Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1312)

Unified Diff: src/asmjs/asm-typer.cc

Issue 2071343003: V8. ASM-2-WASM. Validator V2. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: moves test-asm-validator to the asmjs cctest folder. Created 4 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/asmjs/asm-typer.h ('k') | src/asmjs/asm-types.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/asmjs/asm-typer.cc
diff --git a/src/asmjs/asm-typer.cc b/src/asmjs/asm-typer.cc
new file mode 100644
index 0000000000000000000000000000000000000000..07bf63fd0214373df57bfaf92f122bef5766ea59
--- /dev/null
+++ b/src/asmjs/asm-typer.cc
@@ -0,0 +1,2585 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/asmjs/asm-typer.h"
+
+#include <limits>
+#include <string>
+
+#include "src/v8.h"
+
+#include "src/asmjs/asm-types.h"
+#include "src/ast/ast.h"
+#include "src/ast/scopes.h"
+#include "src/base/bits.h"
+#include "src/codegen.h"
+#include "src/globals.h"
+#include "src/type-cache.h"
+#include "src/utils.h"
+
+#define FAIL(node, msg) \
+ do { \
+ int line = node->position() == kNoSourcePosition \
+ ? -1 \
+ : script_->GetLineNumber(node->position()); \
+ base::OS::SNPrintF(error_message_, sizeof(error_message_), \
+ "asm: line %d: %s\n", line + 1, msg); \
+ return AsmType::None(); \
+ } while (false)
+
+#define RECURSE(call) \
+ do { \
+ if (GetCurrentStackPosition() < stack_limit_) { \
+ stack_overflow_ = true; \
+ FAIL(root_, "Stack overflow while parsing asm.js module."); \
+ } \
+ \
+ AsmType* result = (call); \
+ if (stack_overflow_) { \
+ return AsmType::None(); \
+ } \
+ \
+ if (result == AsmType::None()) { \
+ return AsmType::None(); \
+ } \
+ } while (false)
+
+namespace v8 {
+namespace internal {
+namespace wasm {
+
+using v8::internal::AstNode;
+using v8::internal::GetCurrentStackPosition;
+
+// ----------------------------------------------------------------------------
+// Implementation of AsmTyper::FlattenedStatements
+
+AsmTyper::FlattenedStatements::FlattenedStatements(Zone* zone,
+ ZoneList<Statement*>* s)
+ : context_stack_(zone) {
+ context_stack_.emplace_back(Context(s));
+}
+
+Statement* AsmTyper::FlattenedStatements::Next() {
+ for (;;) {
+ if (context_stack_.empty()) {
+ return nullptr;
+ }
+
+ Context* current = &context_stack_.back();
+
+ if (current->statements_->length() <= current->next_index_) {
+ context_stack_.pop_back();
+ continue;
+ }
+
+ Statement* current_statement =
+ current->statements_->at(current->next_index_++);
+ if (current_statement->IsBlock()) {
+ context_stack_.emplace_back(
+ Context(current_statement->AsBlock()->statements()));
+ continue;
+ }
+
+ return current_statement;
+ }
+}
+
+// ----------------------------------------------------------------------------
+// Implementation of AsmTyper::VariableInfo
+
+AsmTyper::VariableInfo* AsmTyper::VariableInfo::Clone(Zone* zone) const {
+ CHECK(standard_member_ != kNone);
+ auto* new_var_info = new (zone) VariableInfo(type_);
+ new_var_info->standard_member_ = standard_member_;
+ new_var_info->mutability_ = mutability_;
+ return new_var_info;
+}
+
+void AsmTyper::VariableInfo::FirstForwardUseIs(VariableProxy* var) {
+ DCHECK(first_forward_use_ == nullptr);
+ missing_definition_ = true;
+ first_forward_use_ = var;
+}
+
+// ----------------------------------------------------------------------------
+// Implementation of AsmTyper
+
+AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script,
+ FunctionLiteral* root)
+ : isolate_(isolate),
+ zone_(zone),
+ script_(script),
+ root_(root),
+ forward_definitions_(zone),
+ stdlib_types_(zone),
+ stdlib_math_types_(zone),
+ global_scope_(ZoneHashMap::PointersMatch,
+ ZoneHashMap::kDefaultHashMapCapacity,
+ ZoneAllocationPolicy(zone)),
+ local_scope_(ZoneHashMap::PointersMatch,
+ ZoneHashMap::kDefaultHashMapCapacity,
+ ZoneAllocationPolicy(zone)),
+ stack_limit_(isolate->stack_guard()->real_climit()),
+ node_types_(zone_) {
+ InitializeStdlib();
+ module_info_.set_standard_member(kModule);
+}
+
+namespace {
+bool ValidAsmIdentifier(Handle<String> name) {
+ static const char* kInvalidAsmNames[] = {"eval", "arguments"};
+
+ for (size_t ii = 0; ii < arraysize(kInvalidAsmNames); ++ii) {
+ if (strcmp(name->ToCString().get(), kInvalidAsmNames[ii]) == 0) {
+ return false;
+ }
+ }
+ return true;
+}
+} // namespace
+
+void AsmTyper::InitializeStdlib() {
+ auto* d = AsmType::Double();
+ auto* dq = AsmType::DoubleQ();
+ auto* dq2d = AsmType::Function(zone_, d);
+ dq2d->AsFunctionType()->AddArgument(dq);
+
+ auto* dqdq2d = AsmType::Function(zone_, d);
+ dqdq2d->AsFunctionType()->AddArgument(dq);
+ dqdq2d->AsFunctionType()->AddArgument(dq);
+
+ auto* f = AsmType::Float();
+ auto* fq = AsmType::FloatQ();
+ auto* fq2f = AsmType::Function(zone_, f);
+ fq2f->AsFunctionType()->AddArgument(fq);
+
+ auto* s = AsmType::Signed();
+ auto* s2s = AsmType::Function(zone_, s);
+ s2s->AsFunctionType()->AddArgument(s);
+
+ auto* i = AsmType::Int();
+ auto* ii2s = AsmType::Function(zone_, s);
+ ii2s->AsFunctionType()->AddArgument(i);
+ ii2s->AsFunctionType()->AddArgument(i);
+
+ auto* minmax_d = AsmType::MinMaxType(zone_, d, d);
+ auto* minmax_i = AsmType::MinMaxType(zone_, s, i);
+ auto* minmax = AsmType::OverloadedFunction(zone_);
+ minmax->AsOverloadedFunctionType()->AddOverload(minmax_i);
+ minmax->AsOverloadedFunctionType()->AddOverload(minmax_d);
+
+ auto* fround = AsmType::FroundType(zone_);
+
+ auto* abs = AsmType::OverloadedFunction(zone_);
+ abs->AsOverloadedFunctionType()->AddOverload(s2s);
+ abs->AsOverloadedFunctionType()->AddOverload(dq2d);
+ abs->AsOverloadedFunctionType()->AddOverload(fq2f);
+
+ auto* ceil = AsmType::OverloadedFunction(zone_);
+ ceil->AsOverloadedFunctionType()->AddOverload(dq2d);
+ ceil->AsOverloadedFunctionType()->AddOverload(fq2f);
+
+ auto* floor = ceil;
+ auto* sqrt = ceil;
+
+ struct StandardMemberInitializer {
+ const char* name;
+ StandardMember standard_member;
+ AsmType* type;
+ };
+
+ const StandardMemberInitializer stdlib[] = {{"Infinity", kInfinity, d},
+ {"NaN", kNaN, d},
+#define asm_TYPED_ARRAYS(V) \
+ V(Uint8) \
+ V(Int8) \
+ V(Uint16) \
+ V(Int16) \
+ V(Uint32) \
+ V(Int32) \
+ V(Float32) \
+ V(Float64)
+
+#define asm_TYPED_ARRAY(TypeName) \
+ {#TypeName "Array", kNone, AsmType::TypeName##Array()},
+ asm_TYPED_ARRAYS(asm_TYPED_ARRAY)
+#undef asm_TYPED_ARRAY
+ };
+ for (size_t ii = 0; ii < arraysize(stdlib); ++ii) {
+ stdlib_types_[stdlib[ii].name] = new (zone_) VariableInfo(stdlib[ii].type);
+ stdlib_types_[stdlib[ii].name]->set_standard_member(
+ stdlib[ii].standard_member);
+ stdlib_types_[stdlib[ii].name]->set_mutability(
+ VariableInfo::kImmutableGlobal);
+ }
+
+ const StandardMemberInitializer math[] = {
+ {"PI", kMathPI, d},
+ {"E", kMathE, d},
+ {"LN2", kMathLN2, d},
+ {"LN10", kMathLN10, d},
+ {"LOG2E", kMathLOG2E, d},
+ {"LOG10E", kMathLOG10E, d},
+ {"SQRT2", kMathSQRT2, d},
+ {"SQRT1_2", kMathSQRT1_2, d},
+ {"imul", kMathImul, ii2s},
+ {"abs", kMathAbs, abs},
+ {"ceil", kMathCeil, ceil},
+ {"floor", kMathFloor, floor},
+ {"fround", kMathFround, fround},
+ {"pow", kMathPow, dqdq2d},
+ {"exp", kMathExp, dq2d},
+ {"log", kMathLog, dq2d},
+ {"min", kMathMin, minmax},
+ {"max", kMathMax, minmax},
+ {"sqrt", kMathSqrt, sqrt},
+ {"cos", kMathCos, dq2d},
+ {"sin", kMathSin, dq2d},
+ {"tan", kMathTan, dq2d},
+ {"acos", kMathAcos, dq2d},
+ {"asin", kMathAsin, dq2d},
+ {"atan", kMathAtan, dq2d},
+ {"atan2", kMathAtan2, dqdq2d},
+ };
+ for (size_t ii = 0; ii < arraysize(math); ++ii) {
+ stdlib_math_types_[math[ii].name] = new (zone_) VariableInfo(math[ii].type);
+ stdlib_math_types_[math[ii].name]->set_standard_member(
+ math[ii].standard_member);
+ stdlib_math_types_[math[ii].name]->set_mutability(
+ VariableInfo::kImmutableGlobal);
+ }
+}
+
+// Used for 5.5 GlobalVariableTypeAnnotations
+AsmTyper::VariableInfo* AsmTyper::ImportLookup(Property* import) {
+ auto* obj = import->obj();
+ auto* key = import->key()->AsLiteral();
+
+ ObjectTypeMap* stdlib = &stdlib_types_;
+ if (auto* obj_as_property = obj->AsProperty()) {
+ // This can only be stdlib.Math
+ auto* math_name = obj_as_property->key()->AsLiteral();
+ if (math_name == nullptr || !math_name->IsPropertyName()) {
+ return nullptr;
+ }
+
+ if (!math_name->AsPropertyName()->IsUtf8EqualTo(CStrVector("Math"))) {
+ return nullptr;
+ }
+
+ auto* stdlib_var_proxy = obj_as_property->obj()->AsVariableProxy();
+ if (stdlib_var_proxy == nullptr) {
+ return nullptr;
+ }
+ obj = stdlib_var_proxy;
+ stdlib = &stdlib_math_types_;
+ }
+
+ auto* obj_as_var_proxy = obj->AsVariableProxy();
+ if (obj_as_var_proxy == nullptr) {
+ return nullptr;
+ }
+
+ auto* obj_info = Lookup(obj_as_var_proxy->var());
+ if (obj_info == nullptr) {
+ return nullptr;
+ }
+
+ if (obj_info->IsFFI()) {
+ // For FFI we can't validate import->key, so assume this is OK.
+ return obj_info;
+ }
+
+ base::SmartArrayPointer<char> aname = key->AsPropertyName()->ToCString();
+ ObjectTypeMap::iterator i = stdlib->find(std::string(aname.get()));
+ if (i == stdlib->end()) {
+ return nullptr;
+ }
+ return i->second;
+}
+
+AsmTyper::VariableInfo* AsmTyper::Lookup(Variable* variable) {
+ ZoneHashMap* scope = in_function_ ? &local_scope_ : &global_scope_;
+ ZoneHashMap::Entry* entry =
+ scope->Lookup(variable, ComputePointerHash(variable));
+ if (entry == nullptr && in_function_) {
+ entry = global_scope_.Lookup(variable, ComputePointerHash(variable));
+ }
+
+ if (entry == nullptr && !module_name_.is_null() &&
+ module_name_->Equals(*variable->name())) {
+ return &module_info_;
+ }
+
+ return entry ? reinterpret_cast<VariableInfo*>(entry->value) : nullptr;
+}
+
+void AsmTyper::AddForwardReference(VariableProxy* proxy, VariableInfo* info) {
+ info->FirstForwardUseIs(proxy);
+ forward_definitions_.push_back(info);
+}
+
+bool AsmTyper::AddGlobal(Variable* variable, VariableInfo* info) {
+ // We can't DCHECK(!in_function_) because function may actually install global
+ // names (forward defined functions and function tables.)
+ DCHECK(info->mutability() != VariableInfo::kInvalidMutability);
+ DCHECK(info->IsGlobal());
+ DCHECK(ValidAsmIdentifier(variable->name()));
+
+ if (!module_name_.is_null() && module_name_->Equals(*variable->name())) {
+ return false;
+ }
+
+ ZoneHashMap::Entry* entry = global_scope_.LookupOrInsert(
+ variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
+
+ if (entry->value != nullptr) {
+ return false;
+ }
+
+ entry->value = info;
+ return true;
+}
+
+bool AsmTyper::AddLocal(Variable* variable, VariableInfo* info) {
+ DCHECK(in_function_);
+ DCHECK(info->mutability() != VariableInfo::kInvalidMutability);
+ DCHECK(!info->IsGlobal());
+ DCHECK(ValidAsmIdentifier(variable->name()));
+
+ ZoneHashMap::Entry* entry = local_scope_.LookupOrInsert(
+ variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone_));
+
+ if (entry->value != nullptr) {
+ return false;
+ }
+
+ entry->value = info;
+ return true;
+}
+
+void AsmTyper::SetTypeOf(AstNode* node, AsmType* type) {
+ DCHECK_NE(type, AsmType::None());
+ auto** node_type = &node_types_[node];
+ DCHECK(*node_type == nullptr);
+ *node_type = type;
+}
+
+AsmType* AsmTyper::TypeOf(AstNode* node) const {
+ auto node_type_iter = node_types_.find(node);
+ if (node_type_iter == node_types_.end()) {
+ return AsmType::None();
+ }
+ return node_type_iter->second;
+}
+
+AsmTyper::StandardMember AsmTyper::VariableAsStandardMember(Variable* var) {
+ auto* var_info = Lookup(var);
+ if (var_info == nullptr) {
+ return kNone;
+ }
+ return var_info->standard_member();
+}
+
+bool AsmTyper::Validate() {
+ if (!AsmType::None()->IsExactly(ValidateModule(root_))) {
+ return true;
+ }
+ return false;
+}
+
+namespace {
+bool IsUseAsmDirective(Statement* first_statement) {
+ ExpressionStatement* use_asm = first_statement->AsExpressionStatement();
+ if (use_asm == nullptr) {
+ return false;
+ }
+
+ Literal* use_asm_literal = use_asm->expression()->AsLiteral();
+
+ if (use_asm_literal == nullptr) {
+ return false;
+ }
+
+ return use_asm_literal->raw_value()->AsString()->IsOneByteEqualTo("use asm");
+}
+
+Assignment* ExtractInitializerExpression(Statement* statement) {
+ auto* expr_stmt = statement->AsExpressionStatement();
+ if (expr_stmt == nullptr) {
+ // Done with initializers.
+ return nullptr;
+ }
+ auto* assign = expr_stmt->expression()->AsAssignment();
+ if (assign == nullptr) {
+ // Done with initializers.
+ return nullptr;
+ }
+ if (assign->op() != Token::INIT) {
+ // Done with initializers.
+ return nullptr;
+ }
+ return assign;
+}
+
+} // namespace
+
+// 6.1 ValidateModule
+AsmType* AsmTyper::ValidateModule(FunctionLiteral* fun) {
+ Scope* scope = fun->scope();
+ if (!scope->is_function_scope()) FAIL(fun, "Not at function scope.");
+ if (!ValidAsmIdentifier(fun->name()))
+ FAIL(fun, "Invalid asm.js identifier in module name.");
+ module_name_ = fun->name();
+
+ // Allowed parameters: Stdlib, FFI, Mem
+ static const uint32_t MaxModuleParameters = 3;
+ if (scope->num_parameters() > MaxModuleParameters) {
+ FAIL(fun, "asm.js modules may not have more than three parameters.");
+ }
+
+ struct {
+ StandardMember standard_member;
+ AsmType* type;
+ } kModuleParamInfo[3] = {
+ {kStdlib, AsmType::None()},
+ {kFFI, AsmType::FFIType(zone_)},
+ {kHeap, AsmType::None()},
+ };
+
+ for (int ii = 0; ii < scope->num_parameters(); ++ii) {
+ Variable* param = scope->parameter(ii);
+ DCHECK(param);
+
+ if (!ValidAsmIdentifier(param->name())) {
+ FAIL(fun, "Invalid asm.js identifier in module parameter.");
+ }
+
+ auto* param_info = new (zone_) VariableInfo();
+ param_info->set_mutability(VariableInfo::kImmutableGlobal);
+ param_info->set_standard_member(kModuleParamInfo[ii].standard_member);
+ param_info->set_type(kModuleParamInfo[ii].type);
+
+ if (!AddGlobal(param, param_info)) {
+ FAIL(fun, "Redeclared identifier in module parameter.");
+ }
+ }
+
+ ZoneVector<Assignment*> function_pointer_tables(zone_);
+ FlattenedStatements iter(zone_, fun->body());
+ auto* use_asm_directive = iter.Next();
+ if (use_asm_directive == nullptr || !IsUseAsmDirective(use_asm_directive)) {
+ FAIL(fun, "Missing \"use asm\".");
+ }
+ ReturnStatement* module_return = nullptr;
+
+ // *VIOLATION* The spec states that globals should be followed by function
+ // declarations, which should be followed by function pointer tables, followed
+ // by the module export (return) statement. Our AST might be rearraged by the
+ // parser, so we can't rely on it being in source code order.
+ while (Statement* current = iter.Next()) {
+ if (auto* assign = ExtractInitializerExpression(current)) {
+ if (assign->value()->IsArrayLiteral()) {
+ // Save function tables for later validation.
+ function_pointer_tables.push_back(assign);
+ } else {
+ RECURSE(ValidateGlobalDeclaration(assign));
+ }
+ continue;
+ }
+
+ if (auto* current_as_return = current->AsReturnStatement()) {
+ if (module_return != nullptr) {
+ FAIL(fun, "Multiple export statements.");
+ }
+ module_return = current_as_return;
+ continue;
+ }
+
+ FAIL(current, "Invalid top-level statement in asm.js module.");
+ }
+
+ ZoneList<Declaration*>* decls = scope->declarations();
+
+ for (int ii = 0; ii < decls->length(); ++ii) {
+ Declaration* decl = decls->at(ii);
+
+ if (FunctionDeclaration* fun_decl = decl->AsFunctionDeclaration()) {
+ RECURSE(ValidateFunction(fun_decl));
+ continue;
+ }
+ }
+
+ for (auto* function_table : function_pointer_tables) {
+ RECURSE(ValidateFunctionTable(function_table));
+ }
+
+ for (int ii = 0; ii < decls->length(); ++ii) {
+ Declaration* decl = decls->at(ii);
+
+ if (decl->IsFunctionDeclaration()) {
+ continue;
+ }
+
+ VariableDeclaration* var_decl = decl->AsVariableDeclaration();
+ if (var_decl == nullptr) {
+ FAIL(decl, "Invalid asm.js declaration.");
+ }
+
+ auto* var_proxy = var_decl->proxy();
+ if (var_proxy == nullptr) {
+ FAIL(decl, "Invalid asm.js declaration.");
+ }
+
+ if (Lookup(var_proxy->var()) == nullptr) {
+ FAIL(decl, "Global variable missing initializer in asm.js module.");
+ }
+ }
+
+ // 6.2 ValidateExport
+ if (module_return == nullptr) {
+ FAIL(fun, "Missing asm.js module export.");
+ }
+
+ for (auto* forward_def : forward_definitions_) {
+ if (forward_def->missing_definition()) {
+ FAIL(forward_def->first_forward_use(),
+ "Missing definition for forward declared identifier.");
+ }
+ }
+
+ RECURSE(ValidateExport(module_return));
+
+ return AsmType::Int(); // Any type that is not AsmType::None();
+}
+
+namespace {
+bool IsDoubleAnnotation(BinaryOperation* binop) {
+ // *VIOLATION* The parser replaces uses of +x with x*1.0.
+ if (binop->op() != Token::MUL) {
+ return false;
+ }
+
+ auto* right_as_literal = binop->right()->AsLiteral();
+ if (right_as_literal == nullptr) {
+ return false;
+ }
+
+ return right_as_literal->raw_value()->ContainsDot() &&
+ right_as_literal->raw_value()->AsNumber() == 1.0;
+}
+
+bool IsIntAnnotation(BinaryOperation* binop) {
+ if (binop->op() != Token::BIT_OR) {
+ return false;
+ }
+
+ auto* right_as_literal = binop->right()->AsLiteral();
+ if (right_as_literal == nullptr) {
+ return false;
+ }
+
+ return !right_as_literal->raw_value()->ContainsDot() &&
+ right_as_literal->raw_value()->AsNumber() == 0.0;
+}
+} // namespace
+
+AsmType* AsmTyper::ValidateGlobalDeclaration(Assignment* assign) {
+ DCHECK(!assign->is_compound());
+ if (assign->is_compound()) {
+ FAIL(assign,
+ "Compound assignment not supported when declaring global variables.");
+ }
+
+ auto* target = assign->target();
+ if (!target->IsVariableProxy()) {
+ FAIL(target, "Module assignments may only assign to globals.");
+ }
+ auto* target_variable = target->AsVariableProxy()->var();
+ auto* target_info = Lookup(target_variable);
+
+ if (target_info != nullptr) {
+ FAIL(target, "Redefined global variable.");
+ }
+
+ auto* value = assign->value();
+ // Not all types of assignment are allowed by asm.js. See
+ // 5.5 Global Variable Type Annotations.
+ if (value->IsLiteral() || value->IsCall()) {
+ AsmType* type = nullptr;
+ RECURSE(type = VariableTypeAnnotations(value));
+ target_info = new (zone_) VariableInfo(type);
+ target_info->set_mutability(VariableInfo::kMutableGlobal);
+ } else if (value->IsProperty()) {
+ target_info = ImportLookup(value->AsProperty());
+ if (target_info == nullptr) {
+ FAIL(assign, "Invalid import.");
+ }
+ CHECK(target_info->mutability() == VariableInfo::kImmutableGlobal);
+ if (!target_info->IsFFI()) {
+ target_info = target_info->Clone(zone_);
+ } else {
+ // create a new target info that represents a foreign variable.
+ DCHECK(target_info->type()->AsFFIType() != nullptr);
+ target_info = new (zone_) VariableInfo(target_info->type());
+ target_info->set_mutability(VariableInfo::kImmutableGlobal);
+ }
+ } else if (value->IsBinaryOperation()) {
+ // This should either be:
+ //
+ // var <> = ffi.<>|0
+ //
+ // or
+ //
+ // var <> = +ffi.<>
+ auto* value_binop = value->AsBinaryOperation();
+ auto* left = value_binop->left();
+ AsmType* import_type = nullptr;
+
+ if (IsDoubleAnnotation(value_binop)) {
+ import_type = AsmType::Double();
+ } else if (IsIntAnnotation(value_binop)) {
+ import_type = AsmType::Int();
+ } else {
+ FAIL(value,
+ "Invalid initializer for foreign import - unrecognized annotation.");
+ }
+
+ if (!left->IsProperty()) {
+ FAIL(value,
+ "Invalid initializer for foreign import - must import member.");
+ }
+ target_info = ImportLookup(left->AsProperty());
+ if (target_info == nullptr) {
+ // TODO(jpp): this error message is innacurate: this may fail if the
+ // object lookup fails, or if the property lookup fails, or even if the
+ // import is bogus like a().c.
+ FAIL(value,
+ "Invalid initializer for foreign import - object lookup failed.");
+ }
+ CHECK(target_info->mutability() == VariableInfo::kImmutableGlobal);
+ if (!target_info->IsFFI()) {
+ FAIL(value,
+ "Invalid initializer for foreign import - object is not the ffi.");
+ }
+
+ // Create a new target info that represents the foreign import.
+ DCHECK(target_info->type()->AsFFIType() != nullptr);
+ target_info = new (zone_) VariableInfo(import_type);
+ target_info->set_mutability(VariableInfo::kMutableGlobal);
+ } else if (value->IsCallNew()) {
+ AsmType* type = nullptr;
+ RECURSE(type = NewHeapView(value->AsCallNew()));
+ target_info = new (zone_) VariableInfo(type);
+ target_info->set_mutability(VariableInfo::kImmutableGlobal);
+ }
+
+ if (target_info == nullptr) {
+ FAIL(assign, "Invalid global variable initializer.");
+ }
+
+ if (!ValidAsmIdentifier(target_variable->name())) {
+ FAIL(target, "Invalid asm.js identifier in global variable.");
+ }
+
+ if (!AddGlobal(target_variable, target_info)) {
+ FAIL(assign, "Redeclared global identifier.");
+ }
+
+ DCHECK(target_info->type() != AsmType::None());
+ return target_info->type();
+}
+
+// 6.2 ValidateExport
+AsmType* AsmTyper::ExportType(VariableProxy* fun_export) {
+ auto* fun_info = Lookup(fun_export->var());
+ if (fun_info == nullptr) {
+ FAIL(fun_export, "Undefined identifier in asm.js module export.");
+ }
+
+ if (fun_info->standard_member() != kNone) {
+ FAIL(fun_export, "Module cannot export standard library functions.");
+ }
+
+ auto* type = fun_info->type();
+ if (type->AsFFIType() != nullptr) {
+ FAIL(fun_export, "Module cannot export foreign functions.");
+ }
+
+ if (type->AsFunctionTableType() != nullptr) {
+ FAIL(fun_export, "Module cannot export function tables.");
+ }
+
+ if (fun_info->type()->AsFunctionType() == nullptr) {
+ FAIL(fun_export, "Module export is not an asm.js function.");
+ }
+
+ return type;
+}
+
+AsmType* AsmTyper::ValidateExport(ReturnStatement* exports) {
+ // asm.js modules can export single functions, or multiple functions in an
+ // object literal.
+ if (auto* fun_export = exports->expression()->AsVariableProxy()) {
+ // Exporting single function.
+ AsmType* export_type;
+ RECURSE(export_type = ExportType(fun_export));
+ return export_type;
+ }
+
+ if (auto* obj_export = exports->expression()->AsObjectLiteral()) {
+ // Exporting object literal.
+ for (auto* prop : *obj_export->properties()) {
+ if (!prop->key()->IsLiteral()) {
+ FAIL(prop->key(),
+ "Only normal object properties may be used in the export object "
+ "literal.");
+ }
+
+ auto* export_obj = prop->value()->AsVariableProxy();
+ if (export_obj == nullptr) {
+ FAIL(prop->value(), "Exported value must be an asm.js function name.");
+ }
+
+ RECURSE(ExportType(export_obj));
+ }
+
+ return AsmType::Int();
+ }
+
+ FAIL(exports, "Unrecognized expression in asm.js module export expression.");
+}
+
+// 6.3 ValidateFunctionTable
+AsmType* AsmTyper::ValidateFunctionTable(Assignment* assign) {
+ if (assign->is_compound()) {
+ FAIL(assign,
+ "Compound assignment not supported when declaring global variables.");
+ }
+
+ auto* target = assign->target();
+ if (!target->IsVariableProxy()) {
+ FAIL(target, "Module assignments may only assign to globals.");
+ }
+ auto* target_variable = target->AsVariableProxy()->var();
+
+ auto* value = assign->value()->AsArrayLiteral();
+ CHECK(value != nullptr);
+ ZoneList<Expression*>* pointers = value->values();
+
+ // The function table size must be n = 2 ** m, for m >= 0;
+ // TODO(jpp): should this be capped?
+ if (!base::bits::IsPowerOfTwo32(pointers->length())) {
+ FAIL(assign, "Invalid length for function pointer table.");
+ }
+
+ AsmType* table_element_type = nullptr;
+ AsmCallableType* callable_type = nullptr;
+ for (auto* initializer : *pointers) {
+ auto* var_proxy = initializer->AsVariableProxy();
+ if (var_proxy == nullptr) {
+ FAIL(initializer,
+ "Function pointer table initializer must be a function name.");
+ }
+
+ auto* var_info = Lookup(var_proxy->var());
+ if (var_info == nullptr) {
+ FAIL(var_proxy,
+ "Undefined identifier in function pointer table initializer.");
+ }
+
+ if (var_info->standard_member() != kNone) {
+ FAIL(initializer,
+ "Function pointer table must not be a member of the standard "
+ "library.");
+ }
+
+ auto* initializer_callable = var_info->type()->AsFunctionType();
+ if (initializer_callable == nullptr) {
+ FAIL(initializer,
+ "Function pointer table initializer must be an asm.js function.");
+ }
+
+ DCHECK(var_info->type()->AsFFIType() == nullptr);
+ DCHECK(var_info->type()->AsFunctionTableType() == nullptr);
+
+ if (callable_type == nullptr) {
+ table_element_type = var_info->type();
+ callable_type = initializer_callable;
+ } else if (callable_type->ValidateCall(initializer_callable->ReturnType(),
+ initializer_callable->Arguments()) ==
+ AsmType::None()) {
+ FAIL(initializer, "Type mismatch in function pointer table initializer.");
+ }
+ }
+
+ auto* target_info = Lookup(target_variable);
+ if (target_info == nullptr) {
+ // Function pointer tables are the last entities to be validates, so this is
+ // unlikely to happen: only unreferenced function tables will not already
+ // have an entry in the global scope.
+ target_info = new (zone_) VariableInfo(AsmType::FunctionTableType(
+ zone_, pointers->length(), table_element_type));
+ target_info->set_mutability(VariableInfo::kImmutableGlobal);
+ if (!ValidAsmIdentifier(target_variable->name())) {
+ FAIL(target, "Invalid asm.js identifier in function table name.");
+ }
+ if (!AddGlobal(target_variable, target_info)) {
+ DCHECK(false);
+ FAIL(assign, "Redeclared global identifier in function table name.");
+ }
+ return target_info->type();
+ }
+
+ auto* target_info_table = target_info->type()->AsFunctionTableType();
+ if (target_info_table == nullptr) {
+ FAIL(assign, "Identifier redefined as function pointer table.");
+ }
+
+ if (!target_info->missing_definition()) {
+ FAIL(assign, "Identifier redefined (function table name).");
+ }
+
+ if (target_info_table->length() != pointers->length()) {
+ FAIL(assign, "Function table size mismatch.");
+ }
+
+ auto* function_type = callable_type->AsFunctionType();
+ if (target_info_table->ValidateCall(function_type->ReturnType(),
+ function_type->Arguments()) ==
+ AsmType::None()) {
+ FAIL(assign, "Function table initializer does not match previous type.");
+ }
+
+ target_info->MarkDefined();
+ DCHECK(target_info->type() == AsmType::None());
+ SetTypeOf(value, target_info->type());
+
+ return target_info->type();
+}
+
+// 6.4 ValidateFunction
+AsmType* AsmTyper::ValidateFunction(FunctionDeclaration* fun_decl) {
+ FunctionScope _(this);
+
+ // Extract parameter types.
+ auto* fun = fun_decl->fun();
+
+ auto* fun_decl_proxy = fun_decl->proxy();
+ if (fun_decl_proxy == nullptr) {
+ FAIL(fun_decl, "Anonymous functions are not support in asm.js.");
+ }
+
+ Statement* current;
+ FlattenedStatements iter(zone_, fun->body());
+
+ size_t annotated_parameters = 0;
+
+ // 5.3 Function type annotations
+ // * parameters
+ ZoneVector<AsmType*> parameter_types(zone_);
+ for (; (current = iter.Next()) != nullptr; ++annotated_parameters) {
+ auto* stmt = current->AsExpressionStatement();
+ if (stmt == nullptr) {
+ // Done with parameters.
+ break;
+ }
+ auto* expr = stmt->expression()->AsAssignment();
+ if (expr == nullptr || expr->is_compound()) {
+ // Done with parameters.
+ break;
+ }
+ auto* proxy = expr->target()->AsVariableProxy();
+ if (proxy == nullptr) {
+ // Done with parameters.
+ break;
+ }
+ auto* param = proxy->var();
+ if (param->location() != VariableLocation::PARAMETER ||
+ param->index() != annotated_parameters) {
+ // Done with parameters.
+ break;
+ }
+
+ AsmType* type;
+ RECURSE(type = ParameterTypeAnnotations(param, expr->value()));
+ DCHECK(type->IsParameterType());
+ auto* param_info = new (zone_) VariableInfo(type);
+ param_info->set_mutability(VariableInfo::kLocal);
+ if (!ValidAsmIdentifier(proxy->name())) {
+ FAIL(proxy, "Invalid asm.js identifier in parameter name.");
+ }
+
+ if (!AddLocal(param, param_info)) {
+ FAIL(proxy, "Redeclared parameter.");
+ }
+ parameter_types.push_back(type);
+ }
+
+ if (annotated_parameters != fun->parameter_count()) {
+ FAIL(fun_decl, "Incorrect parameter type annotations.");
+ }
+
+ // 5.3 Function type annotations
+ // * locals
+ for (; current; current = iter.Next()) {
+ auto* initializer = ExtractInitializerExpression(current);
+ if (initializer == nullptr) {
+ // Done with locals.
+ break;
+ }
+
+ auto* local = initializer->target()->AsVariableProxy();
+ if (local == nullptr) {
+ // Done with locals. It should never happen. Even if it does, the asm.js
+ // code should not declare any other locals after this point, so we assume
+ // this is OK. If any other variable declaration is found we report a
+ // validation error.
+ DCHECK(false);
+ break;
+ }
+
+ AsmType* type;
+ RECURSE(type = VariableTypeAnnotations(initializer->value()));
+ auto* local_info = new (zone_) VariableInfo(type);
+ local_info->set_mutability(VariableInfo::kLocal);
+ if (!ValidAsmIdentifier(local->name())) {
+ FAIL(local, "Invalid asm.js identifier in local variable.");
+ }
+
+ if (!AddLocal(local->var(), local_info)) {
+ FAIL(initializer, "Redeclared local.");
+ }
+ }
+
+ // 5.2 Return Type Annotations
+ // *VIOLATION* we peel blocks to find the last statement in the asm module
+ // because the parser may introduce synthetic blocks.
+ ZoneList<Statement*>* statements = fun->body();
+
+ do {
+ if (statements->length() == 0) {
+ return_type_ = AsmType::Void();
+ } else {
+ auto* last_statement = statements->last();
+ auto* as_block = last_statement->AsBlock();
+ if (as_block != nullptr) {
+ statements = as_block->statements();
+ } else {
+ // We don't check whether AsReturnStatement() below returns non-null --
+ // we leave that to the ReturnTypeAnnotations method.
+ RECURSE(return_type_ =
+ ReturnTypeAnnotations(last_statement->AsReturnStatement()));
+ }
+ }
+ } while (return_type_ == AsmType::None());
+
+ DCHECK(return_type_->IsReturnType());
+
+ for (auto* decl : *fun->scope()->declarations()) {
+ auto* var_decl = decl->AsVariableDeclaration();
+ if (var_decl == nullptr) {
+ FAIL(decl, "Functions may only define inner variables.");
+ }
+
+ auto* var_proxy = var_decl->proxy();
+ if (var_proxy == nullptr) {
+ FAIL(decl, "Invalid local declaration declaration.");
+ }
+
+ auto* var_info = Lookup(var_proxy->var());
+ if (var_info == nullptr || var_info->IsGlobal()) {
+ FAIL(decl, "Local variable missing initializer in asm.js module.");
+ }
+ }
+
+ for (; current; current = iter.Next()) {
+ AsmType* current_type;
+ RECURSE(current_type = ValidateStatement(current));
+ }
+
+ auto* fun_type = AsmType::Function(zone_, return_type_);
+ auto* fun_type_as_function = fun_type->AsFunctionType();
+ for (auto* param_type : parameter_types) {
+ fun_type_as_function->AddArgument(param_type);
+ }
+
+ auto* fun_var = fun_decl_proxy->var();
+ auto* fun_info = new (zone_) VariableInfo(fun_type);
+ fun_info->set_mutability(VariableInfo::kImmutableGlobal);
+ auto* old_fun_type = Lookup(fun_var);
+ if (old_fun_type == nullptr) {
+ if (!ValidAsmIdentifier(fun_var->name())) {
+ FAIL(fun_decl_proxy, "Invalid asm.js identifier in function name.");
+ }
+ if (!AddGlobal(fun_var, fun_info)) {
+ DCHECK(false);
+ FAIL(fun_decl, "Redeclared global identifier.");
+ }
+ return fun_type;
+ }
+
+ // Not necessarily an error -- fun_decl might have been used before being
+ // defined. If that's the case, then the type in the global environment must
+ // be the same as the type inferred by the parameter/return type annotations.
+ auto* old_fun_callable = old_fun_type->type()->AsCallableType();
+ if (old_fun_callable == nullptr) {
+ FAIL(fun_decl, "Identifier redefined as function.");
+ }
+
+ if (!old_fun_type->missing_definition()) {
+ FAIL(fun_decl, "Identifier redefined (function name).");
+ }
+
+ if (old_fun_callable->ValidateCall(fun_type_as_function->ReturnType(),
+ fun_type_as_function->Arguments()) ==
+ AsmType::None()) {
+ FAIL(fun_decl, "Signature mismatch when defining function.");
+ }
+
+ old_fun_type->MarkDefined();
+ SetTypeOf(fun, fun_type);
+
+ return fun_type;
+}
+
+// 6.5 ValidateStatement
+AsmType* AsmTyper::ValidateStatement(Statement* statement) {
+ switch (statement->node_type()) {
+ default:
+ FAIL(statement, "Statement type invalid for asm.js.");
+ case AstNode::kBlock:
+ return ValidateBlockStatement(statement->AsBlock());
+ case AstNode::kExpressionStatement:
+ return ValidateExpressionStatement(statement->AsExpressionStatement());
+ case AstNode::kEmptyStatement:
+ return ValidateEmptyStatement(statement->AsEmptyStatement());
+ case AstNode::kIfStatement:
+ return ValidateIfStatement(statement->AsIfStatement());
+ case AstNode::kReturnStatement:
+ return ValidateReturnStatement(statement->AsReturnStatement());
+ case AstNode::kWhileStatement:
+ return ValidateWhileStatement(statement->AsWhileStatement());
+ case AstNode::kDoWhileStatement:
+ return ValidateDoWhileStatement(statement->AsDoWhileStatement());
+ case AstNode::kForStatement:
+ return ValidateForStatement(statement->AsForStatement());
+ case AstNode::kBreakStatement:
+ return ValidateBreakStatement(statement->AsBreakStatement());
+ case AstNode::kContinueStatement:
+ return ValidateContinueStatement(statement->AsContinueStatement());
+ case AstNode::kSwitchStatement:
+ return ValidateSwitchStatement(statement->AsSwitchStatement());
+ }
+
+ return AsmType::Void();
+}
+
+// 6.5.1 BlockStatement
+AsmType* AsmTyper::ValidateBlockStatement(Block* block) {
+ FlattenedStatements iter(zone_, block->statements());
+
+ while (auto* current = iter.Next()) {
+ RECURSE(ValidateStatement(current));
+ }
+
+ return AsmType::Void();
+}
+
+// 6.5.2 ExpressionStatement
+AsmType* AsmTyper::ValidateExpressionStatement(ExpressionStatement* expr) {
+ auto* expression = expr->expression();
+ if (auto* call = expression->AsCall()) {
+ RECURSE(ValidateCall(AsmType::Void(), call));
+ } else {
+ RECURSE(ValidateExpression(expression));
+ }
+
+ return AsmType::Void();
+}
+
+// 6.5.3 EmptyStatement
+AsmType* AsmTyper::ValidateEmptyStatement(EmptyStatement* empty) {
+ return AsmType::Void();
+}
+
+// 6.5.4 IfStatement
+AsmType* AsmTyper::ValidateIfStatement(IfStatement* if_stmt) {
+ AsmType* cond_type;
+ RECURSE(cond_type = ValidateExpression(if_stmt->condition()));
+ if (!cond_type->IsA(AsmType::Int())) {
+ FAIL(if_stmt->condition(), "If condition must be type int.");
+ }
+ RECURSE(ValidateStatement(if_stmt->then_statement()));
+ RECURSE(ValidateStatement(if_stmt->else_statement()));
+ return AsmType::Void();
+}
+
+// 6.5.5 ReturnStatement
+AsmType* AsmTyper::ValidateReturnStatement(ReturnStatement* ret_stmt) {
+ AsmType* ret_expr_type = AsmType::Void();
+ if (auto* ret_expr = ret_stmt->expression()) {
+ RECURSE(ret_expr_type = ValidateExpression(ret_expr));
+ if (ret_expr_type == AsmType::Void()) {
+ // *VIOLATION* The parser modifies the source code so that expressionless
+ // returns will return undefined, so we need to allow that.
+ if (!ret_expr->IsUndefinedLiteral()) {
+ FAIL(ret_stmt, "Return statement expression can't be void.");
+ }
+ }
+ }
+
+ if (!ret_expr_type->IsA(return_type_)) {
+ FAIL(ret_stmt, "Type mismatch in return statement.");
+ }
+
+ return ret_expr_type;
+}
+
+// 6.5.6 IterationStatement
+// 6.5.6.a WhileStatement
+AsmType* AsmTyper::ValidateWhileStatement(WhileStatement* while_stmt) {
+ AsmType* cond_type;
+ RECURSE(cond_type = ValidateExpression(while_stmt->cond()));
+ if (!cond_type->IsA(AsmType::Int())) {
+ FAIL(while_stmt->cond(), "While condition must be type int.");
+ }
+
+ if (auto* body = while_stmt->body()) {
+ RECURSE(ValidateStatement(body));
+ }
+ return AsmType::Void();
+}
+
+// 6.5.6.b DoWhileStatement
+AsmType* AsmTyper::ValidateDoWhileStatement(DoWhileStatement* do_while) {
+ AsmType* cond_type;
+ RECURSE(cond_type = ValidateExpression(do_while->cond()));
+ if (!cond_type->IsA(AsmType::Int())) {
+ FAIL(do_while->cond(), "Do {} While condition must be type int.");
+ }
+
+ if (auto* body = do_while->body()) {
+ RECURSE(ValidateStatement(body));
+ }
+ return AsmType::Void();
+}
+
+// 6.5.6.c ForStatement
+AsmType* AsmTyper::ValidateForStatement(ForStatement* for_stmt) {
+ if (auto* init = for_stmt->init()) {
+ RECURSE(ValidateStatement(init));
+ }
+
+ if (auto* cond = for_stmt->cond()) {
+ AsmType* cond_type;
+ RECURSE(cond_type = ValidateExpression(cond));
+ if (!cond_type->IsA(AsmType::Int())) {
+ FAIL(cond, "For condition must be type int.");
+ }
+ }
+
+ if (auto* next = for_stmt->next()) {
+ RECURSE(ValidateStatement(next));
+ }
+
+ if (auto* body = for_stmt->body()) {
+ RECURSE(ValidateStatement(body));
+ }
+
+ return AsmType::Void();
+}
+
+// 6.5.7 BreakStatement
+AsmType* AsmTyper::ValidateBreakStatement(BreakStatement* brk_stmt) {
+ return AsmType::Void();
+}
+
+// 6.5.8 ContinueStatement
+AsmType* AsmTyper::ValidateContinueStatement(ContinueStatement* cont_stmt) {
+ return AsmType::Void();
+}
+
+// 6.5.9 LabelledStatement
+// No need to handle these here -- see the AsmTyper's definition.
