Chromium Code Reviews| Index: src/base/ieee754.cc |
| diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
| index e642b6327a9b29360db3c09ebc0235b15b3c9f0e..6864d89b6cd53bc22ae5b07461d1eb950b89ab98 100644 |
| --- a/src/base/ieee754.cc |
| +++ b/src/base/ieee754.cc |
| @@ -913,138 +913,25 @@ static inline double k_log1p(double f) { |
| return s * (hfsq + R); |
| } |
| -// ES6 draft 09-27-13, section 20.2.2.22. |
| -// Return the base 2 logarithm of x |
| -// |
| -// fdlibm does not have an explicit log2 function, but fdlibm's pow |
| -// function does implement an accurate log2 function as part of the |
| -// pow implementation. This extracts the core parts of that as a |
| -// separate log2 function. |
| -// |
| -// Method: |
| -// Compute log2(x) in two pieces: |
| -// log2(x) = w1 + w2 |
| -// where w1 has 53-24 = 29 bits of trailing zeroes. |
| -double log2(double x) { |
| - static const double |
| - bp[] = {1.0, 1.5}, |
| - dp_h[] = {0.0, 5.84962487220764160156e-01}, /* 0x3FE2B803, 0x40000000 */ |
| - dp_l[] = {0.0, 1.35003920212974897128e-08}, /* 0x3E4CFDEB, 0x43CFD006 */ |
| - zero = 0.0, one = 1.0, |
| - // Polynomial coefficients for (3/2)*(log2(x) - 2*s - 2/3*s^3) |
| - L1 = 5.99999999999994648725e-01, L2 = 4.28571428578550184252e-01, |
| - L3 = 3.33333329818377432918e-01, L4 = 2.72728123808534006489e-01, |
| - L5 = 2.30660745775561754067e-01, L6 = 2.06975017800338417784e-01, |
| - // cp = 2/(3*ln(2)). Note that cp_h + cp_l is cp, but with more accuracy. |
| - cp = 9.61796693925975554329e-01, cp_h = 9.61796700954437255859e-01, |
| - cp_l = -7.02846165095275826516e-09, two53 = 9007199254740992, /* 2^53 */ |
| - two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */ |
| - |
| - static volatile double vzero = 0.0; |
| - double ax, z_h, z_l, p_h, p_l; |
| - double t1, t2, r, t, u, v; |
| - int32_t j, k, n; |
| - int32_t ix, hx; |
| - u_int32_t lx; |
| - |
| - EXTRACT_WORDS(hx, lx, x); |
| - ix = hx & 0x7fffffff; |
| - |
| - // Handle special cases. |
| - // log2(+/- 0) = -Infinity |
| - if ((ix | lx) == 0) return -two54 / vzero; /* log(+-0)=-inf */ |
| - |
| - // log(x) = NaN, if x < 0 |
| - if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */ |
| - |
| - // log2(Infinity) = Infinity, log2(NaN) = NaN |
| - if (ix >= 0x7ff00000) return x; |
| - |
| - ax = fabs(x); |
| - |
| - double ss, s2, s_h, s_l, t_h, t_l; |
| - n = 0; |
| - |
| - /* take care subnormal number */ |
| - if (ix < 0x00100000) { |
| - ax *= two53; |
| - n -= 53; |
| - GET_HIGH_WORD(ix, ax); |
| - } |
| - |
| - n += ((ix) >> 20) - 0x3ff; |
| - j = ix & 0x000fffff; |
| - |
| - /* determine interval */ |
| - ix = j | 0x3ff00000; /* normalize ix */ |
| - if (j <= 0x3988E) { |
| - k = 0; /* |x|<sqrt(3/2) */ |
| - } else if (j < 0xBB67A) { |
| - k = 1; /* |x|<sqrt(3) */ |
| - } else { |
| - k = 0; |
| - n += 1; |
| - ix -= 0x00100000; |
| - } |
| - SET_HIGH_WORD(ax, ix); |
| - |
| - /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| - u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
| - v = one / (ax + bp[k]); |
| - ss = u * v; |
| - s_h = ss; |
| - SET_LOW_WORD(s_h, 0); |
| - /* t_h=ax+bp[k] High */ |
| - t_h = zero; |
| - SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); |
| - t_l = ax - (t_h - bp[k]); |
| - s_l = v * ((u - s_h * t_h) - s_h * t_l); |
| - /* compute log(ax) */ |
| - s2 = ss * ss; |
| - r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); |
| - r += s_l * (s_h + ss); |
| - s2 = s_h * s_h; |
| - t_h = 3.0 + s2 + r; |
| - SET_LOW_WORD(t_h, 0); |
| - t_l = r - ((t_h - 3.0) - s2); |
| - /* u+v = ss*(1+...) */ |
| - u = s_h * t_h; |
| - v = s_l * t_h + t_l * ss; |
| - /* 2/(3log2)*(ss+...) */ |
| - p_h = u + v; |
| - SET_LOW_WORD(p_h, 0); |
| - p_l = v - (p_h - u); |
| - z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| - z_l = cp_l * p_h + p_l * cp + dp_l[k]; |
| - /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| - t = static_cast<double>(n); |
| - t1 = (((z_h + z_l) + dp_h[k]) + t); |
| - SET_LOW_WORD(t1, 0); |
| - t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
| - |
| - // t1 + t2 = log2(ax), sum up because we do not care about extra precision. |
| - return t1 + t2; |
| -} |
| - |
| /* |
| - * Return the base 10 logarithm of x. See e_log.c and k_log.h for most |
| + * Return the base 2 logarithm of x. See e_log.c and k_log.h for most |
| * comments. |
| * |
| - * log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2) |
| + * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel, |
| + * then does the combining and scaling steps |
| + * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k |
| * in not-quite-routine extra precision. |
| */ |
| -double log10Old(double x) { |
| +double log2(double x) { |
| static const double |
| - two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
| - ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */ |
| - ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */ |
| - log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ |
| - log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
| + two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
| + ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */ |
| + ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */ |
| static const double zero = 0.0; |
| static volatile double vzero = 0.0; |
| - double f, hfsq, hi, lo, r, val_hi, val_lo, w, y, y2; |
| + double f, hfsq, hi, lo, r, val_hi, val_lo, w, y; |
| int32_t i, k, hx; |
| u_int32_t lx; |
| @@ -1071,27 +958,75 @@ double log10Old(double x) { |
| hfsq = 0.5 * f * f; |
| r = k_log1p(f); |
| - /* See e_log2.c for most details. */ |
| + /* |
| + * f-hfsq must (for args near 1) be evaluated in extra precision |
| + * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2). |
| + * This is fairly efficient since f-hfsq only depends on f, so can |
| + * be evaluated in parallel with R. Not combining hfsq with R also |
| + * keeps R small (though not as small as a true `lo' term would be), |
| + * so that extra precision is not needed for terms involving R. |
| + * |
| + * Compiler bugs involving extra precision used to break Dekker's |
| + * theorem for spitting f-hfsq as hi+lo, unless double_t was used |
| + * or the multi-precision calculations were avoided when double_t |
| + * has extra precision. These problems are now automatically |
| + * avoided as a side effect of the optimization of combining the |
| + * Dekker splitting step with the clear-low-bits step. |
| + * |
| + * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra |
| + * precision to avoid a very large cancellation when x is very near |
| + * these values. Unlike the above cancellations, this problem is |
| + * specific to base 2. It is strange that adding +-1 is so much |
| + * harder than adding +-ln2 or +-log10_2. |
| + * |
| + * This uses Dekker's theorem to normalize y+val_hi, so the |
| + * compiler bugs are back in some configurations, sigh. And I |
| + * don't want to used double_t to avoid them, since that gives a |
| + * pessimization and the support for avoiding the pessimization |
| + * is not yet available. |
| + * |
| + * The multi-precision calculations for the multiplications are |
| + * routine. |
| + */ |
| hi = f - hfsq; |
| SET_LOW_WORD(hi, 0); |
| lo = (f - hi) - hfsq + r; |
| - val_hi = hi * ivln10hi; |
| - y2 = y * log10_2hi; |
| - val_lo = y * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi; |
| + val_hi = hi * ivln2hi; |
| + val_lo = (lo + hi) * ivln2lo + lo * ivln2hi; |
| - /* |
| - * Extra precision in for adding y*log10_2hi is not strictly needed |
| - * since there is no very large cancellation near x = sqrt(2) or |
| - * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs |
| - * with some parallelism and it reduces the error for many args. |
| - */ |
| - w = y2 + val_hi; |
| - val_lo += (y2 - w) + val_hi; |
| + /* spadd(val_hi, val_lo, y), except for not using double_t: */ |
| + w = y + val_hi; |
| + val_lo += (y - w) + val_hi; |
| val_hi = w; |
| return val_lo + val_hi; |
| } |
| +// ES6 draft 09-27-13, section 20.2.2.21. |
|
Benedikt Meurer
2016/06/16 16:47:34
Nit: Remove the ES6 hint here. And use C-style /*
|
| +// Return the base 10 logarithm of x |
| +// |
| +// Method : |
| +// Let log10_2hi = leading 40 bits of log10(2) and |
| +// log10_2lo = log10(2) - log10_2hi, |
| +// ivln10 = 1/log(10) rounded. |
| +// Then |
| +// n = ilogb(x), |
| +// if(n<0) n = n+1; |
| +// x = scalbn(x,-n); |
| +// log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) |
| +// |
| +// Note 1: |
| +// To guarantee log10(10**n)=n, where 10**n is normal, the rounding |
| +// mode must set to Round-to-Nearest. |
| +// Note 2: |
| +// [1/log(10)] rounded to 53 bits has error .198 ulps; |
| +// log10 is monotonic at all binary break points. |
| +// |
| +// Special cases: |
| +// log10(x) is NaN if x < 0; |
| +// log10(+INF) is +INF; log10(0) is -INF; |
| +// log10(NaN) is that NaN; |
| +// log10(10**N) = N for N=0,1,...,22. |
| double log10(double x) { |
| static const double |
| two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |