| Index: src/third_party/fdlibm/fdlibm.js
|
| diff --git a/src/third_party/fdlibm/fdlibm.js b/src/third_party/fdlibm/fdlibm.js
|
| index 935b777b316cf47ad82d679104bb99be22ad1211..de7133405bc83620da60eb972557a6ed0d44d74d 100644
|
| --- a/src/third_party/fdlibm/fdlibm.js
|
| +++ b/src/third_party/fdlibm/fdlibm.js
|
| @@ -31,11 +31,13 @@
|
| var GlobalFloat64Array = global.Float64Array;
|
| var GlobalMath = global.Math;
|
| var MathAbs;
|
| +var MathExpm1;
|
| var NaN = %GetRootNaN();
|
| var rempio2result;
|
|
|
| utils.Import(function(from) {
|
| MathAbs = from.MathAbs;
|
| + MathExpm1 = from.MathExpm1;
|
| });
|
|
|
| utils.CreateDoubleResultArray = function(global) {
|
| @@ -401,202 +403,6 @@ define LN2_LO = 1.90821492927058770002e-10;
|
| // 2^54
|
| define TWO54 = 18014398509481984;
|
|
|
| -// ES6 draft 09-27-13, section 20.2.2.14.
|
| -// Math.expm1
|
| -// Returns exp(x)-1, the exponential of x minus 1.
|
| -//
|
| -// Method
|
| -// 1. Argument reduction:
|
| -// Given x, find r and integer k such that
|
| -//
|
| -// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
| -//
|
| -// Here a correction term c will be computed to compensate
|
| -// the error in r when rounded to a floating-point number.
|
| -//
|
| -// 2. Approximating expm1(r) by a special rational function on
|
| -// the interval [0,0.34658]:
|
| -// Since
|
| -// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
| -// we define R1(r*r) by
|
| -// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
| -// That is,
|
| -// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
| -// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
| -// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
| -// We use a special Remes algorithm on [0,0.347] to generate
|
| -// a polynomial of degree 5 in r*r to approximate R1. The
|
| -// maximum error of this polynomial approximation is bounded
|
| -// by 2**-61. In other words,
|
| -// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
| -// where Q1 = -1.6666666666666567384E-2,
|
| -// Q2 = 3.9682539681370365873E-4,
|
| -// Q3 = -9.9206344733435987357E-6,
|
| -// Q4 = 2.5051361420808517002E-7,
|
| -// Q5 = -6.2843505682382617102E-9;
|
| -// (where z=r*r, and the values of Q1 to Q5 are listed below)
|
| -// with error bounded by
|
| -// | 5 | -61
|
| -// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
| -// | |
|
| -//
|
| -// expm1(r) = exp(r)-1 is then computed by the following
|
| -// specific way which minimize the accumulation rounding error:
|
| -// 2 3
|
| -// r r [ 3 - (R1 + R1*r/2) ]
|
| -// expm1(r) = r + --- + --- * [--------------------]
|
| -// 2 2 [ 6 - r*(3 - R1*r/2) ]
|
| -//
|
| -// To compensate the error in the argument reduction, we use
|
| -// expm1(r+c) = expm1(r) + c + expm1(r)*c
|
| -// ~ expm1(r) + c + r*c
|
| -// Thus c+r*c will be added in as the correction terms for
|
| -// expm1(r+c). Now rearrange the term to avoid optimization
|
| -// screw up:
|
| -// ( 2 2 )
|
| -// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
| -// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
| -// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
| -// ( )
|
| -//
|
| -// = r - E
|
| -// 3. Scale back to obtain expm1(x):
|
| -// From step 1, we have
|
| -// expm1(x) = either 2^k*[expm1(r)+1] - 1
|
| -// = or 2^k*[expm1(r) + (1-2^-k)]
|
| -// 4. Implementation notes:
|
| -// (A). To save one multiplication, we scale the coefficient Qi
|
| -// to Qi*2^i, and replace z by (x^2)/2.
|
| -// (B). To achieve maximum accuracy, we compute expm1(x) by
|
| -// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
| -// (ii) if k=0, return r-E
|
| -// (iii) if k=-1, return 0.5*(r-E)-0.5
|
| -// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
| -// else return 1.0+2.0*(r-E);
|
| -// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
| -// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
| -// (vii) return 2^k(1-((E+2^-k)-r))
|
| -//
|
| -// Special cases:
|
| -// expm1(INF) is INF, expm1(NaN) is NaN;
|
| -// expm1(-INF) is -1, and
|
| -// for finite argument, only expm1(0)=0 is exact.
|
| -//
|
| -// Accuracy:
|
| -// according to an error analysis, the error is always less than
|
| -// 1 ulp (unit in the last place).
