
1671
1672 if ($small_footprint) {
1673 &lea ($acc,&DWP(-2,$acc,$acc));
1674 &lea ($acc,&DWP(0,$key,$acc,8));
1675 &mov ($__end,$acc); # end of key schedule
1676 &set_label("loop",16);
1677 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1678 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1679 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1680 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1681 &add ($key,16); # advance rd_key
1682 &xor ($s0,&DWP(0,$key));
1683 &xor ($s1,&DWP(4,$key));
1684 &xor ($s2,&DWP(8,$key));
1685 &xor ($s3,&DWP(12,$key));
1686 &cmp ($key,$__end);
1687 &mov ($__key,$key);
1688 &jb (&label("loop"));
1689 }
1690 else {
1691 &cmp ($acc,10);
1692 &jle (&label("10rounds"));
1693 &cmp ($acc,12);
1694 &jle (&label("12rounds"));
1695
1696 &set_label("14rounds",4);
1697 for ($i=1;$i<3;$i++) {
1698 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1699 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1700 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1701 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1702 &xor ($s0,&DWP(16*$i+0,$key));
1703 &xor ($s1,&DWP(16*$i+4,$key));
1704 &xor ($s2,&DWP(16*$i+8,$key));
1705 &xor ($s3,&DWP(16*$i+12,$key));
1706 }
1707 &add ($key,32);
1708 &mov ($__key,$key); # advance rd_key
1709 &set_label("12rounds",4);
1710 for ($i=1;$i<3;$i++) {
1711 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1712 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1713 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1714 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1715 &xor ($s0,&DWP(16*$i+0,$key));
1716 &xor ($s1,&DWP(16*$i+4,$key));
1717 &xor ($s2,&DWP(16*$i+8,$key));
1718 &xor ($s3,&DWP(16*$i+12,$key));
1719 }
1720 &add ($key,32);
1721 &mov ($__key,$key); # advance rd_key
1722 &set_label("10rounds",4);
1723 for ($i=1;$i<10;$i++) {
1724 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1725 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1726 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1727 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1728 &xor ($s0,&DWP(16*$i+0,$key));
1729 &xor ($s1,&DWP(16*$i+4,$key));
1730 &xor ($s2,&DWP(16*$i+8,$key));
1731 &xor ($s3,&DWP(16*$i+12,$key));
1732 }
1733 }
1734
1735 &declast(0,$tbl,$s0,$s3,$s2,$s1);
1736 &declast(1,$tbl,$s1,$s0,$s3,$s2);
1737 &declast(2,$tbl,$s2,$s1,$s0,$s3);
1738 &declast(3,$tbl,$s3,$s2,$s1,$s0);
1739
1740 &add ($key,$small_footprint?16:160);
1741 &xor ($s0,&DWP(0,$key));
1742 &xor ($s1,&DWP(4,$key));
1743 &xor ($s2,&DWP(8,$key));
1744 &xor ($s3,&DWP(12,$key));
1745
1746 &ret ();
1747
1748 &set_label("AES_Td",64); # Yes! I keep it in the code segment!
1749 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1750 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1751 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1752 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1753 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1754 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1755 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1756 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1757 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1758 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1759 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1760 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1761 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1762 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1763 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1764 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1765 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1766 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1767 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1768 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1769 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1770 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1771 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1772 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1773 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1774 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1775 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1776 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1777 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
1778 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1779 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1780 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1781 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1782 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1783 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1784 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1785 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1786 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1787 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1788 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1789 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1790 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1791 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1792 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1793 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1794 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1795 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1796 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1797 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1798 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1799 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1800 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1801 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1802 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1803 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1804 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1805 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1806 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1807 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1808 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1809 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1810 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1811 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1812 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
1813
1814 #Td4: # four copies of Td4 to choose from to avoid L1 aliasing
1815 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1816 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1817 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1818 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1819 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1820 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1821 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1822 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1823 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1824 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1825 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1826 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1827 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1828 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1829 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1830 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1831 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1832 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1833 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1834 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1835 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1836 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1837 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1838 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1839 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1840 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1841 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1842 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1843 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1844 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1845 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1846 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1847
1848 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1849 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1850 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1851 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1852 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1853 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1854 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1855 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1856 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1857 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1858 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1859 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1860 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1861 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1862 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1863 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1864 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1865 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1866 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1867 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1868 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1869 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1870 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1871 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1872 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1873 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1874 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1875 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1876 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1877 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1878 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1879 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1880
1881 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1882 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1883 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1884 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1885 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1886 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1887 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1888 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1889 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1890 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1891 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1892 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1893 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1894 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1895 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1896 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1897 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1898 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1899 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1900 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1901 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1902 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1903 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1904 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1905 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1906 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1907 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1908 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1909 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1910 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1911 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1912 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1913
1914 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1915 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1916 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1917 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1918 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1919 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1920 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1921 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1922 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1923 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1924 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1925 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1926 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1927 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1928 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1929 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1930 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1931 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1932 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1933 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1934 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1935 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1936 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1937 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1938 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1939 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1940 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1941 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1942 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1943 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1944 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1945 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1946 &function_end_B("_x86_AES_decrypt");
1947
1948 # void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1949 &function_begin("AES_decrypt");
1950 &mov ($acc,&wparam(0)); # load inp
1951 &mov ($key,&wparam(2)); # load key
1952
1953 &mov ($s0,"esp");
1954 &sub ("esp",36);
1955 &and ("esp",-64); # align to cache-line
1956
1957 # place stack frame just "above" the key schedule
1958 &lea ($s1,&DWP(-64-63,$key));
1959 &sub ($s1,"esp");
1960 &neg ($s1);
1961 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1962 &sub ("esp",$s1);
1963 &add ("esp",4); # 4 is reserved for caller's return address
1964 &mov ($_esp,$s0); # save stack pointer
1965
1966 &call (&label("pic_point")); # make it PIC!
1967 &set_label("pic_point");
1968 &blindpop($tbl);
1969 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only) ;
1970 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
1971
1972 # pick Td4 copy which can't "overlap" with stack frame or key schedule
1973 &lea ($s1,&DWP(768-4,"esp"));
1974 &sub ($s1,$tbl);
1975 &and ($s1,0x300);
1976 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1977
1978 if (!$x86only) {
1979 &bt (&DWP(0,$s0),25); # check for SSE bit
1980 &jnc (&label("x86"));
1981
1982 &movq ("mm0",&QWP(0,$acc));
1983 &movq ("mm4",&QWP(8,$acc));
1984 &call ("_sse_AES_decrypt_compact");
1985 &mov ("esp",$_esp); # restore stack pointer
1986 &mov ($acc,&wparam(1)); # load out
1987 &movq (&QWP(0,$acc),"mm0"); # write output data
1988 &movq (&QWP(8,$acc),"mm4");
1989 &emms ();
1990 &function_end_A();
1991 }
1992 &set_label("x86",16);
1993 &mov ($_tbl,$tbl);
1994 &mov ($s0,&DWP(0,$acc)); # load input data
1995 &mov ($s1,&DWP(4,$acc));
1996 &mov ($s2,&DWP(8,$acc));
1997 &mov ($s3,&DWP(12,$acc));
1998 &call ("_x86_AES_decrypt_compact");
1999 &mov ("esp",$_esp); # restore stack pointer
2000 &mov ($acc,&wparam(1)); # load out
2001 &mov (&DWP(0,$acc),$s0); # write output data
2002 &mov (&DWP(4,$acc),$s1);
2003 &mov (&DWP(8,$acc),$s2);
2004 &mov (&DWP(12,$acc),$s3);
2005 &function_end("AES_decrypt");
2006
2007 # void AES_cbc_encrypt (const void char *inp, unsigned char *out,
2008 # size_t length, const AES_KEY *key,
2009 # unsigned char *ivp,const int enc);
2010 {
2011 # stack frame layout
2012 # -4(%esp) # return address 0(%esp)
2013 # 0(%esp) # s0 backing store 4(%esp)
2014 # 4(%esp) # s1 backing store 8(%esp)
2015 # 8(%esp) # s2 backing store 12(%esp)
2016 # 12(%esp) # s3 backing store 16(%esp)
2017 # 16(%esp) # key backup 20(%esp)
2018 # 20(%esp) # end of key schedule 24(%esp)
2019 # 24(%esp) # %ebp backup 28(%esp)
2020 # 28(%esp) # %esp backup
2021 my $_inp=&DWP(32,"esp"); # copy of wparam(0)
2022 my $_out=&DWP(36,"esp"); # copy of wparam(1)
2023 my $_len=&DWP(40,"esp"); # copy of wparam(2)
2024 my $_key=&DWP(44,"esp"); # copy of wparam(3)
2025 my $_ivp=&DWP(48,"esp"); # copy of wparam(4)
2026 my $_tmp=&DWP(52,"esp"); # volatile variable
2027 #
2028 my $ivec=&DWP(60,"esp"); # ivec[16]
2029 my $aes_key=&DWP(76,"esp"); # copy of aes_key
2030 my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds
2031
2032 &function_begin("AES_cbc_encrypt");
2033 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len
2034 &cmp ($s2,0);
2035 &je (&label("drop_out"));
2036
2037 &call (&label("pic_point")); # make it PIC!
2038 &set_label("pic_point");
2039 &blindpop($tbl);
2040 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only) ;
2041
2042 &cmp (&wparam(5),0);
2043 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2044 &jne (&label("picked_te"));
2045 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2046 &set_label("picked_te");
2047
2048 # one can argue if this is required
2049 &pushf ();
2050 &cld ();
2051
2052 &cmp ($s2,$speed_limit);
2053 &jb (&label("slow_way"));
2054 &test ($s2,15);
2055 &jnz (&label("slow_way"));
2056 if (!$x86only) {
2057 &bt (&DWP(0,$s0),28); # check for hyper-threading bit
2058 &jc (&label("slow_way"));
2059 }
2060 # pre-allocate aligned stack frame...
2061 &lea ($acc,&DWP(-80-244,"esp"));
2062 &and ($acc,-64);
2063
2064 # ... and make sure it doesn't alias with $tbl modulo 4096
2065 &mov ($s0,$tbl);
2066 &lea ($s1,&DWP(2048+256,$tbl));
2067 &mov ($s3,$acc);
2068 &and ($s0,0xfff); # s = %ebp&0xfff
2069 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff
2070 &and ($s3,0xfff); # p = %esp&0xfff
2071
2072 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e);
2073 &jb (&label("tbl_break_out"));
2074 &sub ($s3,$s1);
2075 &sub ($acc,$s3);
2076 &jmp (&label("tbl_ok"));
2077 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz;
2078 &sub ($s3,$s0);
2079 &and ($s3,0xfff);
2080 &add ($s3,384);
2081 &sub ($acc,$s3);
2082 &set_label("tbl_ok",4);
2083
2084 &lea ($s3,&wparam(0)); # obtain pointer to parameter block
2085 &exch ("esp",$acc); # allocate stack frame
2086 &add ("esp",4); # reserve for return address!
2087 &mov ($_tbl,$tbl); # save %ebp
2088 &mov ($_esp,$acc); # save %esp
2089
2090 &mov ($s0,&DWP(0,$s3)); # load inp
2091 &mov ($s1,&DWP(4,$s3)); # load out
2092 #&mov ($s2,&DWP(8,$s3)); # load len
2093 &mov ($key,&DWP(12,$s3)); # load key
2094 &mov ($acc,&DWP(16,$s3)); # load ivp
2095 &mov ($s3,&DWP(20,$s3)); # load enc flag
2096
2097 &mov ($_inp,$s0); # save copy of inp
2098 &mov ($_out,$s1); # save copy of out
2099 &mov ($_len,$s2); # save copy of len
2100 &mov ($_key,$key); # save copy of key
2101 &mov ($_ivp,$acc); # save copy of ivp
2102
2103 &mov ($mark,0); # copy of aes_key->rounds = 0;
2104 # do we copy key schedule to stack?
