Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(242)

Side by Side Diff: src/base/ieee754.cc

Issue 2071823002: [Math builtins]: Cleanup in ieee754, restoring MSUN version of log2(). (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: REBASE. Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « no previous file | test/unittests/base/ieee754-unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm). 1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm).
2 // 2 //
3 // ==================================================== 3 // ====================================================
4 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 4 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 // 5 //
6 // Developed at SunSoft, a Sun Microsystems, Inc. business. 6 // Developed at SunSoft, a Sun Microsystems, Inc. business.
7 // Permission to use, copy, modify, and distribute this 7 // Permission to use, copy, modify, and distribute this
8 // software is freely granted, provided that this notice 8 // software is freely granted, provided that this notice
9 // is preserved. 9 // is preserved.
10 // ==================================================== 10 // ====================================================
(...skipping 856 matching lines...) Expand 10 before | Expand all | Expand 10 after
867 s = f / (2.0 + f); 867 s = f / (2.0 + f);
868 z = s * s; 868 z = s * s;
869 R = z * (Lp1 + 869 R = z * (Lp1 +
870 z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7)))))); 870 z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
871 if (k == 0) 871 if (k == 0)
872 return f - (hfsq - s * (hfsq + R)); 872 return f - (hfsq - s * (hfsq + R));
873 else 873 else
874 return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); 874 return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
875 } 875 }
876 876
877 // ES6 draft 09-27-13, section 20.2.2.22. 877 /*
878 // Return the base 2 logarithm of x 878 * k_log1p(f):
879 // 879 * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
880 // fdlibm does not have an explicit log2 function, but fdlibm's pow 880 *
881 // function does implement an accurate log2 function as part of the 881 * The following describes the overall strategy for computing
882 // pow implementation. This extracts the core parts of that as a 882 * logarithms in base e. The argument reduction and adding the final
883 // separate log2 function. 883 * term of the polynomial are done by the caller for increased accuracy
884 // 884 * when different bases are used.
885 // Method: 885 *
886 // Compute log2(x) in two pieces: 886 * Method :
887 // log2(x) = w1 + w2 887 * 1. Argument Reduction: find k and f such that
888 // where w1 has 53-24 = 29 bits of trailing zeroes. 888 * x = 2^k * (1+f),
889 * where sqrt(2)/2 < 1+f < sqrt(2) .
890 *
891 * 2. Approximation of log(1+f).
892 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
893 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
894 * = 2s + s*R
895 * We use a special Reme algorithm on [0,0.1716] to generate
896 * a polynomial of degree 14 to approximate R The maximum error
897 * of this polynomial approximation is bounded by 2**-58.45. In
898 * other words,
899 * 2 4 6 8 10 12 14
900 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
901 * (the values of Lg1 to Lg7 are listed in the program)
902 * and
903 * | 2 14 | -58.45
904 * | Lg1*s +...+Lg7*s - R(z) | <= 2
905 * | |
906 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
907 * In order to guarantee error in log below 1ulp, we compute log
908 * by
909 * log(1+f) = f - s*(f - R) (if f is not too large)
910 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
911 *
912 * 3. Finally, log(x) = k*ln2 + log(1+f).
913 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
914 * Here ln2 is split into two floating point number:
915 * ln2_hi + ln2_lo,
916 * where n*ln2_hi is always exact for |n| < 2000.
917 *
918 * Special cases:
919 * log(x) is NaN with signal if x < 0 (including -INF) ;
920 * log(+INF) is +INF; log(0) is -INF with signal;
921 * log(NaN) is that NaN with no signal.
922 *
923 * Accuracy:
924 * according to an error analysis, the error is always less than
925 * 1 ulp (unit in the last place).
926 *
927 * Constants:
928 * The hexadecimal values are the intended ones for the following
929 * constants. The decimal values may be used, provided that the
930 * compiler will convert from decimal to binary accurately enough
931 * to produce the hexadecimal values shown.
932 */
933
934 static const double Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
935 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
936 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
937 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
938 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
939 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
940 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
941
942 /*
943 * We always inline k_log1p(), since doing so produces a
944 * substantial performance improvement (~40% on amd64).
945 */
946 static inline double k_log1p(double f) {
947 double hfsq, s, z, R, w, t1, t2;
948
949 s = f / (2.0 + f);
950 z = s * s;
951 w = z * z;
952 t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
953 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
954 R = t2 + t1;
955 hfsq = 0.5 * f * f;
956 return s * (hfsq + R);
957 }
958
959 /*
960 * Return the base 2 logarithm of x. See e_log.c and k_log.h for most
961 * comments.
962 *
963 * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
964 * then does the combining and scaling steps
965 * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
966 * in not-quite-routine extra precision.
