Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(65)

Unified Diff: src/third_party/fdlibm/fdlibm.js

Issue 2068743002: [builtins] Unify Atanh, Cbrt and Expm1 as exports from flibm. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Fixed type warning. Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/objects.h ('k') | test/cctest/compiler/test-run-machops.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/third_party/fdlibm/fdlibm.js
diff --git a/src/third_party/fdlibm/fdlibm.js b/src/third_party/fdlibm/fdlibm.js
index 935b777b316cf47ad82d679104bb99be22ad1211..de7133405bc83620da60eb972557a6ed0d44d74d 100644
--- a/src/third_party/fdlibm/fdlibm.js
+++ b/src/third_party/fdlibm/fdlibm.js
@@ -31,11 +31,13 @@
var GlobalFloat64Array = global.Float64Array;
var GlobalMath = global.Math;
var MathAbs;
+var MathExpm1;
var NaN = %GetRootNaN();
var rempio2result;
utils.Import(function(from) {
MathAbs = from.MathAbs;
+ MathExpm1 = from.MathExpm1;
});
utils.CreateDoubleResultArray = function(global) {
@@ -401,202 +403,6 @@ define LN2_LO = 1.90821492927058770002e-10;
// 2^54
define TWO54 = 18014398509481984;
-// ES6 draft 09-27-13, section 20.2.2.14.
-// Math.expm1
-// Returns exp(x)-1, the exponential of x minus 1.
-//
-// Method
-// 1. Argument reduction:
-// Given x, find r and integer k such that
-//
-// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
-//
-// Here a correction term c will be computed to compensate
-// the error in r when rounded to a floating-point number.
-//
-// 2. Approximating expm1(r) by a special rational function on
-// the interval [0,0.34658]:
-// Since
-// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
-// we define R1(r*r) by
-// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
-// That is,
-// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
-// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
-// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
-// We use a special Remes algorithm on [0,0.347] to generate
-// a polynomial of degree 5 in r*r to approximate R1. The
-// maximum error of this polynomial approximation is bounded
-// by 2**-61. In other words,
-// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
-// where Q1 = -1.6666666666666567384E-2,
-// Q2 = 3.9682539681370365873E-4,
-// Q3 = -9.9206344733435987357E-6,
-// Q4 = 2.5051361420808517002E-7,
-// Q5 = -6.2843505682382617102E-9;
-// (where z=r*r, and the values of Q1 to Q5 are listed below)
-// with error bounded by
-// | 5 | -61
-// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
-// | |
-//
-// expm1(r) = exp(r)-1 is then computed by the following
-// specific way which minimize the accumulation rounding error:
-// 2 3
-// r r [ 3 - (R1 + R1*r/2) ]
-// expm1(r) = r + --- + --- * [--------------------]
-// 2 2 [ 6 - r*(3 - R1*r/2) ]
-//
-// To compensate the error in the argument reduction, we use
-// expm1(r+c) = expm1(r) + c + expm1(r)*c
-// ~ expm1(r) + c + r*c
-// Thus c+r*c will be added in as the correction terms for
-// expm1(r+c). Now rearrange the term to avoid optimization
-// screw up:
-// ( 2 2 )
-// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
-// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
-// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
-// ( )
-//
-// = r - E
-// 3. Scale back to obtain expm1(x):
-// From step 1, we have
-// expm1(x) = either 2^k*[expm1(r)+1] - 1
-// = or 2^k*[expm1(r) + (1-2^-k)]
-// 4. Implementation notes:
-// (A). To save one multiplication, we scale the coefficient Qi
-// to Qi*2^i, and replace z by (x^2)/2.
-// (B). To achieve maximum accuracy, we compute expm1(x) by
-// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
-// (ii) if k=0, return r-E
-// (iii) if k=-1, return 0.5*(r-E)-0.5
-// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
-// else return 1.0+2.0*(r-E);
-// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
-// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
-// (vii) return 2^k(1-((E+2^-k)-r))
-//
-// Special cases:
-// expm1(INF) is INF, expm1(NaN) is NaN;
-// expm1(-INF) is -1, and
-// for finite argument, only expm1(0)=0 is exact.