2105 &mov ($s1 eq "ebx" ? $s1 : "",$key);
2106 &mov ($s2 eq "ecx" ? $s2 : "",244/4);
2107 &sub ($s1,$tbl);
2108 &mov ("esi",$key);
2109 &and ($s1,0xfff);
2110 &lea ("edi",$aes_key);
2111 &cmp ($s1,2048+256);
2112 &jb (&label("do_copy"));
2113 &cmp ($s1,4096-244);
2114 &jb (&label("skip_copy"));
2115 &set_label("do_copy",4);
2116 &mov ($_key,"edi");
2117 &data_word(0xA5F3F689); # rep movsd
2118 &set_label("skip_copy");
2119
2120 &mov ($key,16);
2121 &set_label("prefetch_tbl",4);
2122 &mov ($s0,&DWP(0,$tbl));
2123 &mov ($s1,&DWP(32,$tbl));
2124 &mov ($s2,&DWP(64,$tbl));
2125 &mov ($acc,&DWP(96,$tbl));
2126 &lea ($tbl,&DWP(128,$tbl));
2127 &sub ($key,1);
2128 &jnz (&label("prefetch_tbl"));
2129 &sub ($tbl,2048);
2130
2131 &mov ($acc,$_inp);
2132 &mov ($key,$_ivp);
2133
2134 &cmp ($s3,0);
2135 &je (&label("fast_decrypt"));
2136
2137 #----------------------------- ENCRYPT -----------------------------#
2138 &mov ($s0,&DWP(0,$key)); # load iv
2139 &mov ($s1,&DWP(4,$key));
2140
2141 &set_label("fast_enc_loop",16);
2142 &mov ($s2,&DWP(8,$key));
2143 &mov ($s3,&DWP(12,$key));
2144
2145 &xor ($s0,&DWP(0,$acc)); # xor input data
2146 &xor ($s1,&DWP(4,$acc));
2147 &xor ($s2,&DWP(8,$acc));
2148 &xor ($s3,&DWP(12,$acc));
2149
2150 &mov ($key,$_key); # load key
2151 &call ("_x86_AES_encrypt");
2152
2153 &mov ($acc,$_inp); # load inp
2154 &mov ($key,$_out); # load out
2155
2156 &mov (&DWP(0,$key),$s0); # save output data
2157 &mov (&DWP(4,$key),$s1);
2158 &mov (&DWP(8,$key),$s2);
2159 &mov (&DWP(12,$key),$s3);
2160
2161 &lea ($acc,&DWP(16,$acc)); # advance inp
2162 &mov ($s2,$_len); # load len
2163 &mov ($_inp,$acc); # save inp
2164 &lea ($s3,&DWP(16,$key)); # advance out
2165 &mov ($_out,$s3); # save out
2166 &sub ($s2,16); # decrease len
2167 &mov ($_len,$s2); # save len
2168 &jnz (&label("fast_enc_loop"));
2169 &mov ($acc,$_ivp); # load ivp
2170 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords
2171 &mov ($s3,&DWP(12,$key));
2172 &mov (&DWP(0,$acc),$s0); # save ivec
2173 &mov (&DWP(4,$acc),$s1);
2174 &mov (&DWP(8,$acc),$s2);
2175 &mov (&DWP(12,$acc),$s3);
2176
2177 &cmp ($mark,0); # was the key schedule copied?
2178 &mov ("edi",$_key);
2179 &je (&label("skip_ezero"));
2180 # zero copy of key schedule
2181 &mov ("ecx",240/4);
2182 &xor ("eax","eax");
2183 &align (4);
2184 &data_word(0xABF3F689); # rep stosd
2185 &set_label("skip_ezero")
2186 &mov ("esp",$_esp);
2187 &popf ();
2188 &set_label("drop_out");
2189 &function_end_A();
2190 &pushf (); # kludge, never executed
2191
2192 #----------------------------- DECRYPT -----------------------------#
2193 &set_label("fast_decrypt",16);
2194
2195 &cmp ($acc,$_out);
2196 &je (&label("fast_dec_in_place")); # in-place processing...
2197
2198 &mov ($_tmp,$key);
2199
2200 &align (4);
2201 &set_label("fast_dec_loop",16);
2202 &mov ($s0,&DWP(0,$acc)); # read input
2203 &mov ($s1,&DWP(4,$acc));
2204 &mov ($s2,&DWP(8,$acc));
2205 &mov ($s3,&DWP(12,$acc));
2206
2207 &mov ($key,$_key); # load key
2208 &call ("_x86_AES_decrypt");
2209
2210 &mov ($key,$_tmp); # load ivp
2211 &mov ($acc,$_len); # load len
2212 &xor ($s0,&DWP(0,$key)); # xor iv
2213 &xor ($s1,&DWP(4,$key));
2214 &xor ($s2,&DWP(8,$key));
2215 &xor ($s3,&DWP(12,$key));
2216
2217 &mov ($key,$_out); # load out
2218 &mov ($acc,$_inp); # load inp
2219
2220 &mov (&DWP(0,$key),$s0); # write output
2221 &mov (&DWP(4,$key),$s1);
2222 &mov (&DWP(8,$key),$s2);
2223 &mov (&DWP(12,$key),$s3);
2224
2225 &mov ($s2,$_len); # load len
2226 &mov ($_tmp,$acc); # save ivp
2227 &lea ($acc,&DWP(16,$acc)); # advance inp
2228 &mov ($_inp,$acc); # save inp
2229 &lea ($key,&DWP(16,$key)); # advance out
2230 &mov ($_out,$key); # save out
2231 &sub ($s2,16); # decrease len
2232 &mov ($_len,$s2); # save len
2233 &jnz (&label("fast_dec_loop"));
2234 &mov ($key,$_tmp); # load temp ivp
2235 &mov ($acc,$_ivp); # load user ivp
2236 &mov ($s0,&DWP(0,$key)); # load iv
2237 &mov ($s1,&DWP(4,$key));
2238 &mov ($s2,&DWP(8,$key));
2239 &mov ($s3,&DWP(12,$key));
2240 &mov (&DWP(0,$acc),$s0); # copy back to user
2241 &mov (&DWP(4,$acc),$s1);
2242 &mov (&DWP(8,$acc),$s2);
2243 &mov (&DWP(12,$acc),$s3);
2244 &jmp (&label("fast_dec_out"));
2245
2246 &set_label("fast_dec_in_place",16);
2247 &set_label("fast_dec_in_place_loop");
2248 &mov ($s0,&DWP(0,$acc)); # read input
2249 &mov ($s1,&DWP(4,$acc));
2250 &mov ($s2,&DWP(8,$acc));
2251 &mov ($s3,&DWP(12,$acc));
