Chromium Code Reviews

Unified Diff: src/arm64/codegen-arm64.cc

Issue 2070813002: Revert of [builtins] Introduce proper Float64Exp operator. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments.
Jump to:
View side-by-side diff with in-line comments
« no previous file with comments | « src/arm64/codegen-arm64.h ('k') | src/assembler.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/arm64/codegen-arm64.cc
diff --git a/src/arm64/codegen-arm64.cc b/src/arm64/codegen-arm64.cc
index edd289900e978d6d63ce8bb13f076bb272f1fd8f..990dd4101fe04ba51a07af6af6732b367c42157b 100644
--- a/src/arm64/codegen-arm64.cc
+++ b/src/arm64/codegen-arm64.cc
@@ -14,6 +14,66 @@
namespace internal {
#define __ ACCESS_MASM(masm)
+
+#if defined(USE_SIMULATOR)
+byte* fast_exp_arm64_machine_code = nullptr;
+double fast_exp_simulator(double x, Isolate* isolate) {
+ Simulator * simulator = Simulator::current(isolate);
+ Simulator::CallArgument args[] = {
+ Simulator::CallArgument(x),
+ Simulator::CallArgument::End()
+ };
+ return simulator->CallDouble(fast_exp_arm64_machine_code, args);
+}
+#endif
+
+
+UnaryMathFunctionWithIsolate CreateExpFunction(Isolate* isolate) {
+ // Use the Math.exp implemetation in MathExpGenerator::EmitMathExp() to create
+ // an AAPCS64-compliant exp() function. This will be faster than the C
+ // library's exp() function, but probably less accurate.
+ size_t actual_size;
+ byte* buffer =
+ static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
+ if (buffer == nullptr) return nullptr;
+
+ ExternalReference::InitializeMathExpData();
+ MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
+ CodeObjectRequired::kNo);
+ masm.SetStackPointer(csp);
+
+ // The argument will be in d0 on entry.
+ DoubleRegister input = d0;
+ // Use other caller-saved registers for all other values.
+ DoubleRegister result = d1;
+ DoubleRegister double_temp1 = d2;
+ DoubleRegister double_temp2 = d3;
+ Register temp1 = x10;
+ Register temp2 = x11;
+ Register temp3 = x12;
+
+ MathExpGenerator::EmitMathExp(&masm, input, result,
+ double_temp1, double_temp2,
+ temp1, temp2, temp3);
+ // Move the result to the return register.
+ masm.Fmov(d0, result);
+ masm.Ret();
+
+ CodeDesc desc;
+ masm.GetCode(&desc);
+ DCHECK(!RelocInfo::RequiresRelocation(desc));
+
+ Assembler::FlushICache(isolate, buffer, actual_size);
+ base::OS::ProtectCode(buffer, actual_size);
+
+#if !defined(USE_SIMULATOR)
+ return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
+#else
+ fast_exp_arm64_machine_code = buffer;
+ return &fast_exp_simulator;
+#endif
+}
+
UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
return nullptr;
@@ -450,6 +510,127 @@
__ Bind(&done);
}
+
+static MemOperand ExpConstant(Register base, int index) {
+ return MemOperand(base, index * kDoubleSize);
+}
+
+
+void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
+ DoubleRegister input,
+ DoubleRegister result,
+ DoubleRegister double_temp1,
+ DoubleRegister double_temp2,
+ Register temp1,
+ Register temp2,
+ Register temp3) {
+ // TODO(jbramley): There are several instances where fnmsub could be used
+ // instead of fmul and fsub. Doing this changes the result, but since this is
+ // an estimation anyway, does it matter?
+
+ DCHECK(!AreAliased(input, result,
+ double_temp1, double_temp2,
+ temp1, temp2, temp3));
+ DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
+ DCHECK(!masm->serializer_enabled()); // External references not serializable.
+
+ Label done;
+ DoubleRegister double_temp3 = result;
+ Register constants = temp3;
+
+ // The algorithm used relies on some magic constants which are initialized in
+ // ExternalReference::InitializeMathExpData().
+
+ // Load the address of the start of the array.
+ __ Mov(constants, ExternalReference::math_exp_constants(0));