-//
-// Accuracy:
-// according to an error analysis, the error is always less than
-// 1 ulp (unit in the last place).
-//
-// Misc. info.
-// For IEEE double
-// if x > 7.09782712893383973096e+02 then expm1(x) overflow
-//
-define KEXPM1_OVERFLOW = 7.09782712893383973096e+02;
-define INVLN2 = 1.44269504088896338700;
-define EXPM1_1 = -3.33333333333331316428e-02;
-define EXPM1_2 = 1.58730158725481460165e-03;
-define EXPM1_3 = -7.93650757867487942473e-05;
-define EXPM1_4 = 4.00821782732936239552e-06;
-define EXPM1_5 = -2.01099218183624371326e-07;
-
-function MathExpm1(x) {
- x = x * 1; // Convert to number.
- var y;
- var hi;
- var lo;
- var k;
- var t;
- var c;
-
- var hx = %_DoubleHi(x);
- var xsb = hx & 0x80000000; // Sign bit of x
- var y = (xsb === 0) ? x : -x; // y = |x|
- hx &= 0x7fffffff; // High word of |x|
-
- // Filter out huge and non-finite argument
- if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2
- if (hx >= 0x40862e42) { // if |x| >= 709.78
- if (hx >= 0x7ff00000) {
- // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
- return (x === -INFINITY) ? -1 : x;
- }
- if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow
- }
- if (xsb != 0) return -1; // x < -56 * ln2, return -1.
- }
-
- // Argument reduction
- if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2
- if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2
- if (xsb === 0) {
- hi = x - LN2_HI;
- lo = LN2_LO;
- k = 1;
- } else {
- hi = x + LN2_HI;
- lo = -LN2_LO;
- k = -1;
- }
- } else {
- k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
- t = k;
- // t * ln2_hi is exact here.
- hi = x - t * LN2_HI;
- lo = t * LN2_LO;
- }
- x = hi - lo;
- c = (hi - x) - lo;
- } else if (hx < 0x3c900000) {
- // When |x| < 2^-54, we can return x.
- return x;
- } else {
- // Fall through.
- k = 0;
- }
-
- // x is now in primary range
- var hfx = 0.5 * x;
- var hxs = x * hfx;
- var r1 = 1 + hxs * (EXPM1_1 + hxs * (EXPM1_2 + hxs *
- (EXPM1_3 + hxs * (EXPM1_4 + hxs * EXPM1_5))));
- t = 3 - r1 * hfx;
- var e = hxs * ((r1 - t) / (6 - x * t));
- if (k === 0) { // c is 0
- return x - (x*e - hxs);
- } else {
- e = (x * (e - c) - c);
- e -= hxs;
- if (k === -1) return 0.5 * (x - e) - 0.5;
- if (k === 1) {
- if (x < -0.25) return -2 * (e - (x + 0.5));
- return 1 + 2 * (x - e);
- }
-
- if (k <= -2 || k > 56) {
- // suffice to return exp(x) + 1
- y = 1 - (e - x);
- // Add k to y's exponent
- y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
- return y - 1;
- }
- if (k < 20) {
- // t = 1 - 2^k
- t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
- y = t - (e - x);
- // Add k to y's exponent
- y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
- } else {
- // t = 2^-k
- t = %_ConstructDouble((0x3ff - k) << 20, 0);
- y = x - (e + t);
- y += 1;
- // Add k to y's exponent
- y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
- }
- }
- return y;
-}
-
-
// ES6 draft 09-27-13, section 20.2.2.30.
// Math.sinh
// Method :
@@ -763,8 +569,7 @@ utils.InstallFunctions(GlobalMath, DONT_ENUM, [
"tan", MathTan,
"sinh", MathSinh,
"cosh", MathCosh,
- "tanh", MathTanh,
- "expm1", MathExpm1
+ "tanh", MathTanh
]);
%SetForceInlineFlag(MathSin);
« no previous file with comments | « src/objects.h ('k') | test/cctest/compiler/test-run-machops.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698