2252
2253 &lea ($key,$ivec);
2254 &mov (&DWP(0,$key),$s0); # copy to temp
2255 &mov (&DWP(4,$key),$s1);
2256 &mov (&DWP(8,$key),$s2);
2257 &mov (&DWP(12,$key),$s3);
2258
2259 &mov ($key,$_key); # load key
2260 &call ("_x86_AES_decrypt");
2261
2262 &mov ($key,$_ivp); # load ivp
2263 &mov ($acc,$_out); # load out
2264 &xor ($s0,&DWP(0,$key)); # xor iv
2265 &xor ($s1,&DWP(4,$key));
2266 &xor ($s2,&DWP(8,$key));
2267 &xor ($s3,&DWP(12,$key));
2268
2269 &mov (&DWP(0,$acc),$s0); # write output
2270 &mov (&DWP(4,$acc),$s1);
2271 &mov (&DWP(8,$acc),$s2);
2272 &mov (&DWP(12,$acc),$s3);
2273
2274 &lea ($acc,&DWP(16,$acc)); # advance out
2275 &mov ($_out,$acc); # save out
2276
2277 &lea ($acc,$ivec);
2278 &mov ($s0,&DWP(0,$acc)); # read temp
2279 &mov ($s1,&DWP(4,$acc));
2280 &mov ($s2,&DWP(8,$acc));
2281 &mov ($s3,&DWP(12,$acc));
2282
2283 &mov (&DWP(0,$key),$s0); # copy iv
2284 &mov (&DWP(4,$key),$s1);
2285 &mov (&DWP(8,$key),$s2);
2286 &mov (&DWP(12,$key),$s3);
2287
2288 &mov ($acc,$_inp); # load inp
2289 &mov ($s2,$_len); # load len
2290 &lea ($acc,&DWP(16,$acc)); # advance inp
2291 &mov ($_inp,$acc); # save inp
2292 &sub ($s2,16); # decrease len
2293 &mov ($_len,$s2); # save len
2294 &jnz (&label("fast_dec_in_place_loop"));
2295
2296 &set_label("fast_dec_out",4);
2297 &cmp ($mark,0); # was the key schedule copied?
2298 &mov ("edi",$_key);
2299 &je (&label("skip_dzero"));
2300 # zero copy of key schedule
2301 &mov ("ecx",240/4);
2302 &xor ("eax","eax");
2303 &align (4);
2304 &data_word(0xABF3F689); # rep stosd
2305 &set_label("skip_dzero")
2306 &mov ("esp",$_esp);
2307 &popf ();
2308 &function_end_A();
2309 &pushf (); # kludge, never executed
2310
2311 #--------------------------- SLOW ROUTINE ---------------------------#
2312 &set_label("slow_way",16);
2313
2314 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2315 &mov ($key,&wparam(3)); # load key
2316
2317 # pre-allocate aligned stack frame...
2318 &lea ($acc,&DWP(-80,"esp"));
2319 &and ($acc,-64);
2320
2321 # ... and make sure it doesn't alias with $key modulo 1024
2322 &lea ($s1,&DWP(-80-63,$key));
2323 &sub ($s1,$acc);
2324 &neg ($s1);
2325 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
2326 &sub ($acc,$s1);
2327
2328 # pick S-box copy which can't overlap with stack frame or $key
2329 &lea ($s1,&DWP(768,$acc));
2330 &sub ($s1,$tbl);
2331 &and ($s1,0x300);
2332 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
2333
2334 &lea ($s3,&wparam(0)); # pointer to parameter block
2335
2336 &exch ("esp",$acc);
2337 &add ("esp",4); # reserve for return address!
2338 &mov ($_tbl,$tbl); # save %ebp
2339 &mov ($_esp,$acc); # save %esp
2340 &mov ($_tmp,$s0); # save OPENSSL_ia32cap
2341
2342 &mov ($s0,&DWP(0,$s3)); # load inp
2343 &mov ($s1,&DWP(4,$s3)); # load out
2344 #&mov ($s2,&DWP(8,$s3)); # load len
2345 #&mov ($key,&DWP(12,$s3)); # load key
2346 &mov ($acc,&DWP(16,$s3)); # load ivp
2347 &mov ($s3,&DWP(20,$s3)); # load enc flag
2348
2349 &mov ($_inp,$s0); # save copy of inp
2350 &mov ($_out,$s1); # save copy of out
2351 &mov ($_len,$s2); # save copy of len
2352 &mov ($_key,$key); # save copy of key
2353 &mov ($_ivp,$acc); # save copy of ivp
2354
2355 &mov ($key,$acc);
2356 &mov ($acc,$s0);
2357
2358 &cmp ($s3,0);
2359 &je (&label("slow_decrypt"));
2360
2361 #--------------------------- SLOW ENCRYPT ---------------------------#
2362 &cmp ($s2,16);
2363 &mov ($s3,$s1);
2364 &jb (&label("slow_enc_tail"));
2365
2366 if (!$x86only) {
2367 &bt ($_tmp,25); # check for SSE bit
2368 &jnc (&label("slow_enc_x86"));
2369
2370 &movq ("mm0",&QWP(0,$key)); # load iv
2371 &movq ("mm4",&QWP(8,$key));
2372
2373 &set_label("slow_enc_loop_sse",16);
2374 &pxor ("mm0",&QWP(0,$acc)); # xor input data
2375 &pxor ("mm4",&QWP(8,$acc));
2376
2377 &mov ($key,$_key);
2378 &call ("_sse_AES_encrypt_compact");
2379
2380 &mov ($acc,$_inp); # load inp
2381 &mov ($key,$_out); # load out
2382 &mov ($s2,$_len); # load len
2383
2384 &movq (&QWP(0,$key),"mm0"); # save output data
2385 &movq (&QWP(8,$key),"mm4");
2386
2387 &lea ($acc,&DWP(16,$acc)); # advance inp
2388 &mov ($_inp,$acc); # save inp
2389 &lea ($s3,&DWP(16,$key)); # advance out
2390 &mov ($_out,$s3); # save out
2391 &sub ($s2,16); # decrease len
2392 &cmp ($s2,16);
2393 &mov ($_len,$s2); # save len
2394 &jae (&label("slow_enc_loop_sse"));
2395 &test ($s2,15);
2396 &jnz (&label("slow_enc_tail"));