967 */
889 double log2(double x) { 968 double log2(double x) {
890 static const double 969 static const double
891 bp[] = {1.0, 1.5}, 970 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
892 dp_h[] = {0.0, 5.84962487220764160156e-01}, /* 0x3FE2B803, 0x40000000 */ 971 ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
893 dp_l[] = {0.0, 1.35003920212974897128e-08}, /* 0x3E4CFDEB, 0x43CFD006 */ 972 ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
894 zero = 0.0, one = 1.0, 973
895 // Polynomial coefficients for (3/2)*(log2(x) - 2*s - 2/3*s^3) 974 static const double zero = 0.0;
896 L1 = 5.99999999999994648725e-01, L2 = 4.28571428578550184252e-01,
897 L3 = 3.33333329818377432918e-01, L4 = 2.72728123808534006489e-01,
898 L5 = 2.30660745775561754067e-01, L6 = 2.06975017800338417784e-01,
899 // cp = 2/(3*ln(2)). Note that cp_h + cp_l is cp, but with more accuracy.
900 cp = 9.61796693925975554329e-01, cp_h = 9.61796700954437255859e-01,
901 cp_l = -7.02846165095275826516e-09, two53 = 9007199254740992, /* 2^53 */
902 two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
903
904 static volatile double vzero = 0.0; 975 static volatile double vzero = 0.0;
905 double ax, z_h, z_l, p_h, p_l; 976
906 double t1, t2, r, t, u, v; 977 double f, hfsq, hi, lo, r, val_hi, val_lo, w, y;
907 int32_t j, k, n; 978 int32_t i, k, hx;
908 int32_t ix, hx;
909 u_int32_t lx; 979 u_int32_t lx;
910 980
911 EXTRACT_WORDS(hx, lx, x); 981 EXTRACT_WORDS(hx, lx, x);
912 ix = hx & 0x7fffffff; 982
913 983 k = 0;
914 // Handle special cases. 984 if (hx < 0x00100000) { /* x < 2**-1022 */
915 // log2(+/- 0) = -Infinity 985 if (((hx & 0x7fffffff) | lx) == 0)
916 if ((ix | lx) == 0) return -two54 / vzero; /* log(+-0)=-inf */ 986 return -two54 / vzero; /* log(+-0)=-inf */
917 987 if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */
918 // log(x) = NaN, if x < 0 988 k -= 54;
919 if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */ 989 x *= two54; /* subnormal number, scale up x */
920 990 GET_HIGH_WORD(hx, x);
921 // log2(Infinity) = Infinity, log2(NaN) = NaN
922 if (ix >= 0x7ff00000) return x;
923
924 ax = fabs(x);
925
926 double ss, s2, s_h, s_l, t_h, t_l;
927 n = 0;
928
929 /* take care subnormal number */
930 if (ix < 0x00100000) {
931 ax *= two53;
932 n -= 53;
933 GET_HIGH_WORD(ix, ax);
934 } 991 }
935 992 if (hx >= 0x7ff00000) return x + x;
936 n += ((ix) >> 20) - 0x3ff; 993 if (hx == 0x3ff00000 && lx == 0) return zero; /* log(1) = +0 */
937 j = ix & 0x000fffff; 994 k += (hx >> 20) - 1023;
938 995 hx &= 0x000fffff;
939 /* determine interval */ 996 i = (hx + 0x95f64) & 0x100000;
940 ix = j | 0x3ff00000; /* normalize ix */ 997 SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */
941 if (j <= 0x3988E) { 998 k += (i >> 20);
942 k = 0; /* |x|<sqrt(3/2) */ 999 y = static_cast<double>(k);
943 } else if (j < 0xBB67A) { 1000 f = x - 1.0;
944 k = 1; /* |x|<sqrt(3) */ 1001 hfsq = 0.5 * f * f;
945 } else { 1002 r = k_log1p(f);
946 k = 0; 1003
947 n += 1; 1004 /*
948 ix -= 0x00100000; 1005 * f-hfsq must (for args near 1) be evaluated in extra precision
949 } 1006 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
950 SET_HIGH_WORD(ax, ix); 1007 * This is fairly efficient since f-hfsq only depends on f, so can
951 1008 * be evaluated in parallel with R. Not combining hfsq with R also
952 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 1009 * keeps R small (though not as small as a true `lo' term would be),
953 u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ 1010 * so that extra precision is not needed for terms involving R.
