Index: src/base/ieee754.cc |
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
index c18e6d106d87a05bdd9ae58e0a88b957214fc6d4..436ae2337a21a782e3e486746a89309327c9c468 100644 |
--- a/src/base/ieee754.cc |
+++ b/src/base/ieee754.cc |
@@ -874,119 +874,203 @@ double log1p(double x) { |
return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); |
} |
-// ES6 draft 09-27-13, section 20.2.2.22. |
-// Return the base 2 logarithm of x |
-// |
-// fdlibm does not have an explicit log2 function, but fdlibm's pow |
-// function does implement an accurate log2 function as part of the |
-// pow implementation. This extracts the core parts of that as a |
-// separate log2 function. |
-// |
-// Method: |
-// Compute log2(x) in two pieces: |
-// log2(x) = w1 + w2 |
-// where w1 has 53-24 = 29 bits of trailing zeroes. |
-double log2(double x) { |
- static const double |
- bp[] = {1.0, 1.5}, |
- dp_h[] = {0.0, 5.84962487220764160156e-01}, /* 0x3FE2B803, 0x40000000 */ |
- dp_l[] = {0.0, 1.35003920212974897128e-08}, /* 0x3E4CFDEB, 0x43CFD006 */ |
- zero = 0.0, one = 1.0, |
- // Polynomial coefficients for (3/2)*(log2(x) - 2*s - 2/3*s^3) |
- L1 = 5.99999999999994648725e-01, L2 = 4.28571428578550184252e-01, |
- L3 = 3.33333329818377432918e-01, L4 = 2.72728123808534006489e-01, |
- L5 = 2.30660745775561754067e-01, L6 = 2.06975017800338417784e-01, |
- // cp = 2/(3*ln(2)). Note that cp_h + cp_l is cp, but with more accuracy. |
- cp = 9.61796693925975554329e-01, cp_h = 9.61796700954437255859e-01, |
- cp_l = -7.02846165095275826516e-09, two53 = 9007199254740992, /* 2^53 */ |
- two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */ |
+/* |
+ * k_log1p(f): |
+ * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)]. |
+ * |
+ * The following describes the overall strategy for computing |
+ * logarithms in base e. The argument reduction and adding the final |
+ * term of the polynomial are done by the caller for increased accuracy |
+ * when different bases are used. |
+ * |
+ * Method : |
+ * 1. Argument Reduction: find k and f such that |
+ * x = 2^k * (1+f), |
+ * where sqrt(2)/2 < 1+f < sqrt(2) . |
+ * |
+ * 2. Approximation of log(1+f). |
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
+ * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
+ * = 2s + s*R |
+ * We use a special Reme algorithm on [0,0.1716] to generate |
+ * a polynomial of degree 14 to approximate R The maximum error |
+ * of this polynomial approximation is bounded by 2**-58.45. In |
+ * other words, |
+ * 2 4 6 8 10 12 14 |
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
+ * (the values of Lg1 to Lg7 are listed in the program) |
+ * and |
+ * | 2 14 | -58.45 |
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2 |
+ * | | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
+ * In order to guarantee error in log below 1ulp, we compute log |
+ * by |
+ * log(1+f) = f - s*(f - R) (if f is not too large) |
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
+ * |
+ * 3. Finally, log(x) = k*ln2 + log(1+f). |
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
+ * Here ln2 is split into two floating point number: |
+ * ln2_hi + ln2_lo, |
+ * where n*ln2_hi is always exact for |n| < 2000. |
+ * |
+ * Special cases: |
+ * log(x) is NaN with signal if x < 0 (including -INF) ; |
+ * log(+INF) is +INF; log(0) is -INF with signal; |
+ * log(NaN) is that NaN with no signal. |
+ * |
+ * Accuracy: |
+ * according to an error analysis, the error is always less than |
+ * 1 ulp (unit in the last place). |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ */ |
- static volatile double vzero = 0.0; |