2397 &mov ($acc,$_ivp); # load ivp
2398 &movq (&QWP(0,$acc),"mm0"); # save ivec
2399 &movq (&QWP(8,$acc),"mm4");
2400 &emms ();
2401 &mov ("esp",$_esp);
2402 &popf ();
2403 &function_end_A();
2404 &pushf (); # kludge, never executed
2405 }
2406 &set_label("slow_enc_x86",16);
2407 &mov ($s0,&DWP(0,$key)); # load iv
2408 &mov ($s1,&DWP(4,$key));
2409
2410 &set_label("slow_enc_loop_x86",4);
2411 &mov ($s2,&DWP(8,$key));
2412 &mov ($s3,&DWP(12,$key));
2413
2414 &xor ($s0,&DWP(0,$acc)); # xor input data
2415 &xor ($s1,&DWP(4,$acc));
2416 &xor ($s2,&DWP(8,$acc));
2417 &xor ($s3,&DWP(12,$acc));
2418
2419 &mov ($key,$_key); # load key
2420 &call ("_x86_AES_encrypt_compact");
2421
2422 &mov ($acc,$_inp); # load inp
2423 &mov ($key,$_out); # load out
2424
2425 &mov (&DWP(0,$key),$s0); # save output data
2426 &mov (&DWP(4,$key),$s1);
2427 &mov (&DWP(8,$key),$s2);
2428 &mov (&DWP(12,$key),$s3);
2429
2430 &mov ($s2,$_len); # load len
2431 &lea ($acc,&DWP(16,$acc)); # advance inp
2432 &mov ($_inp,$acc); # save inp
2433 &lea ($s3,&DWP(16,$key)); # advance out
2434 &mov ($_out,$s3); # save out
2435 &sub ($s2,16); # decrease len
2436 &cmp ($s2,16);
2437 &mov ($_len,$s2); # save len
2438 &jae (&label("slow_enc_loop_x86"));
2439 &test ($s2,15);
2440 &jnz (&label("slow_enc_tail"));
2441 &mov ($acc,$_ivp); # load ivp
2442 &mov ($s2,&DWP(8,$key)); # restore last dwords
2443 &mov ($s3,&DWP(12,$key));
2444 &mov (&DWP(0,$acc),$s0); # save ivec
2445 &mov (&DWP(4,$acc),$s1);
2446 &mov (&DWP(8,$acc),$s2);
2447 &mov (&DWP(12,$acc),$s3);
2448
2449 &mov ("esp",$_esp);
2450 &popf ();
2451 &function_end_A();
2452 &pushf (); # kludge, never executed
2453
2454 &set_label("slow_enc_tail",16);
2455 &emms () if (!$x86only);
2456 &mov ($key eq "edi"? $key:"",$s3); # load out to edi
2457 &mov ($s1,16);
2458 &sub ($s1,$s2);
2459 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp
2460 &je (&label("enc_in_place"));
2461 &align (4);
2462 &data_word(0xA4F3F689); # rep movsb # copy input
2463 &jmp (&label("enc_skip_in_place"));
2464 &set_label("enc_in_place");
2465 &lea ($key,&DWP(0,$key,$s2));
2466 &set_label("enc_skip_in_place");
2467 &mov ($s2,$s1);
2468 &xor ($s0,$s0);
2469 &align (4);
2470 &data_word(0xAAF3F689); # rep stosb # zero tail
2471
2472 &mov ($key,$_ivp); # restore ivp
2473 &mov ($acc,$s3); # output as input
2474 &mov ($s0,&DWP(0,$key));
2475 &mov ($s1,&DWP(4,$key));
2476 &mov ($_len,16); # len=16
2477 &jmp (&label("slow_enc_loop_x86")); # one more spin...
2478
2479 #--------------------------- SLOW DECRYPT ---------------------------#
2480 &set_label("slow_decrypt",16);
2481 if (!$x86only) {
2482 &bt ($_tmp,25); # check for SSE bit
2483 &jnc (&label("slow_dec_loop_x86"));
2484
2485 &set_label("slow_dec_loop_sse",4);
2486 &movq ("mm0",&QWP(0,$acc)); # read input
2487 &movq ("mm4",&QWP(8,$acc));
2488
2489 &mov ($key,$_key);
2490 &call ("_sse_AES_decrypt_compact");
2491
2492 &mov ($acc,$_inp); # load inp
2493 &lea ($s0,$ivec);
2494 &mov ($s1,$_out); # load out
2495 &mov ($s2,$_len); # load len
2496 &mov ($key,$_ivp); # load ivp
2497
2498 &movq ("mm1",&QWP(0,$acc)); # re-read input
2499 &movq ("mm5",&QWP(8,$acc));
2500
2501 &pxor ("mm0",&QWP(0,$key)); # xor iv
2502 &pxor ("mm4",&QWP(8,$key));
2503
2504 &movq (&QWP(0,$key),"mm1"); # copy input to iv
2505 &movq (&QWP(8,$key),"mm5");
2506
2507 &sub ($s2,16); # decrease len
2508 &jc (&label("slow_dec_partial_sse"));
2509
2510 &movq (&QWP(0,$s1),"mm0"); # write output
2511 &movq (&QWP(8,$s1),"mm4");
2512
2513 &lea ($s1,&DWP(16,$s1)); # advance out
2514 &mov ($_out,$s1); # save out
2515 &lea ($acc,&DWP(16,$acc)); # advance inp
2516 &mov ($_inp,$acc); # save inp
2517 &mov ($_len,$s2); # save len
2518 &jnz (&label("slow_dec_loop_sse"));
2519 &emms ();
2520 &mov ("esp",$_esp);
2521 &popf ();
2522 &function_end_A();
2523 &pushf (); # kludge, never executed
2524
2525 &set_label("slow_dec_partial_sse",16);
2526 &movq (&QWP(0,$s0),"mm0"); # save output to temp
2527 &movq (&QWP(8,$s0),"mm4");
2528 &emms ();
2529
2530 &add ($s2 eq "ecx" ? "ecx":"",16);
2531 &mov ("edi",$s1); # out
2532 &mov ("esi",$s0); # temp
2533 &align (4);
2534 &data_word(0xA4F3F689); # rep movsb # copy partial output
2535
2536 &mov ("esp",$_esp);
2537 &popf ();
2538 &function_end_A();
2539 &pushf (); # kludge, never executed
2540 }
2541 &set_label("slow_dec_loop_x86",16);
2542 &mov ($s0,&DWP(0,$acc)); # read input
2543 &mov ($s1,&DWP(4,$acc));