+
+// 6.5.10 SwitchStatement
+AsmType* AsmTyper::ValidateSwitchStatement(SwitchStatement* stmt) {
+ AsmType* cond_type;
+ RECURSE(cond_type = ValidateExpression(stmt->tag()));
+ if (!cond_type->IsA(AsmType::Signed())) {
+ FAIL(stmt, "Switch tag must be signed.");
+ }
+
+ bool has_default = false;
+
+ ZoneSet<int32_t> cases_seen(zone_);
+ for (auto* a_case : *stmt->cases()) {
+ if (a_case->is_default()) {
+ CHECK(!has_default);
+ RECURSE(ValidateDefault(a_case));
+ has_default = true;
+ }
+
+ int32_t case_lbl;
+ RECURSE(ValidateCase(a_case, &case_lbl));
+ auto case_lbl_pos = cases_seen.find(case_lbl);
+ if (case_lbl_pos != cases_seen.end() && *case_lbl_pos == case_lbl) {
+ FAIL(a_case, "Duplicated case label.");
+ }
+ cases_seen.insert(case_lbl);
+ }
+
+ if (!cases_seen.empty()) {
+ const int64_t max_lbl = *cases_seen.rbegin();
+ const int64_t min_lbl = *cases_seen.begin();
+ if (max_lbl - min_lbl > std::numeric_limits<int32_t>::max()) {
+ FAIL(stmt, "Out-of-bounds case label range.");
+ }
+ }
+
+ return AsmType::Void();
+}
+
+// 6.6 ValidateCase
+namespace {
+bool ExtractInt32CaseLabel(CaseClause* clause, int32_t* lbl) {
+ auto* lbl_expr = clause->label()->AsLiteral();
+
+ if (lbl_expr == nullptr) {
+ return false;
+ }
+
+ if (lbl_expr->raw_value()->ContainsDot()) {
+ return false;
+ }
+
+ return lbl_expr->value()->ToInt32(lbl);
+}
+} // namespace
+
+AsmType* AsmTyper::ValidateCase(CaseClause* label, int32_t* case_lbl) {
+ if (!ExtractInt32CaseLabel(label, case_lbl)) {
+ FAIL(label, "Case label must be a 32-bit signed integer.");
+ }
+
+ FlattenedStatements iter(zone_, label->statements());
+ while (auto* current = iter.Next()) {
+ RECURSE(ValidateStatement(current));
+ }
+ return AsmType::Void();
+}
+
+// 6.7 ValidateDefault
+AsmType* AsmTyper::ValidateDefault(CaseClause* label) {
+ FlattenedStatements iter(zone_, label->statements());
+ while (auto* current = iter.Next()) {
+ RECURSE(ValidateStatement(current));
+ }
+ return AsmType::Void();
+}
+
+// 6.8 ValidateExpression
+AsmType* AsmTyper::ValidateExpression(Expression* expr) {
+ AsmType* expr_ty = AsmType::None();
+
+ switch (expr->node_type()) {
+ default:
+ FAIL(expr, "Invalid asm.js expression.");
+ case AstNode::kLiteral:
+ RECURSE(expr_ty = ValidateNumericLiteral(expr->AsLiteral()));
+ break;
+ case AstNode::kVariableProxy:
+ RECURSE(expr_ty = ValidateIdentifier(expr->AsVariableProxy()));
+ break;
+ case AstNode::kCall:
+ RECURSE(expr_ty = ValidateCallExpression(expr->AsCall()));
+ break;
+ case AstNode::kProperty:
+ RECURSE(expr_ty = ValidateMemberExpression(expr->AsProperty()));
+ break;
+ case AstNode::kAssignment:
+ RECURSE(expr_ty = ValidateAssignmentExpression(expr->AsAssignment()));
+ break;
+ case AstNode::kUnaryOperation:
+ RECURSE(expr_ty = ValidateUnaryExpression(expr->AsUnaryOperation()));
+ break;
+ case AstNode::kConditional:
+ RECURSE(expr_ty = ValidateConditionalExpression(expr->AsConditional()));
+ break;
+ case AstNode::kCompareOperation:
+ RECURSE(expr_ty = ValidateCompareOperation(expr->AsCompareOperation()));
+ break;
+ case AstNode::kBinaryOperation:
+ RECURSE(expr_ty = ValidateBinaryOperation(expr->AsBinaryOperation()));
+ break;
+ }
+
+ SetTypeOf(expr, expr_ty);
+ return expr_ty;
+}
+
+AsmType* AsmTyper::ValidateCompareOperation(CompareOperation* cmp) {
+ switch (cmp->op()) {
+ default:
+ FAIL(cmp, "Invalid asm.js comparison operator.");
+ case Token::LT:
+ case Token::LTE:
+ case Token::GT:
+ case Token::GTE:
+ return ValidateRelationalExpression(cmp);
+ case Token::EQ:
+ case Token::NE:
+ return ValidateEqualityExpression(cmp);
+ }
+
+ UNREACHABLE();
+}
+
+namespace {
+bool IsNegate(BinaryOperation* binop) {
+ if (binop->op() != Token::BIT_XOR) {
+ return false;
+ }
+
+ auto* right_as_literal = binop->right()->AsLiteral();
+ if (right_as_literal == nullptr) {
+ return false;
+ }
+
+ return !right_as_literal->raw_value()->ContainsDot() &&
+ right_as_literal->raw_value()->AsNumber() == -1.0;
+}
+
+bool IsUnaryMinus(BinaryOperation* binop) {
+ // *VIOLATION* The parser replaces uses of +x with x*1.0.
+ if (binop->op() != Token::MUL) {
+ return false;
+ }
+
+ auto* right_as_literal = binop->right()->AsLiteral();
+ if (right_as_literal == nullptr) {
+ return false;
+ }
+
+ return right_as_literal->raw_value()->ContainsDot() &&
+ right_as_literal->raw_value()->AsNumber() == -1.0;
+}
+} // namespace
+
+AsmType* AsmTyper::ValidateBinaryOperation(BinaryOperation* expr) {
+#define UNOP_OVERLOAD(Src, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+
+ switch (expr->op()) {
+ default:
+ FAIL(expr, "Invalid asm.js binary expression.");
+ case Token::COMMA:
+ return ValidateCommaExpression(expr);
+ case Token::MUL:
+ if (IsDoubleAnnotation(expr)) {
+ // *VIOLATION* We can't be 100% sure this really IS a unary + in the asm
+ // source so we have to be lenient, and treat this as a unary +.
+ if (auto* Call = expr->left()->AsCall()) {
+ return ValidateCall(AsmType::Double(), Call);
+ }
+ AsmType* left_type;
+ RECURSE(left_type = ValidateExpression(expr->left()));
+ UNOP_OVERLOAD(Signed, Double);
+ UNOP_OVERLOAD(Unsigned, Double);
+ UNOP_OVERLOAD(DoubleQ, Double);
+ UNOP_OVERLOAD(FloatQ, Double);
+ FAIL(expr, "Invalid type for conversion to double.");
+ }
+
+ if (IsUnaryMinus(expr)) {
+ // *VIOLATION* the parser converts -x to x * -1.0.
+ AsmType* left_type;
+ RECURSE(left_type = ValidateExpression(expr->left()));
+ UNOP_OVERLOAD(Int, Intish);
+ UNOP_OVERLOAD(DoubleQ, Double);
+ UNOP_OVERLOAD(FloatQ, Floatish);
+ FAIL(expr, "Invalid type for unary -.");
+ }
+ // FALTHROUGH
+ case Token::DIV:
+ case Token::MOD:
+ return ValidateMultiplicativeExpression(expr);
+ case Token::ADD:
+ case Token::SUB: {
+ static const uint32_t kInitialIntishCount = 0;
+ return ValidateAdditiveExpression(expr, kInitialIntishCount);
+ }
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ return ValidateShiftExpression(expr);
+ case Token::BIT_AND:
+ return ValidateBitwiseANDExpression(expr);
+ case Token::BIT_XOR:
+ if (IsNegate(expr)) {
+ auto* left = expr->left();
+ auto* left_as_binop = left->AsBinaryOperation();
+
+ if (left_as_binop != nullptr && IsNegate(left_as_binop)) {
+ // This is the special ~~ operator.
+ AsmType* left_type;
+ RECURSE(left_type = ValidateExpression(left_as_binop->left()));
+ UNOP_OVERLOAD(Double, Signed);
+ UNOP_OVERLOAD(FloatQ, Signed);
+ FAIL(left_as_binop, "Invalid type for conversion to signed.");
+ }
+
+ AsmType* left_type;
+ RECURSE(left_type = ValidateExpression(left));
+ UNOP_OVERLOAD(Intish, Signed);
+ FAIL(left, "Invalid type for ~.");
+ }
+
+ return ValidateBitwiseXORExpression(expr);
+ case Token::BIT_OR:
+ return ValidateBitwiseORExpression(expr);
+ }
+#undef UNOP_OVERLOAD
+ UNREACHABLE();
+}
+
+// 6.8.1 Expression
+AsmType* AsmTyper::ValidateCommaExpression(BinaryOperation* comma) {
+ // The AST looks like:
+ // (expr COMMA (expr COMMA (expr COMMA (... ))))
+
+ auto* left = comma->left();
+ auto* left_as_binop = left->AsBinaryOperation();
+ if (left_as_binop && left_as_binop->op() == Token::COMMA) {
+ ValidateCommaExpression(left_as_binop);
+ } else if (auto* left_as_call = left->AsCall()) {
+ ValidateCall(AsmType::Void(), left_as_call);
+ } else {
+ ValidateExpression(left);
+ }
+
+ auto* right = comma->right();
+ auto* right_as_binop = right->AsBinaryOperation();
+ if (right_as_binop && right_as_binop->op() == Token::COMMA) {
+ return ValidateCommaExpression(right_as_binop);
+ } else {
+ return ValidateExpression(right);
+ }
+
+ UNREACHABLE();
+}
+
+// 6.8.2 NumericLiteral
+AsmType* AsmTyper::ValidateNumericLiteral(Literal* literal) {
+ // *VIOLATION* asm.js does not allow the use of undefined, but our parser
+ // inserts them, so we have to handle them.
+ if (literal->IsUndefinedLiteral()) {
+ return AsmType::Void();
+ }
+
+ if (literal->raw_value()->ContainsDot()) {
+ return AsmType::Double();
+ }
+
+ uint32_t value;
+ if (!literal->value()->ToUint32(&value)) {
+ int32_t value;
+ if (!literal->value()->ToInt32(&value)) {
+ FAIL(literal, "Integer literal is out of range.");
+ }
+ // *VIOLATION* Not really a violation, but rather a different in the
+ // validation. The spec handles -NumericLiteral in ValidateUnaryExpression,
+ // but V8's AST represents the negative literals as Literals.
+ return AsmType::Signed();
+ }
+
+ static const uint32_t LargestFixNum = std::numeric_limits<int32_t>::max();
+ if (value <= LargestFixNum) {
+ return AsmType::FixNum();
+ }
+
+ return AsmType::Unsigned();
+}
+
+// 6.8.3 Identifier
+AsmType* AsmTyper::ValidateIdentifier(VariableProxy* proxy) {
+ auto* proxy_info = Lookup(proxy->var());
+ if (proxy_info == nullptr) {
+ FAIL(proxy, "Undeclared identifier.");
+ }
+ if (proxy_info->type()->AsCallableType() != nullptr) {
+ FAIL(proxy, "Identifier may not be accessed by ordinary expressions.");
+ }
+ DCHECK(!proxy_info->type()->IsA(AsmType::None()));
+ return proxy_info->type();
+}
+
+// 6.8.4 CallExpression
+AsmType* AsmTyper::ValidateCallExpression(Call* call) {
+ AsmType* return_type;
+ RECURSE(return_type = ValidateFloatCoercion(call));
+ if (return_type == nullptr) {
+ FAIL(call, "Unanotated call to a function must be a call to fround.");
+ }
+ return return_type;
+}
+
+// 6.8.5 MemberExpression
+AsmType* AsmTyper::ValidateMemberExpression(Property* prop) {
+ AsmType* return_type;
+ RECURSE(return_type = ValidateHeapAccess(prop, LoadFromHeap));
+ return return_type;
+}
+
+// 6.8.6 AssignmentExpression
+AsmType* AsmTyper::ValidateAssignmentExpression(Assignment* assignment) {
+ AsmType* value_type;
+ RECURSE(value_type = ValidateExpression(assignment->value()));
+
+ if (assignment->op() == Token::INIT) {
+ FAIL(assignment,
+ "Local variable declaration must be at the top of the function.");
+ }
+
+ if (auto* target_as_proxy = assignment->target()->AsVariableProxy()) {
+ auto* var = target_as_proxy->var();
+ auto* target_info = Lookup(var);
+
+ if (target_info == nullptr) {
+ if (var->mode() != TEMPORARY) {
+ FAIL(target_as_proxy, "Undeclared identifier.");
+ }
+ // Temporary variables are special: we add them to the local symbol table
+ // as we see them, with the exact type of the variable's initializer. This
+ // means that temporary variables might have nonsensical types (i.e.,
+ // intish, float?, fixnum, and not just the "canonical" types.)