+
+ // We have to do a four-way split here:
+ // - If input <= about -708.4, the output always rounds to zero.
+ // - If input >= about 709.8, the output always rounds to +infinity.
+ // - If the input is NaN, the output is NaN.
+ // - Otherwise, the result needs to be calculated.
+ Label result_is_finite_non_zero;
+ // Assert that we can load offset 0 (the small input threshold) and offset 1
+ // (the large input threshold) with a single ldp.
+ DCHECK(kDRegSize == (ExpConstant(constants, 1).offset() -
+ ExpConstant(constants, 0).offset()));
+ __ Ldp(double_temp1, double_temp2, ExpConstant(constants, 0));
+
+ __ Fcmp(input, double_temp1);
+ __ Fccmp(input, double_temp2, NoFlag, hi);
+ // At this point, the condition flags can be in one of five states:
+ // NZCV
+ // 1000 -708.4 < input < 709.8 result = exp(input)
+ // 0110 input == 709.8 result = +infinity
+ // 0010 input > 709.8 result = +infinity
+ // 0011 input is NaN result = input
+ // 0000 input <= -708.4 result = +0.0
+
+ // Continue the common case first. 'mi' tests N == 1.
+ __ B(&result_is_finite_non_zero, mi);
+
+ // TODO(jbramley): Consider adding a +infinity register for ARM64.
+ __ Ldr(double_temp2, ExpConstant(constants, 2)); // Synthesize +infinity.
+
+ // Select between +0.0 and +infinity. 'lo' tests C == 0.
+ __ Fcsel(result, fp_zero, double_temp2, lo);
+ // Select between {+0.0 or +infinity} and input. 'vc' tests V == 0.
+ __ Fcsel(result, result, input, vc);
+ __ B(&done);
+
+ // The rest is magic, as described in InitializeMathExpData().
+ __ Bind(&result_is_finite_non_zero);
+
+ // Assert that we can load offset 3 and offset 4 with a single ldp.
+ DCHECK(kDRegSize == (ExpConstant(constants, 4).offset() -
+ ExpConstant(constants, 3).offset()));
+ __ Ldp(double_temp1, double_temp3, ExpConstant(constants, 3));
+ __ Fmadd(double_temp1, double_temp1, input, double_temp3);
+ __ Fmov(temp2.W(), double_temp1.S());
+ __ Fsub(double_temp1, double_temp1, double_temp3);
+
+ // Assert that we can load offset 5 and offset 6 with a single ldp.
+ DCHECK(kDRegSize == (ExpConstant(constants, 6).offset() -
+ ExpConstant(constants, 5).offset()));
+ __ Ldp(double_temp2, double_temp3, ExpConstant(constants, 5));
+ // TODO(jbramley): Consider using Fnmsub here.
+ __ Fmul(double_temp1, double_temp1, double_temp2);
+ __ Fsub(double_temp1, double_temp1, input);
+
+ __ Fmul(double_temp2, double_temp1, double_temp1);
+ __ Fsub(double_temp3, double_temp3, double_temp1);
+ __ Fmul(double_temp3, double_temp3, double_temp2);
+
+ __ Mov(temp1.W(), Operand(temp2.W(), LSR, 11));
+
+ __ Ldr(double_temp2, ExpConstant(constants, 7));
+ // TODO(jbramley): Consider using Fnmsub here.
+ __ Fmul(double_temp3, double_temp3, double_temp2);
+ __ Fsub(double_temp3, double_temp3, double_temp1);
+
+ // The 8th constant is 1.0, so use an immediate move rather than a load.
+ // We can't generate a runtime assertion here as we would need to call Abort
+ // in the runtime and we don't have an Isolate when we generate this code.
+ __ Fmov(double_temp2, 1.0);
+ __ Fadd(double_temp3, double_temp3, double_temp2);
+
+ __ And(temp2, temp2, 0x7ff);
+ __ Add(temp1, temp1, 0x3ff);
+
+ // Do the final table lookup.
+ __ Mov(temp3, ExternalReference::math_exp_log_table());
+
+ __ Add(temp3, temp3, Operand(temp2, LSL, kDRegSizeLog2));
+ __ Ldp(temp2.W(), temp3.W(), MemOperand(temp3));
+ __ Orr(temp1.W(), temp3.W(), Operand(temp1.W(), LSL, 20));
+ __ Bfi(temp2, temp1, 32, 32);
+ __ Fmov(double_temp1, temp2);
+
+ __ Fmul(result, double_temp3, double_temp1);
+
+ __ Bind(&done);
+}
+
#undef __
} // namespace internal
« no previous file with comments | « src/arm64/codegen-arm64.h ('k') | src/assembler.h » ('j') | no next file with comments »

Powered by Google App Engine