2544 &mov ($s2,&DWP(8,$acc));
2545 &mov ($s3,&DWP(12,$acc));
2546
2547 &lea ($key,$ivec);
2548 &mov (&DWP(0,$key),$s0); # copy to temp
2549 &mov (&DWP(4,$key),$s1);
2550 &mov (&DWP(8,$key),$s2);
2551 &mov (&DWP(12,$key),$s3);
2552
2553 &mov ($key,$_key); # load key
2554 &call ("_x86_AES_decrypt_compact");
2555
2556 &mov ($key,$_ivp); # load ivp
2557 &mov ($acc,$_len); # load len
2558 &xor ($s0,&DWP(0,$key)); # xor iv
2559 &xor ($s1,&DWP(4,$key));
2560 &xor ($s2,&DWP(8,$key));
2561 &xor ($s3,&DWP(12,$key));
2562
2563 &sub ($acc,16);
2564 &jc (&label("slow_dec_partial_x86"));
2565
2566 &mov ($_len,$acc); # save len
2567 &mov ($acc,$_out); # load out
2568
2569 &mov (&DWP(0,$acc),$s0); # write output
2570 &mov (&DWP(4,$acc),$s1);
2571 &mov (&DWP(8,$acc),$s2);
2572 &mov (&DWP(12,$acc),$s3);
2573
2574 &lea ($acc,&DWP(16,$acc)); # advance out
2575 &mov ($_out,$acc); # save out
2576
2577 &lea ($acc,$ivec);
2578 &mov ($s0,&DWP(0,$acc)); # read temp
2579 &mov ($s1,&DWP(4,$acc));
2580 &mov ($s2,&DWP(8,$acc));
2581 &mov ($s3,&DWP(12,$acc));
2582
2583 &mov (&DWP(0,$key),$s0); # copy it to iv
2584 &mov (&DWP(4,$key),$s1);
2585 &mov (&DWP(8,$key),$s2);
2586 &mov (&DWP(12,$key),$s3);
2587
2588 &mov ($acc,$_inp); # load inp
2589 &lea ($acc,&DWP(16,$acc)); # advance inp
2590 &mov ($_inp,$acc); # save inp
2591 &jnz (&label("slow_dec_loop_x86"));
2592 &mov ("esp",$_esp);
2593 &popf ();
2594 &function_end_A();
2595 &pushf (); # kludge, never executed
2596
2597 &set_label("slow_dec_partial_x86",16);
2598 &lea ($acc,$ivec);
2599 &mov (&DWP(0,$acc),$s0); # save output to temp
2600 &mov (&DWP(4,$acc),$s1);
2601 &mov (&DWP(8,$acc),$s2);
2602 &mov (&DWP(12,$acc),$s3);
2603
2604 &mov ($acc,$_inp);
2605 &mov ($s0,&DWP(0,$acc)); # re-read input
2606 &mov ($s1,&DWP(4,$acc));
2607 &mov ($s2,&DWP(8,$acc));
2608 &mov ($s3,&DWP(12,$acc));
2609
2610 &mov (&DWP(0,$key),$s0); # copy it to iv
2611 &mov (&DWP(4,$key),$s1);
2612 &mov (&DWP(8,$key),$s2);
2613 &mov (&DWP(12,$key),$s3);
2614
2615 &mov ("ecx",$_len);
2616 &mov ("edi",$_out);
2617 &lea ("esi",$ivec);
2618 &align (4);
2619 &data_word(0xA4F3F689); # rep movsb # copy partial output
2620
2621 &mov ("esp",$_esp);
2622 &popf ();
2623 &function_end("AES_cbc_encrypt");
2624 }
2625
2626 #------------------------------------------------------------------#
2627
2628 sub enckey()
2629 {
2630 &movz ("esi",&LB("edx")); # rk[i]>>0
2631 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2632 &movz ("esi",&HB("edx")); # rk[i]>>8
2633 &shl ("ebx",24);
2634 &xor ("eax","ebx");
2635
2636 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2637 &shr ("edx",16);
2638 &movz ("esi",&LB("edx")); # rk[i]>>16
2639 &xor ("eax","ebx");
2640
2641 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2642 &movz ("esi",&HB("edx")); # rk[i]>>24
2643 &shl ("ebx",8);
2644 &xor ("eax","ebx");
2645
2646 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2647 &shl ("ebx",16);
2648 &xor ("eax","ebx");
2649
2650 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon
2651 }
2652
2653 &function_begin("_x86_AES_set_encrypt_key");
2654 &mov ("esi",&wparam(1)); # user supplied key
2655 &mov ("edi",&wparam(3)); # private key schedule
2656
2657 &test ("esi",-1);
2658 &jz (&label("badpointer"));
2659 &test ("edi",-1);
2660 &jz (&label("badpointer"));
2661
2662 &call (&label("pic_point"));
2663 &set_label("pic_point");
2664 &blindpop($tbl);
2665 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2666 &lea ($tbl,&DWP(2048+128,$tbl));
2667
2668 # prefetch Te4
2669 &mov ("eax",&DWP(0-128,$tbl));
2670 &mov ("ebx",&DWP(32-128,$tbl));
2671 &mov ("ecx",&DWP(64-128,$tbl));
2672 &mov ("edx",&DWP(96-128,$tbl));
2673 &mov ("eax",&DWP(128-128,$tbl));
2674 &mov ("ebx",&DWP(160-128,$tbl));
2675 &mov ("ecx",&DWP(192-128,$tbl));
2676 &mov ("edx",&DWP(224-128,$tbl));
2677
2678 &mov ("ecx",&wparam(2)); # number of bits in key
2679 &cmp ("ecx",128);
2680 &je (&label("10rounds"));
2681 &cmp ("ecx",192);
2682 &je (&label("12rounds"));
2683 &cmp ("ecx",256);
2684 &je (&label("14rounds"));
2685 &mov ("eax",-2); # invalid number of bits
2686 &jmp (&label("exit"));
2687
2688 &set_label("10rounds");
2689 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords
2690 &mov ("ebx",&DWP(4,"esi"));
2691 &mov ("ecx",&DWP(8,"esi"));
2692 &mov ("edx",&DWP(12,"esi"));
2693 &mov (&DWP(0,"edi"),"eax");
2694 &mov (&DWP(4,"edi"),"ebx");
2695 &mov (&DWP(8,"edi"),"ecx");
2696 &mov (&DWP(12,"edi"),"edx");
2697
2698 &xor ("ecx","ecx");
2699 &jmp (&label("10shortcut"));
2700
2701 &align (4);
2702 &set_label("10loop");
2703 &mov ("eax",&DWP(0,"edi")); # rk[0]
2704 &mov ("edx",&DWP(12,"edi")); # rk[3]
2705 &set_label("10shortcut");
2706 &enckey ();
2707
2708 &mov (&DWP(16,"edi"),"eax"); # rk[4]
2709 &xor ("eax",&DWP(4,"edi"));
2710 &mov (&DWP(20,"edi"),"eax"); # rk[5]
2711 &xor ("eax",&DWP(8,"edi"));
2712 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2713 &xor ("eax",&DWP(12,"edi"));
2714 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2715 &inc ("ecx");
2716 &add ("edi",16);
2717 &cmp ("ecx",10);
2718 &jl (&label("10loop"));
2719
2720 &mov (&DWP(80,"edi"),10); # setup number of rounds
2721 &xor ("eax","eax");
2722 &jmp (&label("exit"));
2723
2724 &set_label("12rounds");
2725 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords
2726 &mov ("ebx",&DWP(4,"esi"));
2727 &mov ("ecx",&DWP(8,"esi"));
2728 &mov ("edx",&DWP(12,"esi"));
2729 &mov (&DWP(0,"edi"),"eax");
2730 &mov (&DWP(4,"edi"),"ebx");
2731 &mov (&DWP(8,"edi"),"ecx");
2732 &mov (&DWP(12,"edi"),"edx");
2733 &mov ("ecx",&DWP(16,"esi"));
2734 &mov ("edx",&DWP(20,"esi"));
2735 &mov (&DWP(16,"edi"),"ecx");
2736 &mov (&DWP(20,"edi"),"edx");
2737
2738 &xor ("ecx","ecx");
2739 &jmp (&label("12shortcut"));
2740
2741 &align (4);
2742 &set_label("12loop");
2743 &mov ("eax",&DWP(0,"edi")); # rk[0]
2744 &mov ("edx",&DWP(20,"edi")); # rk[5]
2745 &set_label("12shortcut");
2746 &enckey ();
2747
2748 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2749 &xor ("eax",&DWP(4,"edi"));
2750 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2751 &xor ("eax",&DWP(8,"edi"));
2752 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2753 &xor ("eax",&DWP(12,"edi"));
2754 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2755
2756 &cmp ("ecx",7);
2757 &je (&label("12break"));
2758 &inc ("ecx");
2759
2760 &xor ("eax",&DWP(16,"edi"));
2761 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2762 &xor ("eax",&DWP(20,"edi"));
2763 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2764
2765 &add ("edi",24);
2766 &jmp (&label("12loop"));
2767
2768 &set_label("12break");
2769 &mov (&DWP(72,"edi"),12); # setup number of rounds
2770 &xor ("eax","eax");
2771 &jmp (&label("exit"));
2772
2773 &set_label("14rounds");
2774 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords
2775 &mov ("ebx",&DWP(4,"esi"));
2776 &mov ("ecx",&DWP(8,"esi"));
2777 &mov ("edx",&DWP(12,"esi"));
2778 &mov (&DWP(0,"edi"),"eax");
2779 &mov (&DWP(4,"edi"),"ebx");
2780 &mov (&DWP(8,"edi"),"ecx");
2781 &mov (&DWP(12,"edi"),"edx");
2782 &mov ("eax",&DWP(16,"esi"));
2783 &mov ("ebx",&DWP(20,"esi"));
2784 &mov ("ecx",&DWP(24,"esi"));
2785 &mov ("edx",&DWP(28,"esi"));
2786 &mov (&DWP(16,"edi"),"eax");
2787 &mov (&DWP(20,"edi"),"ebx");
2788 &mov (&DWP(24,"edi"),"ecx");
2789 &mov (&DWP(28,"edi"),"edx");
2790
2791 &xor ("ecx","ecx");
2792 &jmp (&label("14shortcut"));
2793
2794 &align (4);
2795 &set_label("14loop");
2796 &mov ("edx",&DWP(28,"edi")); # rk[7]
2797 &set_label("14shortcut");
2798 &mov ("eax",&DWP(0,"edi")); # rk[0]
2799
2800 &enckey ();
2801
2802 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2803 &xor ("eax",&DWP(4,"edi"));
2804 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2805 &xor ("eax",&DWP(8,"edi"));
2806 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2807 &xor ("eax",&DWP(12,"edi"));
2808 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2809
2810 &cmp ("ecx",6);
2811 &je (&label("14break"));
2812 &inc ("ecx");
2813
2814 &mov ("edx","eax");
2815 &mov ("eax",&DWP(16,"edi")); # rk[4]
2816 &movz ("esi",&LB("edx")); # rk[11]>>0
2817 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2818 &movz ("esi",&HB("edx")); # rk[11]>>8
2819 &xor ("eax","ebx");
2820
2821 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2822 &shr ("edx",16);
2823 &shl ("ebx",8);
2824 &movz ("esi",&LB("edx")); # rk[11]>>16
2825 &xor ("eax","ebx");
2826
2827 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2828 &movz ("esi",&HB("edx")); # rk[11]>>24
2829 &shl ("ebx",16);
2830 &xor ("eax","ebx");
2831
2832 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2833 &shl ("ebx",24);
2834 &xor ("eax","ebx");
2835
2836 &mov (&DWP(48,"edi"),"eax"); # rk[12]
2837 &xor ("eax",&DWP(20,"edi"));
2838 &mov (&DWP(52,"edi"),"eax"); # rk[13]
2839 &xor ("eax",&DWP(24,"edi"));
2840 &mov (&DWP(56,"edi"),"eax"); # rk[14]
2841 &xor ("eax",&DWP(28,"edi"));
2842 &mov (&DWP(60,"edi"),"eax"); # rk[15]
2843
2844 &add ("edi",32);
2845 &jmp (&label("14loop"));
2846
2847 &set_label("14break");
2848 &mov (&DWP(48,"edi"),14); # setup number of rounds
2849 &xor ("eax","eax");
2850 &jmp (&label("exit"));
2851
2852 &set_label("badpointer");
2853 &mov ("eax",-1);
2854 &set_label("exit");
2855 &function_end("_x86_AES_set_encrypt_key");
2856
2857 # int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2858 # AES_KEY *key)
2859 &function_begin_B("private_AES_set_encrypt_key");
2860 &call ("_x86_AES_set_encrypt_key");
2861 &ret ();
2862 &function_end_B("private_AES_set_encrypt_key");
2863
2864 sub deckey()
2865 { my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2866 my $tmp = $tbl;
2867
2868 &mov ($acc,$tp1);
2869 &and ($acc,0x80808080);
2870 &mov ($tmp,$acc);
2871 &shr ($tmp,7);
2872 &lea ($tp2,&DWP(0,$tp1,$tp1));
2873 &sub ($acc,$tmp);
2874 &and ($tp2,0xfefefefe);
2875 &and ($acc,0x1b1b1b1b);
2876 &xor ($acc,$tp2);
2877 &mov ($tp2,$acc);
2878
2879 &and ($acc,0x80808080);
2880 &mov ($tmp,$acc);
2881 &shr ($tmp,7);
2882 &lea ($tp4,&DWP(0,$tp2,$tp2));
2883 &sub ($acc,$tmp);
2884 &and ($tp4,0xfefefefe);
2885 &and ($acc,0x1b1b1b1b);
2886 &xor ($tp2,$tp1); # tp2^tp1
2887 &xor ($acc,$tp4);
2888 &mov ($tp4,$acc);
2889
2890 &and ($acc,0x80808080);
2891 &mov ($tmp,$acc);
2892 &shr ($tmp,7);
2893 &lea ($tp8,&DWP(0,$tp4,$tp4));
2894 &xor ($tp4,$tp1); # tp4^tp1
2895 &sub ($acc,$tmp);
2896 &and ($tp8,0xfefefefe);
2897 &and ($acc,0x1b1b1b1b);
2898 &rotl ($tp1,8); # = ROTATE(tp1,8)
2899 &xor ($tp8,$acc);
2900
2901 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load
2902
2903 &xor ($tp1,$tp2);
2904 &xor ($tp2,$tp8);
2905 &xor ($tp1,$tp4);
2906 &rotl ($tp2,24);
2907 &xor ($tp4,$tp8);
2908 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
2909 &rotl ($tp4,16);
2910 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
2911 &rotl ($tp8,8);
2912 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
2913 &mov ($tp2,$tmp);
2914 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8)
2915
2916 &mov (&DWP(4*$i,$key),$tp1);
2917 }
2918
2919 # int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2920 # AES_KEY *key)
2921 &function_begin_B("private_AES_set_decrypt_key");
2922 &call ("_x86_AES_set_encrypt_key");
2923 &cmp ("eax",0);
2924 &je (&label("proceed"));
2925 &ret ();
2926
2927 &set_label("proceed");
2928 &push ("ebp");
2929 &push ("ebx");
2930 &push ("esi");
2931 &push ("edi");
2932
2933 &mov ("esi",&wparam(2));
2934 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds
2935 &lea ("ecx",&DWP(0,"","ecx",4));
2936 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk
2937
2938 &set_label("invert",4); # invert order of chunks
2939 &mov ("eax",&DWP(0,"esi"));
2940 &mov ("ebx",&DWP(4,"esi"));
2941 &mov ("ecx",&DWP(0,"edi"));
2942 &mov ("edx",&DWP(4,"edi"));
2943 &mov (&DWP(0,"edi"),"eax");
2944 &mov (&DWP(4,"edi"),"ebx");
2945 &mov (&DWP(0,"esi"),"ecx");
2946 &mov (&DWP(4,"esi"),"edx");
2947 &mov ("eax",&DWP(8,"esi"));
2948 &mov ("ebx",&DWP(12,"esi"));
2949 &mov ("ecx",&DWP(8,"edi"));
2950 &mov ("edx",&DWP(12,"edi"));
2951 &mov (&DWP(8,"edi"),"eax");
2952 &mov (&DWP(12,"edi"),"ebx");
2953 &mov (&DWP(8,"esi"),"ecx");
2954 &mov (&DWP(12,"esi"),"edx");
2955 &add ("esi",16);
2956 &sub ("edi",16);
2957 &cmp ("esi","edi");
2958 &jne (&label("invert"));
2959
2960 &mov ($key,&wparam(2));
2961 &mov ($acc,&DWP(240,$key)); # pull number of rounds
2962 &lea ($acc,&DWP(-2,$acc,$acc));
2963 &lea ($acc,&DWP(0,$key,$acc,8));
2964 &mov (&wparam(2),$acc);
2965
2966 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load
2967 &set_label("permute",4); # permute the key schedule
2968 &add ($key,16);
2969 &deckey (0,$key,$s0,$s1,$s2,$s3);
2970 &deckey (1,$key,$s1,$s2,$s3,$s0);
2971 &deckey (2,$key,$s2,$s3,$s0,$s1);
2972 &deckey (3,$key,$s3,$s0,$s1,$s2);
2973 &cmp ($key,&wparam(2));
2974 &jb (&label("permute"));
2975
2976 &xor ("eax","eax"); # return success
2977 &function_end("private_AES_set_decrypt_key");
2978 &asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
2979
2980 &asm_finish();
OLDNEW
« no previous file with comments | « openssl/crypto/aes/asm/aes-586.S ('k') | openssl/crypto/aes/asm/aes-586-mac.S » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698