|
| -//
|
| -// Misc. info.
|
| -// For IEEE double
|
| -// if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
| -//
|
| -define KEXPM1_OVERFLOW = 7.09782712893383973096e+02;
|
| -define INVLN2 = 1.44269504088896338700;
|
| -define EXPM1_1 = -3.33333333333331316428e-02;
|
| -define EXPM1_2 = 1.58730158725481460165e-03;
|
| -define EXPM1_3 = -7.93650757867487942473e-05;
|
| -define EXPM1_4 = 4.00821782732936239552e-06;
|
| -define EXPM1_5 = -2.01099218183624371326e-07;
|
| -
|
| -function MathExpm1(x) {
|
| - x = x * 1; // Convert to number.
|
| - var y;
|
| - var hi;
|
| - var lo;
|
| - var k;
|
| - var t;
|
| - var c;
|
| -
|
| - var hx = %_DoubleHi(x);
|
| - var xsb = hx & 0x80000000; // Sign bit of x
|
| - var y = (xsb === 0) ? x : -x; // y = |x|
|
| - hx &= 0x7fffffff; // High word of |x|
|
| -
|
| - // Filter out huge and non-finite argument
|
| - if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2
|
| - if (hx >= 0x40862e42) { // if |x| >= 709.78
|
| - if (hx >= 0x7ff00000) {
|
| - // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
|
| - return (x === -INFINITY) ? -1 : x;
|
| - }
|
| - if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow
|
| - }
|
| - if (xsb != 0) return -1; // x < -56 * ln2, return -1.
|
| - }
|
| -
|
| - // Argument reduction
|
| - if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2
|
| - if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2
|
| - if (xsb === 0) {
|
| - hi = x - LN2_HI;
|
| - lo = LN2_LO;
|
| - k = 1;
|
| - } else {
|
| - hi = x + LN2_HI;
|
| - lo = -LN2_LO;
|
| - k = -1;
|
| - }
|
| - } else {
|
| - k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
|
| - t = k;
|
| - // t * ln2_hi is exact here.
|
| - hi = x - t * LN2_HI;
|
| - lo = t * LN2_LO;
|
| - }
|
| - x = hi - lo;
|
| - c = (hi - x) - lo;
|
| - } else if (hx < 0x3c900000) {
|
| - // When |x| < 2^-54, we can return x.
|
| - return x;
|
| - } else {
|
| - // Fall through.
|
| - k = 0;
|
| - }
|
| -
|
| - // x is now in primary range
|
| - var hfx = 0.5 * x;
|
| - var hxs = x * hfx;
|
| - var r1 = 1 + hxs * (EXPM1_1 + hxs * (EXPM1_2 + hxs *
|
| - (EXPM1_3 + hxs * (EXPM1_4 + hxs * EXPM1_5))));
|
| - t = 3 - r1 * hfx;
|
| - var e = hxs * ((r1 - t) / (6 - x * t));
|
| - if (k === 0) { // c is 0
|
| - return x - (x*e - hxs);
|
| - } else {
|
| - e = (x * (e - c) - c);
|
| - e -= hxs;
|
| - if (k === -1) return 0.5 * (x - e) - 0.5;
|
| - if (k === 1) {
|
| - if (x < -0.25) return -2 * (e - (x + 0.5));
|
| - return 1 + 2 * (x - e);
|
| - }
|
| -
|
| - if (k <= -2 || k > 56) {
|
| - // suffice to return exp(x) + 1
|
| - y = 1 - (e - x);
|
| - // Add k to y's exponent
|
| - y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
|
| - return y - 1;
|
| - }
|
| - if (k < 20) {
|
| - // t = 1 - 2^k
|
| - t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
|
| - y = t - (e - x);
|
| - // Add k to y's exponent
|
| - y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
|
| - } else {
|
| - // t = 2^-k
|
| - t = %_ConstructDouble((0x3ff - k) << 20, 0);
|
| - y = x - (e + t);
|
| - y += 1;
|
| - // Add k to y's exponent
|
| - y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
|
| - }
|
| - }
|
| - return y;
|
| -}
|
| -
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.30.
|
| // Math.sinh
|
| // Method :
|
| @@ -763,8 +569,7 @@ utils.InstallFunctions(GlobalMath, DONT_ENUM, [
|
| "tan", MathTan,
|
| "sinh", MathSinh,
|
| "cosh", MathCosh,
|
| - "tanh", MathTanh,
|
| - "expm1", MathExpm1
|
| + "tanh", MathTanh
|
| ]);
|
|
|
| %SetForceInlineFlag(MathSin);
|
|
|