954 v = one / (ax + bp[k]); 1011 *
955 ss = u * v; 1012 * Compiler bugs involving extra precision used to break Dekker's
956 s_h = ss; 1013 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
957 SET_LOW_WORD(s_h, 0); 1014 * or the multi-precision calculations were avoided when double_t
958 /* t_h=ax+bp[k] High */ 1015 * has extra precision. These problems are now automatically
959 t_h = zero; 1016 * avoided as a side effect of the optimization of combining the
960 SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); 1017 * Dekker splitting step with the clear-low-bits step.
961 t_l = ax - (t_h - bp[k]); 1018 *
962 s_l = v * ((u - s_h * t_h) - s_h * t_l); 1019 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
963 /* compute log(ax) */ 1020 * precision to avoid a very large cancellation when x is very near
964 s2 = ss * ss; 1021 * these values. Unlike the above cancellations, this problem is
965 r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); 1022 * specific to base 2. It is strange that adding +-1 is so much
966 r += s_l * (s_h + ss); 1023 * harder than adding +-ln2 or +-log10_2.
967 s2 = s_h * s_h; 1024 *
968 t_h = 3.0 + s2 + r; 1025 * This uses Dekker's theorem to normalize y+val_hi, so the
969 SET_LOW_WORD(t_h, 0); 1026 * compiler bugs are back in some configurations, sigh. And I
970 t_l = r - ((t_h - 3.0) - s2); 1027 * don't want to used double_t to avoid them, since that gives a
971 /* u+v = ss*(1+...) */ 1028 * pessimization and the support for avoiding the pessimization
972 u = s_h * t_h; 1029 * is not yet available.
973 v = s_l * t_h + t_l * ss; 1030 *
974 /* 2/(3log2)*(ss+...) */ 1031 * The multi-precision calculations for the multiplications are
975 p_h = u + v; 1032 * routine.
976 SET_LOW_WORD(p_h, 0); 1033 */
977 p_l = v - (p_h - u); 1034 hi = f - hfsq;
978 z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ 1035 SET_LOW_WORD(hi, 0);
979 z_l = cp_l * p_h + p_l * cp + dp_l[k]; 1036 lo = (f - hi) - hfsq + r;
980 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 1037 val_hi = hi * ivln2hi;
981 t = static_cast<double>(n); 1038 val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
982 t1 = (((z_h + z_l) + dp_h[k]) + t); 1039
983 SET_LOW_WORD(t1, 0); 1040 /* spadd(val_hi, val_lo, y), except for not using double_t: */
984 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); 1041 w = y + val_hi;
985 1042 val_lo += (y - w) + val_hi;
986 // t1 + t2 = log2(ax), sum up because we do not care about extra precision. 1043 val_hi = w;
987 return t1 + t2; 1044
1045 return val_lo + val_hi;
988 } 1046 }
989 1047
1048 /*
1049 * Return the base 10 logarithm of x
1050 *
1051 * Method :
1052 * Let log10_2hi = leading 40 bits of log10(2) and
1053 * log10_2lo = log10(2) - log10_2hi,
1054 * ivln10 = 1/log(10) rounded.
1055 * Then
1056 * n = ilogb(x),
1057 * if(n<0) n = n+1;
1058 * x = scalbn(x,-n);
1059 * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
1060 *
1061 * Note 1:
1062 * To guarantee log10(10**n)=n, where 10**n is normal, the rounding
1063 * mode must set to Round-to-Nearest.
1064 * Note 2:
1065 * [1/log(10)] rounded to 53 bits has error .198 ulps;
1066 * log10 is monotonic at all binary break points.
1067 *
1068 * Special cases:
1069 * log10(x) is NaN if x < 0;
1070 * log10(+INF) is +INF; log10(0) is -INF;
1071 * log10(NaN) is that NaN;
1072 * log10(10**N) = N for N=0,1,...,22.
1073 */
990 double log10(double x) { 1074 double log10(double x) {
991 static const double 1075 static const double
992 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ 1076 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
993 ivln10 = 4.34294481903251816668e-01, 1077 ivln10 = 4.34294481903251816668e-01,
994 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ 1078 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
995 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ 1079 log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
996 1080
997 static const double zero = 0.0; 1081 static const double zero = 0.0;
998 static volatile double vzero = 0.0; 1082 static volatile double vzero = 0.0;
999 1083
(...skipping 322 matching lines...) Expand 10 before | Expand all | Expand 10 after
1322 w = t + t; /* t+t is exact */ 1406 w = t + t; /* t+t is exact */
1323 r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */ 1407 r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
1324 t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */ 1408 t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */
1325 1409
1326 return (t); 1410 return (t);
1327 } 1411 }
1328 1412
1329 } // namespace ieee754 1413 } // namespace ieee754
1330 } // namespace base 1414 } // namespace base
1331 } // namespace v8 1415 } // namespace v8
OLDNEW
« no previous file with comments | « no previous file | test/unittests/base/ieee754-unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698