- double ax, z_h, z_l, p_h, p_l; |
- double t1, t2, r, t, u, v; |
- int32_t j, k, n; |
- int32_t ix, hx; |
- u_int32_t lx; |
+static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
+ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
+ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
+ Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
+ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
+ Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
+ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
- EXTRACT_WORDS(hx, lx, x); |
- ix = hx & 0x7fffffff; |
+/* |
+ * We always inline k_log1p(), since doing so produces a |
+ * substantial performance improvement (~40% on amd64). |
+ */ |
+static inline double k_log1p(double f) { |
+ double hfsq, s, z, R, w, t1, t2; |
- // Handle special cases. |
- // log2(+/- 0) = -Infinity |
- if ((ix | lx) == 0) return -two54 / vzero; /* log(+-0)=-inf */ |
+ s = f / (2.0 + f); |
+ z = s * s; |
+ w = z * z; |
+ t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); |
+ t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); |
+ R = t2 + t1; |
+ hfsq = 0.5 * f * f; |
+ return s * (hfsq + R); |
+} |
- // log(x) = NaN, if x < 0 |
- if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */ |
+/* |
+ * Return the base 2 logarithm of x. See e_log.c and k_log.h for most |
+ * comments. |
+ * |
+ * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel, |
+ * then does the combining and scaling steps |
+ * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k |
+ * in not-quite-routine extra precision. |
+ */ |
+double log2(double x) { |
+ static const double |
+ two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
+ ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */ |
+ ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */ |
- // log2(Infinity) = Infinity, log2(NaN) = NaN |
- if (ix >= 0x7ff00000) return x; |
+ static const double zero = 0.0; |
+ static volatile double vzero = 0.0; |
- ax = fabs(x); |
+ double f, hfsq, hi, lo, r, val_hi, val_lo, w, y; |
+ int32_t i, k, hx; |
+ u_int32_t lx; |
- double ss, s2, s_h, s_l, t_h, t_l; |
- n = 0; |
+ EXTRACT_WORDS(hx, lx, x); |
- /* take care subnormal number */ |
- if (ix < 0x00100000) { |
- ax *= two53; |
- n -= 53; |
- GET_HIGH_WORD(ix, ax); |
+ k = 0; |
+ if (hx < 0x00100000) { /* x < 2**-1022 */ |
+ if (((hx & 0x7fffffff) | lx) == 0) |
+ return -two54 / vzero; /* log(+-0)=-inf */ |
+ if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */ |
+ k -= 54; |
+ x *= two54; /* subnormal number, scale up x */ |
+ GET_HIGH_WORD(hx, x); |
} |
+ if (hx >= 0x7ff00000) return x + x; |
+ if (hx == 0x3ff00000 && lx == 0) return zero; /* log(1) = +0 */ |
+ k += (hx >> 20) - 1023; |
+ hx &= 0x000fffff; |
+ i = (hx + 0x95f64) & 0x100000; |
+ SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ |
+ k += (i >> 20); |
+ y = static_cast<double>(k); |
+ f = x - 1.0; |
+ hfsq = 0.5 * f * f; |
+ r = k_log1p(f); |
- n += ((ix) >> 20) - 0x3ff; |
- j = ix & 0x000fffff; |
- |
- /* determine interval */ |
- ix = j | 0x3ff00000; /* normalize ix */ |
- if (j <= 0x3988E) { |
- k = 0; /* |x|<sqrt(3/2) */ |
- } else if (j < 0xBB67A) { |
- k = 1; /* |x|<sqrt(3) */ |
- } else { |
- k = 0; |
- n += 1; |
- ix -= 0x00100000; |
- } |
- SET_HIGH_WORD(ax, ix); |
- |
- /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
- u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
- v = one / (ax + bp[k]); |
- ss = u * v; |
- s_h = ss; |
- SET_LOW_WORD(s_h, 0); |
- /* t_h=ax+bp[k] High */ |
- t_h = zero; |
- SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); |