+ auto* var_info = new (zone_) VariableInfo(value_type);
+ var_info->set_mutability(VariableInfo::kLocal);
+ if (!ValidAsmIdentifier(target_as_proxy->name())) {
+ FAIL(target_as_proxy,
+ "Invalid asm.js identifier in temporary variable.");
+ }
+
+ if (!AddLocal(var, var_info)) {
+ FAIL(assignment, "Failed to add temporary variable to symbol table.");
+ }
+ return value_type;
+ }
+
+ DCHECK(target_info->type() != AsmType::None());
+ if (!value_type->IsA(target_info->type())) {
+ FAIL(assignment, "Type mismatch in assignment.");
+ }
+
+ return value_type;
+ }
+
+ if (auto* target_as_property = assignment->target()->AsProperty()) {
+ AsmType* allowed_store_types;
+ RECURSE(allowed_store_types =
+ ValidateHeapAccess(target_as_property, StoreToHeap));
+
+ // TODO(jpp): Change FloatishDoubleQ and FloatQDoubleQ so that they are base
+ // classes for Floatish, DoubleQ, and FloatQ, and then invert this if so
+ // that it reads more naturally as
+ //
+ // if (!value_type->IsA(allowed_store_types))
+ if (allowed_store_types == AsmType::FloatishDoubleQ() ||
+ allowed_store_types == AsmType::FloatQDoubleQ()) {
+ if (!allowed_store_types->IsA(value_type)) {
+ FAIL(assignment, "Type mismatch in heap assignment.");
+ }
+ } else {
+ if (!value_type->IsA(allowed_store_types)) {
+ FAIL(assignment, "Type mismatch in heap assignment.");
+ }
+ }
+
+ return value_type;
+ }
+
+ FAIL(assignment, "Invalid asm.js assignment.");
+}
+
+// 6.8.7 UnaryExpression
+AsmType* AsmTyper::ValidateUnaryExpression(UnaryOperation* unop) {
+ // *VIOLATION* -NumericLiteral is validated in ValidateLiteral.
+ // *VIOLATION* +UnaryExpression is validated in ValidateBinaryOperation.
+ // *VIOLATION* ~UnaryOperation is validated in ValidateBinaryOperation.
+ // *VIOLATION* ~~UnaryOperation is validated in ValidateBinaryOperation.
+ DCHECK(unop->op() != Token::BIT_NOT);
+ DCHECK(unop->op() != Token::ADD);
+ AsmType* exp_type;
+ RECURSE(exp_type = ValidateExpression(unop->expression()));
+#define UNOP_OVERLOAD(Src, Dest) \
+ do { \
+ if (exp_type->IsA(AsmType::Src())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+
+ // 8.1 Unary Operators
+ switch (unop->op()) {
+ default:
+ FAIL(unop, "Invalid unary operator.");
+ case Token::ADD:
+ // We can't test this because of the +x -> x * 1.0 transformation.
+ DCHECK(false);
+ UNOP_OVERLOAD(Signed, Double);
+ UNOP_OVERLOAD(Unsigned, Double);
+ UNOP_OVERLOAD(DoubleQ, Double);
+ UNOP_OVERLOAD(FloatQ, Double);
+ FAIL(unop, "Invalid type for unary +.");
+ case Token::SUB:
+ // We can't test this because of the -x -> x * -1.0 transformation.
+ DCHECK(false);
+ UNOP_OVERLOAD(Int, Intish);
+ UNOP_OVERLOAD(DoubleQ, Double);
+ UNOP_OVERLOAD(FloatQ, Floatish);
+ FAIL(unop, "Invalid type for unary -.");
+ case Token::BIT_NOT:
+ // We can't test this because of the ~x -> x ^ -1 transformation.
+ DCHECK(false);
+ UNOP_OVERLOAD(Intish, Signed);
+ FAIL(unop, "Invalid type for ~.");
+ case Token::NOT:
+ UNOP_OVERLOAD(Int, Int);
+ FAIL(unop, "Invalid type for !.");
+ }
+
+#undef UNOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.8 MultiplicativeExpression
+namespace {
+bool IsIntishLiteralFactor(Expression* expr, int32_t* factor) {
+ auto* literal = expr->AsLiteral();
+ if (literal == nullptr) {
+ return false;
+ }
+
+ if (literal->raw_value()->ContainsDot()) {
+ return false;
+ }
+
+ if (!literal->value()->ToInt32(factor)) {
+ return false;
+ }
+ static const int32_t kIntishBound = 1 << 20;
+ return -kIntishBound < *factor && *factor < kIntishBound;
+}
+} // namespace
+
+AsmType* AsmTyper::ValidateMultiplicativeExpression(BinaryOperation* binop) {
+ DCHECK(!IsDoubleAnnotation(binop));
+
+ auto* left = binop->left();
+ auto* right = binop->right();
+
+ bool intish_mul_failed = false;
+ if (binop->op() == Token::MUL) {
+ int32_t factor;
+ if (IsIntishLiteralFactor(left, &factor)) {
+ AsmType* right_type;
+ RECURSE(right_type = ValidateExpression(right));
+ if (right_type->IsA(AsmType::Int())) {
+ return AsmType::Intish();
+ }
+ // Can't fail here, because the rhs might contain a valid intish factor.
+ //
+ // The solution is to flag that there was an error, and later on -- when
+ // both lhs and rhs are evaluated -- complain.
+ intish_mul_failed = true;
+ }
+
+ if (IsIntishLiteralFactor(right, &factor)) {
+ AsmType* left_type;
+ RECURSE(left_type = ValidateExpression(left));
+ if (left_type->IsA(AsmType::Int())) {
+ // *VIOLATION* This will also (and correctly) handle -X, when X is an
+ // integer. Therefore, we don't need to handle this case within the if
+ // block below.
+ return AsmType::Intish();
+ }
+ intish_mul_failed = true;
+
+ if (factor == -1) {
+ // *VIOLATION* The frontend transforms -x into x * -1 (not -1.0, because
+ // consistency is overrated.)
+ if (left_type->IsA(AsmType::DoubleQ())) {
+ return AsmType::Double();
+ } else if (left_type->IsA(AsmType::FloatQ())) {
+ return AsmType::Floatish();
+ }
+ }
+ }
+ }
+
+ if (intish_mul_failed) {
+ FAIL(binop, "Invalid types for intish * (or unary -).");
+ }
+
+ AsmType* left_type;
+ AsmType* right_type;
+ RECURSE(left_type = ValidateExpression(left));
+ RECURSE(right_type = ValidateExpression(right));
+
+#define BINOP_OVERLOAD(Src0, Src1, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+ switch (binop->op()) {
+ default:
+ FAIL(binop, "Invalid multiplicative expression.");
+ case Token::MUL:
+ BINOP_OVERLOAD(DoubleQ, DoubleQ, Double);
+ BINOP_OVERLOAD(FloatQ, FloatQ, Floatish);
+ FAIL(binop, "Invalid operands for *.");
+ case Token::DIV:
+ BINOP_OVERLOAD(Signed, Signed, Intish);
+ BINOP_OVERLOAD(Unsigned, Unsigned, Intish);
+ BINOP_OVERLOAD(DoubleQ, DoubleQ, Double);
+ BINOP_OVERLOAD(FloatQ, FloatQ, Floatish);
+ FAIL(binop, "Invalid operands for /.");
+ case Token::MOD:
+ BINOP_OVERLOAD(Signed, Signed, Intish);
+ BINOP_OVERLOAD(Unsigned, Unsigned, Intish);
+ BINOP_OVERLOAD(DoubleQ, DoubleQ, Double);
+ FAIL(binop, "Invalid operands for %.");
+ }
+#undef BINOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.9 AdditiveExpression
+AsmType* AsmTyper::ValidateAdditiveExpression(BinaryOperation* binop,
+ uint32_t intish_count) {
+ static const uint32_t kMaxIntish = 1 << 20;
+
+ auto* left = binop->left();
+ auto* left_as_binop = left->AsBinaryOperation();
+ AsmType* left_type;
+
+ // TODO(jpp): maybe use an iterative approach instead of the recursion to
+ // ValidateAdditiveExpression.
+ if (left_as_binop != nullptr && (left_as_binop->op() == Token::ADD ||
+ left_as_binop->op() == Token::SUB)) {
+ RECURSE(left_type =
+ ValidateAdditiveExpression(left_as_binop, intish_count + 1));
+ } else {
+ RECURSE(left_type = ValidateExpression(left));
+ }
+
+ auto* right = binop->right();
+ auto* right_as_binop = right->AsBinaryOperation();
+ AsmType* right_type;
+
+ if (right_as_binop != nullptr && (right_as_binop->op() == Token::ADD ||
+ right_as_binop->op() == Token::SUB)) {
+ RECURSE(right_type =
+ ValidateAdditiveExpression(right_as_binop, intish_count + 1));
+ } else {
+ RECURSE(right_type = ValidateExpression(right));
+ }
+
+ if (left_type->IsA(AsmType::FloatQ()) && right_type->IsA(AsmType::FloatQ())) {
+ return AsmType::Floatish();
+ }
+
+ if (left_type->IsA(AsmType::Int()) && right_type->IsA(AsmType::Int())) {
+ if (intish_count == 0) {
+ return AsmType::Intish();
+ }
+ if (intish_count < kMaxIntish) {
+ return AsmType::Int();
+ }
+ FAIL(binop, "Too many uncoerced integer additive expressions.");
+ }
+
+ if (left_type->IsA(AsmType::Double()) && right_type->IsA(AsmType::Double())) {
+ return AsmType::Double();
+ }
+
+ if (binop->op() == Token::SUB) {
+ if (left_type->IsA(AsmType::DoubleQ()) &&
+ right_type->IsA(AsmType::DoubleQ())) {
+ return AsmType::Double();
+ }
+ }
+
+ FAIL(binop, "Invalid operands for additive expression.");
+}
+
+// 6.8.10 ShiftExpression
+AsmType* AsmTyper::ValidateShiftExpression(BinaryOperation* binop) {
+ auto* left = binop->left();
+ auto* right = binop->right();
+
+ AsmType* left_type;
+ AsmType* right_type;
+ RECURSE(left_type = ValidateExpression(left));
+ RECURSE(right_type = ValidateExpression(right));
+
+#define BINOP_OVERLOAD(Src0, Src1, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+ switch (binop->op()) {
+ default:
+ FAIL(binop, "Invalid shift expression.");
+ case Token::SHL:
+ BINOP_OVERLOAD(Intish, Intish, Signed);
+ FAIL(binop, "Invalid operands for <<.");
+ case Token::SAR:
+ BINOP_OVERLOAD(Intish, Intish, Signed);
+ FAIL(binop, "Invalid operands for >>.");
+ case Token::SHR:
+ BINOP_OVERLOAD(Intish, Intish, Unsigned);
+ FAIL(binop, "Invalid operands for >>>.");
+ }
+#undef BINOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.11 RelationalExpression
+AsmType* AsmTyper::ValidateRelationalExpression(CompareOperation* cmpop) {
+ auto* left = cmpop->left();
+ auto* right = cmpop->right();
+
+ AsmType* left_type;
+ AsmType* right_type;
+ RECURSE(left_type = ValidateExpression(left));
+ RECURSE(right_type = ValidateExpression(right));
+
+#define CMPOP_OVERLOAD(Src0, Src1, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+ switch (cmpop->op()) {
+ default:
+ FAIL(cmpop, "Invalid relational expression.");
+ case Token::LT:
+ CMPOP_OVERLOAD(Signed, Signed, Int);
+ CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
+ CMPOP_OVERLOAD(Float, Float, Int);
+ CMPOP_OVERLOAD(Double, Double, Int);
+ FAIL(cmpop, "Invalid operands for <.");
+ case Token::GT:
+ CMPOP_OVERLOAD(Signed, Signed, Int);
+ CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
+ CMPOP_OVERLOAD(Float, Float, Int);
+ CMPOP_OVERLOAD(Double, Double, Int);
+ FAIL(cmpop, "Invalid operands for >.");
+ case Token::LTE:
+ CMPOP_OVERLOAD(Signed, Signed, Int);
+ CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
+ CMPOP_OVERLOAD(Float, Float, Int);
+ CMPOP_OVERLOAD(Double, Double, Int);
+ FAIL(cmpop, "Invalid operands for <=.");
+ case Token::GTE:
+ CMPOP_OVERLOAD(Signed, Signed, Int);
+ CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
+ CMPOP_OVERLOAD(Float, Float, Int);
+ CMPOP_OVERLOAD(Double, Double, Int);
+ FAIL(cmpop, "Invalid operands for >=.");
+ }
+#undef CMPOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.12 EqualityExpression
+AsmType* AsmTyper::ValidateEqualityExpression(CompareOperation* cmpop) {
+ auto* left = cmpop->left();
+ auto* right = cmpop->right();
+
+ AsmType* left_type;
+ AsmType* right_type;
+ RECURSE(left_type = ValidateExpression(left));
+ RECURSE(right_type = ValidateExpression(right));
+
+#define CMPOP_OVERLOAD(Src0, Src1, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+ switch (cmpop->op()) {
+ default:
+ FAIL(cmpop, "Invalid equality expression.");
+ case Token::EQ:
+ CMPOP_OVERLOAD(Signed, Signed, Int);
+ CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
+ CMPOP_OVERLOAD(Float, Float, Int);
+ CMPOP_OVERLOAD(Double, Double, Int);
+ FAIL(cmpop, "Invalid operands for ==.");
+ case Token::NE:
+ CMPOP_OVERLOAD(Signed, Signed, Int);
+ CMPOP_OVERLOAD(Unsigned, Unsigned, Int);
+ CMPOP_OVERLOAD(Float, Float, Int);
+ CMPOP_OVERLOAD(Double, Double, Int);
+ FAIL(cmpop, "Invalid operands for !=.");
+ }
+#undef CMPOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.13 BitwiseANDExpression
+AsmType* AsmTyper::ValidateBitwiseANDExpression(BinaryOperation* binop) {
+ auto* left = binop->left();
+ auto* right = binop->right();
+
+ AsmType* left_type;
+ AsmType* right_type;
+ RECURSE(left_type = ValidateExpression(left));
+ RECURSE(right_type = ValidateExpression(right));
+
+ if (binop->op() != Token::BIT_AND) {
+ FAIL(binop, "Invalid & expression.");
+ }
+
+#define BINOP_OVERLOAD(Src0, Src1, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+ BINOP_OVERLOAD(Intish, Intish, Signed);
+ FAIL(binop, "Invalid operands for &.");
+#undef BINOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.14 BitwiseXORExpression
+AsmType* AsmTyper::ValidateBitwiseXORExpression(BinaryOperation* binop) {
+ auto* left = binop->left();
+ auto* right = binop->right();
+
+ AsmType* left_type;
+ AsmType* right_type;
+ RECURSE(left_type = ValidateExpression(left));
+ RECURSE(right_type = ValidateExpression(right));
+
+ if (binop->op() != Token::BIT_XOR) {
+ FAIL(binop, "Invalid ^ expression.");
+ }
+
+#define BINOP_OVERLOAD(Src0, Src1, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+ BINOP_OVERLOAD(Intish, Intish, Signed);
+ FAIL(binop, "Invalid operands for ^.");
+#undef BINOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.15 BitwiseORExpression
+AsmType* AsmTyper::ValidateBitwiseORExpression(BinaryOperation* binop) {
+ auto* left = binop->left();
+ if (IsIntAnnotation(binop)) {
+ if (auto* left_as_call = left->AsCall()) {
+ AsmType* type;
+ RECURSE(type = ValidateCall(AsmType::Signed(), left_as_call));
+ return type;
+ }
+
+ // TODO(jpp): at this point we know that binop is expr|0. We could sinply
+ //
+ // RECURSE(t = ValidateExpression(left));
+ // FAIL_IF(t->IsNotA(Intish));
+ // return Signed;
+ }
+
+ auto* right = binop->right();
+ AsmType* left_type;
+ AsmType* right_type;
+ RECURSE(left_type = ValidateExpression(left));
+ RECURSE(right_type = ValidateExpression(right));
+
+ if (binop->op() != Token::BIT_OR) {
+ FAIL(binop, "Invalid | expression.");
+ }
+
+#define BINOP_OVERLOAD(Src0, Src1, Dest) \
+ do { \
+ if (left_type->IsA(AsmType::Src0()) && right_type->IsA(AsmType::Src1())) { \
+ return AsmType::Dest(); \
+ } \
+ } while (0)
+ BINOP_OVERLOAD(Intish, Intish, Signed);
+ FAIL(binop, "Invalid operands for |.");
+#undef BINOP_OVERLOAD
+
+ UNREACHABLE();
+}
+
+// 6.8.16 ConditionalExpression
+AsmType* AsmTyper::ValidateConditionalExpression(Conditional* cond) {
+ AsmType* cond_type;
+ RECURSE(cond_type = ValidateExpression(cond->condition()));
+ if (!cond_type->IsA(AsmType::Int())) {
+ FAIL(cond, "Ternary operation condition should be int.");
+ }
+
+ AsmType* then_type;
+ RECURSE(then_type = ValidateExpression(cond->then_expression()));
+ AsmType* else_type;
+ RECURSE(else_type = ValidateExpression(cond->else_expression()));
+
+#define SUCCEED_IF_BOTH_ARE(type) \
+ do { \
+ if (then_type->IsA(AsmType::type())) { \
+ if (!else_type->IsA(AsmType::type())) { \
+ FAIL(cond, "Type mismatch for ternary operation result type."); \
+ } \
+ return AsmType::type(); \
+ } \
+ } while (0)
+ SUCCEED_IF_BOTH_ARE(Int);
+ SUCCEED_IF_BOTH_ARE(Float);
+ SUCCEED_IF_BOTH_ARE(Double);
+#undef SUCCEED_IF_BOTH_ARE
+
+ FAIL(cond, "Ternary operator must return int, float, or double.");
+}
+
+// 6.9 ValidateCall
+namespace {
+bool ExtractIndirectCallMask(Expression* expr, uint32_t* value) {
+ auto* as_literal = expr->AsLiteral();
+ if (as_literal == nullptr) {
+ return false;
+ }
+
+ if (as_literal->raw_value()->ContainsDot()) {
+ return false;
+ }
+
+ if (!as_literal->value()->ToUint32(value)) {
+ return false;
+ }
+
+ return base::bits::IsPowerOfTwo32(1 + *value);
+}
+
+// TODO(jpp): Add a AsmType::ValidateCall is poorly designed. It can only handle
+// function declarations, not invocations. CheckInvocationOf temporarily works
+// around this limitation by converting each actual in actuals to a parameter
+// type before invoking prototype->ValidateCall. This is the wrong behavior for
+// FFIs (we need to pass Signed integers to FFIs, not Ints), so that case is
+// handled separately.
+bool CheckInvocationOf(AsmCallableType* prototype, AsmType* return_type,
+ ZoneVector<AsmType*>* actuals) {
+ if (auto* ffi = prototype->AsFFIType()) {
+ return ffi->ValidateCall(return_type, *actuals) != AsmType::None();
+ }
+
+ for (size_t ii = 0; ii < actuals->size(); ++ii) {
+ (*actuals)[ii] = (*actuals)[ii]->ToParameterType();
+ }
+ return prototype->ValidateCall(return_type, *actuals) != AsmType::None();
+}
+
+} // namespace
+
+AsmType* AsmTyper::ValidateCall(AsmType* return_type, Call* call) {
+ AsmType* float_coercion_type;
+ RECURSE(float_coercion_type = ValidateFloatCoercion(call));
+ if (float_coercion_type == AsmType::Float()) {
+ return AsmType::Float();
+ }
+
+ // TODO(jpp): we should be able to reuse the args vector's storage space.
+ ZoneVector<AsmType*> args(zone_);
+ args.reserve(call->arguments()->length());
+
+ for (auto* arg : *call->arguments()) {
+ AsmType* arg_type;
+ RECURSE(arg_type = ValidateExpression(arg));
+ args.emplace_back(arg_type);
+ }
+
+ auto* call_expr = call->expression();
+
+ // identifier(Expression...)
+ if (auto* call_var_proxy = call_expr->AsVariableProxy()) {
+ auto* call_var_info = Lookup(call_var_proxy->var());
+
+ if (call_var_info == nullptr) {
+ // We can't fail here: the validator performs a single pass over the AST,
+ // so it is possible for some calls to be currently unresolved. We eagerly
+ // add the function to the table of globals.
+ auto* call_type = AsmType::Function(zone_, return_type)->AsFunctionType();
+ for (auto* arg : args) {
+ call_type->AddArgument(arg->ToParameterType());
+ }
+ auto* fun_info =
+ new (zone_) VariableInfo(reinterpret_cast<AsmType*>(call_type));
+ fun_info->set_mutability(VariableInfo::kImmutableGlobal);
+ AddForwardReference(call_var_proxy, fun_info);
+ if (!ValidAsmIdentifier(call_var_proxy->name())) {
+ FAIL(call_var_proxy,
+ "Invalid asm.js identifier in (forward) function name.");
+ }
+ if (!AddGlobal(call_var_proxy->var(), fun_info)) {
+ DCHECK(false);
+ FAIL(call, "Redeclared global identifier.");
+ }
+ return return_type;
+ }
+
+ auto* callee_type = call_var_info->type()->AsCallableType();
+ if (callee_type == nullptr) {
+ FAIL(call, "Calling something that's not a function.");
+ }
+
+ if (callee_type->AsFFIType() != nullptr &&
+ return_type == AsmType::Float()) {
+ FAIL(call, "Foreign functions can't return float.");
+ }
+
+ if (!CheckInvocationOf(callee_type, return_type, &args)) {
+ FAIL(call, "Function invocation does not match function type.");
+ }
+
+ return return_type;
+ }
+
+ // identifier[expr & n](Expression...)
+ if (auto* call_property = call_expr->AsProperty()) {
+ auto* index = call_property->key()->AsBinaryOperation();
+ if (index == nullptr || index->op() != Token::BIT_AND) {
+ FAIL(call_property->key(),
+ "Indirect call index must be in the expr & mask form.");
+ }
+
+ auto* left = index->left();
+ auto* right = index->right();
+ uint32_t mask;
+ if (!ExtractIndirectCallMask(right, &mask)) {
+ if (!ExtractIndirectCallMask(left, &mask)) {
+ FAIL(right, "Invalid indirect call mask.");
+ } else {
+ left = right;
+ }
+ }
+ const uint32_t table_length = mask + 1;
+
+ AsmType* left_type;
+ RECURSE(left_type = ValidateExpression(left));
+ if (!left_type->IsA(AsmType::Intish())) {
+ FAIL(left, "Indirect call index should be an intish.");
+ }
+
+ auto* name_var = call_property->obj()->AsVariableProxy();
+
+ if (name_var == nullptr) {
+ FAIL(call_property, "Invalid call.");
+ }
+
+ auto* name_info = Lookup(name_var->var());
+ if (name_info == nullptr) {
+ // We can't fail here -- just like above.
+ auto* call_type = AsmType::Function(zone_, return_type)->AsFunctionType();
+ for (auto* arg : args) {
+ call_type->AddArgument(arg->ToParameterType());
+ }
+ auto* table_type = AsmType::FunctionTableType(
+ zone_, table_length, reinterpret_cast<AsmType*>(call_type));
+ auto* fun_info =
+ new (zone_) VariableInfo(reinterpret_cast<AsmType*>(table_type));
+ fun_info->set_mutability(VariableInfo::kImmutableGlobal);
+ AddForwardReference(name_var, fun_info);
+ if (!ValidAsmIdentifier(name_var->name())) {
+ FAIL(name_var,
+ "Invalid asm.js identifier in (forward) function table name.");
+ }
+ if (!AddGlobal(name_var->var(), fun_info)) {
+ DCHECK(false);
+ FAIL(call, "Redeclared global identifier.");
+ }
+ return return_type;
+ }
+
+ auto* previous_type = name_info->type()->AsFunctionTableType();
+ if (previous_type == nullptr) {
+ FAIL(call, "Identifier does not name a function table.");
+ }
+
+ if (table_length != previous_type->length()) {
+ FAIL(call, "Function table size does not match expected size.");
+ }
+
+ auto* previous_type_signature =
+ previous_type->signature()->AsFunctionType();
+ DCHECK(previous_type_signature != nullptr);
+ if (!CheckInvocationOf(previous_type_signature, return_type, &args)) {
+ FAIL(call,
+ "Function pointer table signature does not match previous "
+ "signature.");
+ }
+
+ return return_type;
+ }
+
+ FAIL(call, "Invalid call.");
+}
+
+// 6.10 ValidateHeapAccess
+namespace {
+bool ExtractHeapAccessShift(Expression* expr, uint32_t* value) {
+ auto* as_literal = expr->AsLiteral();
+ if (as_literal == nullptr) {
+ return false;
+ }
+
+ if (as_literal->raw_value()->ContainsDot()) {
+ return false;
+ }
+
+ return as_literal->value()->ToUint32(value);
+}
+} // namespace
+
+AsmType* AsmTyper::ValidateHeapAccess(Property* heap,
+ HeapAccessType access_type) {
+ auto* obj = heap->obj()->AsVariableProxy();
+ if (obj == nullptr) {
+ FAIL(heap, "Invalid heap access.");
+ }
+
+ auto* obj_info = Lookup(obj->var());
+ if (obj_info == nullptr) {
+ FAIL(heap, "Undeclared identifier in heap access.");
+ }
+
+ auto* obj_type = obj_info->type();
+ if (!obj_type->IsA(AsmType::Heap())) {
+ FAIL(heap, "Identifier does not represent a heap view.");
+ }
+
+ if (auto* key_as_literal = heap->key()->AsLiteral()) {
+ if (key_as_literal->raw_value()->ContainsDot()) {
+ FAIL(key_as_literal, "Heap access index must be intish.");
+ }
+
+ uint32_t _;
+ if (!key_as_literal->value()->ToUint32(&_)) {
+ FAIL(key_as_literal,
+ "Heap access index must be a 32-bit unsigned integer.");
+ }
+
+ if (access_type == LoadFromHeap) {
+ return obj_type->LoadType();
+ }
+ return obj_type->StoreType();
+ }
+
+ if (auto* key_as_binop = heap->key()->AsBinaryOperation()) {
+ uint32_t shift;
+ if (key_as_binop->op() == Token::SAR &&
+ ExtractHeapAccessShift(key_as_binop->right(), &shift) &&
+ (1 << shift) == obj_type->ElementSizeInBytes()) {
+ AsmType* type;
+ RECURSE(type = ValidateExpression(key_as_binop->left()));
+ if (type->IsA(AsmType::Intish())) {
+ if (access_type == LoadFromHeap) {
+ return obj_type->LoadType();
+ }
+ return obj_type->StoreType();
+ }
+ // TODO(jpp): it may be the case that, if type is not an Intish, we could
+ // fail here instead of letting the validator try using the "leniency"
+ // rule (i.e., allow unshifted indexes for heap views of 8-bit integers.
+ }
+ }
+
+ if (obj_type->ElementSizeInBytes() == 1) {
+ // Leniency: if this is a byte array, we don't require the shift operation
+ // to be present.
+ AsmType* index_type;
+ RECURSE(index_type = ValidateExpression(heap->key()));
+ if (!index_type->IsA(AsmType::Int())) {
+ FAIL(heap, "Invalid heap access index for byte array.");
+ }
+ if (access_type == LoadFromHeap) {
+ return obj_type->LoadType();
+ }
+ return obj_type->StoreType();
+ }
+
+ FAIL(heap, "Invalid heap access index.");
+}
+
+// 6.11 ValidateFloatCoercion
+bool AsmTyper::IsCallToFround(Call* call) {
+ if (call->arguments()->length() != 1) {
+ return false;
+ }
+
+ auto* call_var_proxy = call->expression()->AsVariableProxy();
+ if (call_var_proxy == nullptr) {
+ return false;
+ }
+
+ auto* call_var_info = Lookup(call_var_proxy->var());
+ if (call_var_info == nullptr) {
+ return false;
+ }
+
+ return call_var_info->standard_member() == kMathFround;
+}
+
+AsmType* AsmTyper::ValidateFloatCoercion(Call* call) {
+ if (!IsCallToFround(call)) {
+ return nullptr;
+ }
+
+ auto* arg = call->arguments()->at(0);
+ // call is a fround() node. From now, there can be two possible outcomes:
+ // 1. fround is used as a return type annotation.
+ if (auto* arg_as_call = arg->AsCall()) {
+ RECURSE(ValidateCall(AsmType::Float(), arg_as_call));
+ return AsmType::Float();
+ }
+
+ // 2. fround is used for converting to float.
+ AsmType* arg_type;
+ RECURSE(arg_type = ValidateExpression(arg));
+ if (arg_type->IsA(AsmType::Floatish()) || arg_type->IsA(AsmType::DoubleQ()) ||
+ arg_type->IsA(AsmType::Signed()) || arg_type->IsA(AsmType::Unsigned())) {
+ return AsmType::Float();
+ }
+
+ FAIL(call, "Invalid argument type to fround.");
+}
+
+// 5.1 ParameterTypeAnnotations
+AsmType* AsmTyper::ParameterTypeAnnotations(Variable* parameter,
+ Expression* annotation) {
+ if (auto* binop = annotation->AsBinaryOperation()) {
+ // Must be:
+ // * x|0
+ // * x*1 (*VIOLATION* i.e.,, +x)
+ auto* left = binop->left()->AsVariableProxy();
+ if (left == nullptr) {
+ FAIL(
+ binop->left(),
+ "Invalid parameter type annotation - should annotate an identifier.");
+ }
+ if (left->var() != parameter) {
+ FAIL(binop->left(),
+ "Invalid parameter type annotation - should annotate a parameter.");
+ }
+ if (IsDoubleAnnotation(binop)) {
+ return AsmType::Double();
+ }
+ if (IsIntAnnotation(binop)) {
+ return AsmType::Int();
+ }
+ FAIL(binop, "Invalid parameter type annotation.");
+ }
+
+ auto* call = annotation->AsCall();
+ if (call == nullptr) {
+ FAIL(
+ annotation,
+ "Invalid float parameter type annotation - must be fround(parameter).");
+ }
+
+ if (!IsCallToFround(call)) {
+ FAIL(annotation,
+ "Invalid float parameter type annotation - must be call to fround.");
+ }
+
+ auto* src_expr = call->arguments()->at(0)->AsVariableProxy();
+ if (src_expr == nullptr) {
+ FAIL(annotation,
+ "Invalid float parameter type annotation - argument to fround is not "
+ "an identifier.");
+ }
+
+ if (src_expr->var() != parameter) {
+ FAIL(annotation,
+ "Invalid float parameter type annotation - argument to fround is not "
+ "a parameter.");
+ }
+
+ return AsmType::Float();
+}
+
+// 5.2 ReturnTypeAnnotations
+AsmType* AsmTyper::ReturnTypeAnnotations(ReturnStatement* statement) {
+ if (statement == nullptr) {
+ return AsmType::Void();
+ }
+
+ auto* ret_expr = statement->expression();
+ if (ret_expr == nullptr) {
+ return AsmType::Void();
+ }
+
+ if (auto* binop = ret_expr->AsBinaryOperation()) {
+ if (IsDoubleAnnotation(binop)) {
+ return AsmType::Double();
+ } else if (IsIntAnnotation(binop)) {
+ return AsmType::Signed();
+ }
+ FAIL(statement, "Invalid return type annotation.");
+ }
+
+ if (auto* call = ret_expr->AsCall()) {
+ if (IsCallToFround(call)) {
+ return AsmType::Float();
+ }
+ FAIL(statement, "Invalid function call in return statement.");
+ }
+
+ if (auto* literal = ret_expr->AsLiteral()) {
+ int32_t _;
+ if (literal->raw_value()->ContainsDot()) {
+ return AsmType::Double();
+ } else if (literal->value()->ToInt32(&_)) {
+ return AsmType::Signed();
+ } else if (literal->IsUndefinedLiteral()) {
+ // *VIOLATION* The parser changes
+ //
+ // return;
+ //
+ // into
+ //
+ // return undefined
+ return AsmType::Void();
+ }
+ FAIL(statement, "Invalid literal in return statement.");
+ }
+
+ FAIL(statement, "Invalid return type expression.");
+}
+
+// 5.4 VariableTypeAnnotations
+// Also used for 5.5 GlobalVariableTypeAnnotations
+AsmType* AsmTyper::VariableTypeAnnotations(Expression* initializer) {
+ if (auto* literal = initializer->AsLiteral()) {
+ if (literal->raw_value()->ContainsDot()) {
+ return AsmType::Double();
+ }
+ int32_t i32;
+ uint32_t u32;
+ if (literal->value()->ToInt32(&i32) || literal->value()->ToUint32(&u32)) {
+ return AsmType::Int();
+ }
+ FAIL(initializer, "Invalid type annotation - forbidden literal.");
+ }
+
+ auto* call = initializer->AsCall();
+ DCHECK(call != nullptr);
+ if (call == nullptr) {
+ FAIL(initializer,
+ "Invalid variable initialization - it should be a literal, or "
+ "fround(literal).");
+ }
+
+ if (!IsCallToFround(call)) {
+ FAIL(initializer,
+ "Invalid float coercion - expected call fround(literal).");
+ }
+
+ auto* src_expr = call->arguments()->at(0)->AsLiteral();
+ if (src_expr == nullptr) {
+ FAIL(initializer,
+ "Invalid float type annotation - expected literal argument for call "
+ "to fround.");
+ }
+
+ if (!src_expr->raw_value()->ContainsDot()) {
+ FAIL(initializer,
+ "Invalid float type annotation - expected literal argument to be a "
+ "floating point literal.");
+ }
+
+ return AsmType::Float();
+}
+
+// 5.5 GlobalVariableTypeAnnotations
+AsmType* AsmTyper::NewHeapView(CallNew* new_heap_view) {
+ auto* heap_type = new_heap_view->expression()->AsProperty();
+ if (heap_type == nullptr) {
+ FAIL(new_heap_view, "Invalid type after new.");
+ }
+ auto* heap_view_info = ImportLookup(heap_type);
+
+ if (heap_view_info == nullptr) {
+ FAIL(new_heap_view, "Unknown stdlib member in heap view declaration.");
+ }
+
+ if (!heap_view_info->type()->IsA(AsmType::Heap())) {
+ FAIL(new_heap_view, "Type is not a heap view type.");
+ }
+
+ if (new_heap_view->arguments()->length() != 1) {
+ FAIL(new_heap_view, "Invalid number of arguments when creating heap view.");
+ }
+
+ auto* heap = new_heap_view->arguments()->at(0);
+ auto* heap_var_proxy = heap->AsVariableProxy();
+
+ if (heap_var_proxy == nullptr) {
+ FAIL(heap,
+ "Heap view creation parameter should be the module's heap parameter.");
+ }
+
+ auto* heap_var_info = Lookup(heap_var_proxy->var());
+
+ if (heap_var_info == nullptr) {
+ FAIL(heap, "Undeclared identifier instead of heap parameter.");
+ }
+
+ if (!heap_var_info->IsHeap()) {
+ FAIL(heap,
+ "Heap view creation parameter should be the module's heap parameter.");
+ }
+
+ DCHECK(heap_view_info->type()->IsA(AsmType::Heap()));
+ return heap_view_info->type();
+}
+
+bool IsValidAsm(Isolate* isolate, Zone* zone, Script* script,
+ FunctionLiteral* root, std::string* error_message) {
+ error_message->clear();
+
+ AsmTyper typer(isolate, zone, script, root);
+ if (typer.Validate()) {
+ return true;
+ }
+
+ *error_message = typer.error_message();
+ return false;
+}
+
+} // namespace wasm
+} // namespace internal
+} // namespace v8
« no previous file with comments | « src/asmjs/asm-typer.h ('k') | src/asmjs/asm-types.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698