- t_l = ax - (t_h - bp[k]); |
- s_l = v * ((u - s_h * t_h) - s_h * t_l); |
- /* compute log(ax) */ |
- s2 = ss * ss; |
- r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); |
- r += s_l * (s_h + ss); |
- s2 = s_h * s_h; |
- t_h = 3.0 + s2 + r; |
- SET_LOW_WORD(t_h, 0); |
- t_l = r - ((t_h - 3.0) - s2); |
- /* u+v = ss*(1+...) */ |
- u = s_h * t_h; |
- v = s_l * t_h + t_l * ss; |
- /* 2/(3log2)*(ss+...) */ |
- p_h = u + v; |
- SET_LOW_WORD(p_h, 0); |
- p_l = v - (p_h - u); |
- z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
- z_l = cp_l * p_h + p_l * cp + dp_l[k]; |
- /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
- t = static_cast<double>(n); |
- t1 = (((z_h + z_l) + dp_h[k]) + t); |
- SET_LOW_WORD(t1, 0); |
- t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
- |
- // t1 + t2 = log2(ax), sum up because we do not care about extra precision. |
- return t1 + t2; |
+ /* |
+ * f-hfsq must (for args near 1) be evaluated in extra precision |
+ * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2). |
+ * This is fairly efficient since f-hfsq only depends on f, so can |
+ * be evaluated in parallel with R. Not combining hfsq with R also |
+ * keeps R small (though not as small as a true `lo' term would be), |
+ * so that extra precision is not needed for terms involving R. |
+ * |
+ * Compiler bugs involving extra precision used to break Dekker's |
+ * theorem for spitting f-hfsq as hi+lo, unless double_t was used |
+ * or the multi-precision calculations were avoided when double_t |
+ * has extra precision. These problems are now automatically |
+ * avoided as a side effect of the optimization of combining the |
+ * Dekker splitting step with the clear-low-bits step. |
+ * |
+ * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra |
+ * precision to avoid a very large cancellation when x is very near |
+ * these values. Unlike the above cancellations, this problem is |
+ * specific to base 2. It is strange that adding +-1 is so much |
+ * harder than adding +-ln2 or +-log10_2. |
+ * |
+ * This uses Dekker's theorem to normalize y+val_hi, so the |
+ * compiler bugs are back in some configurations, sigh. And I |
+ * don't want to used double_t to avoid them, since that gives a |
+ * pessimization and the support for avoiding the pessimization |
+ * is not yet available. |
+ * |
+ * The multi-precision calculations for the multiplications are |
+ * routine. |
+ */ |
+ hi = f - hfsq; |
+ SET_LOW_WORD(hi, 0); |
+ lo = (f - hi) - hfsq + r; |
+ val_hi = hi * ivln2hi; |
+ val_lo = (lo + hi) * ivln2lo + lo * ivln2hi; |
+ |
+ /* spadd(val_hi, val_lo, y), except for not using double_t: */ |
+ w = y + val_hi; |
+ val_lo += (y - w) + val_hi; |
+ val_hi = w; |
+ |
+ return val_lo + val_hi; |
} |
+/* |
+ * Return the base 10 logarithm of x |
+ * |
+ * Method : |
+ * Let log10_2hi = leading 40 bits of log10(2) and |
+ * log10_2lo = log10(2) - log10_2hi, |
+ * ivln10 = 1/log(10) rounded. |
+ * Then |
+ * n = ilogb(x), |
+ * if(n<0) n = n+1; |
+ * x = scalbn(x,-n); |
+ * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) |
+ * |
+ * Note 1: |
+ * To guarantee log10(10**n)=n, where 10**n is normal, the rounding |
+ * mode must set to Round-to-Nearest. |
+ * Note 2: |
+ * [1/log(10)] rounded to 53 bits has error .198 ulps; |
+ * log10 is monotonic at all binary break points. |
+ * |
+ * Special cases: |
+ * log10(x) is NaN if x < 0; |
+ * log10(+INF) is +INF; log10(0) is -INF; |
+ * log10(NaN) is that NaN; |
+ * log10(10**N) = N for N=0,1,...,22. |
+ */ |
double log10(double x) { |
static const double |
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |