Index: src/third_party/fdlibm/fdlibm.js |
diff --git a/src/third_party/fdlibm/fdlibm.js b/src/third_party/fdlibm/fdlibm.js |
index 935b777b316cf47ad82d679104bb99be22ad1211..de7133405bc83620da60eb972557a6ed0d44d74d 100644 |
--- a/src/third_party/fdlibm/fdlibm.js |
+++ b/src/third_party/fdlibm/fdlibm.js |
@@ -31,11 +31,13 @@ |
var GlobalFloat64Array = global.Float64Array; |
var GlobalMath = global.Math; |
var MathAbs; |
+var MathExpm1; |
var NaN = %GetRootNaN(); |
var rempio2result; |
utils.Import(function(from) { |
MathAbs = from.MathAbs; |
+ MathExpm1 = from.MathExpm1; |
}); |
utils.CreateDoubleResultArray = function(global) { |
@@ -401,202 +403,6 @@ define LN2_LO = 1.90821492927058770002e-10; |
// 2^54 |
define TWO54 = 18014398509481984; |
-// ES6 draft 09-27-13, section 20.2.2.14. |
-// Math.expm1 |
-// Returns exp(x)-1, the exponential of x minus 1. |
-// |
-// Method |
-// 1. Argument reduction: |
-// Given x, find r and integer k such that |
-// |
-// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
-// |
-// Here a correction term c will be computed to compensate |
-// the error in r when rounded to a floating-point number. |
-// |
-// 2. Approximating expm1(r) by a special rational function on |
-// the interval [0,0.34658]: |
-// Since |
-// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
-// we define R1(r*r) by |
-// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
-// That is, |
-// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
-// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
-// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
-// We use a special Remes algorithm on [0,0.347] to generate |
-// a polynomial of degree 5 in r*r to approximate R1. The |
-// maximum error of this polynomial approximation is bounded |
-// by 2**-61. In other words, |
-// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
-// where Q1 = -1.6666666666666567384E-2, |
-// Q2 = 3.9682539681370365873E-4, |
-// Q3 = -9.9206344733435987357E-6, |
-// Q4 = 2.5051361420808517002E-7, |
-// Q5 = -6.2843505682382617102E-9; |
-// (where z=r*r, and the values of Q1 to Q5 are listed below) |
-// with error bounded by |
-// | 5 | -61 |
-// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
-// | | |
-// |
-// expm1(r) = exp(r)-1 is then computed by the following |
-// specific way which minimize the accumulation rounding error: |
-// 2 3 |
-// r r [ 3 - (R1 + R1*r/2) ] |
-// expm1(r) = r + --- + --- * [--------------------] |
-// 2 2 [ 6 - r*(3 - R1*r/2) ] |
-// |
-// To compensate the error in the argument reduction, we use |
-// expm1(r+c) = expm1(r) + c + expm1(r)*c |
-// ~ expm1(r) + c + r*c |
-// Thus c+r*c will be added in as the correction terms for |
-// expm1(r+c). Now rearrange the term to avoid optimization |
-// screw up: |
-// ( 2 2 ) |
-// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
-// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
-// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
-// ( ) |
-// |
-// = r - E |
-// 3. Scale back to obtain expm1(x): |
-// From step 1, we have |
-// expm1(x) = either 2^k*[expm1(r)+1] - 1 |
-// = or 2^k*[expm1(r) + (1-2^-k)] |
-// 4. Implementation notes: |
-// (A). To save one multiplication, we scale the coefficient Qi |
-// to Qi*2^i, and replace z by (x^2)/2. |
-// (B). To achieve maximum accuracy, we compute expm1(x) by |
-// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
-// (ii) if k=0, return r-E |
-// (iii) if k=-1, return 0.5*(r-E)-0.5 |
-// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
-// else return 1.0+2.0*(r-E); |
-// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
-// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
-// (vii) return 2^k(1-((E+2^-k)-r)) |
-// |
-// Special cases: |
-// expm1(INF) is INF, expm1(NaN) is NaN; |
-// expm1(-INF) is -1, and |
-// for finite argument, only expm1(0)=0 is exact. |
-// |
-// Accuracy: |
-// according to an error analysis, the error is always less than |
-// 1 ulp (unit in the last place). |
-// |
-// Misc. info. |
-// For IEEE double |
-// if x > 7.09782712893383973096e+02 then expm1(x) overflow |
-// |
-define KEXPM1_OVERFLOW = 7.09782712893383973096e+02; |
-define INVLN2 = 1.44269504088896338700; |
-define EXPM1_1 = -3.33333333333331316428e-02; |
-define EXPM1_2 = 1.58730158725481460165e-03; |
-define EXPM1_3 = -7.93650757867487942473e-05; |
-define EXPM1_4 = 4.00821782732936239552e-06; |
-define EXPM1_5 = -2.01099218183624371326e-07; |
- |
-function MathExpm1(x) { |
- x = x * 1; // Convert to number. |
- var y; |
- var hi; |
- var lo; |
- var k; |
- var t; |
- var c; |
- |
- var hx = %_DoubleHi(x); |
- var xsb = hx & 0x80000000; // Sign bit of x |
- var y = (xsb === 0) ? x : -x; // y = |x| |
- hx &= 0x7fffffff; // High word of |x| |
- |
- // Filter out huge and non-finite argument |
- if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2 |
- if (hx >= 0x40862e42) { // if |x| >= 709.78 |
- if (hx >= 0x7ff00000) { |
- // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan; |
- return (x === -INFINITY) ? -1 : x; |
- } |
- if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow |
- } |
- if (xsb != 0) return -1; // x < -56 * ln2, return -1. |
- } |
- |
- // Argument reduction |
- if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2 |
- if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2 |
- if (xsb === 0) { |
- hi = x - LN2_HI; |
- lo = LN2_LO; |
- k = 1; |
- } else { |
- hi = x + LN2_HI; |
- lo = -LN2_LO; |
- k = -1; |
- } |
- } else { |
- k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0; |
- t = k; |
- // t * ln2_hi is exact here. |
- hi = x - t * LN2_HI; |
- lo = t * LN2_LO; |
- } |
- x = hi - lo; |
- c = (hi - x) - lo; |
- } else if (hx < 0x3c900000) { |
- // When |x| < 2^-54, we can return x. |
- return x; |
- } else { |
- // Fall through. |
- k = 0; |
- } |
- |
- // x is now in primary range |
- var hfx = 0.5 * x; |
- var hxs = x * hfx; |
- var r1 = 1 + hxs * (EXPM1_1 + hxs * (EXPM1_2 + hxs * |
- (EXPM1_3 + hxs * (EXPM1_4 + hxs * EXPM1_5)))); |
- t = 3 - r1 * hfx; |
- var e = hxs * ((r1 - t) / (6 - x * t)); |
- if (k === 0) { // c is 0 |
- return x - (x*e - hxs); |
- } else { |
- e = (x * (e - c) - c); |
- e -= hxs; |
- if (k === -1) return 0.5 * (x - e) - 0.5; |
- if (k === 1) { |
- if (x < -0.25) return -2 * (e - (x + 0.5)); |
- return 1 + 2 * (x - e); |
- } |
- |
- if (k <= -2 || k > 56) { |
- // suffice to return exp(x) + 1 |
- y = 1 - (e - x); |
- // Add k to y's exponent |
- y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
- return y - 1; |
- } |
- if (k < 20) { |
- // t = 1 - 2^k |
- t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0); |
- y = t - (e - x); |
- // Add k to y's exponent |
- y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
- } else { |
- // t = 2^-k |
- t = %_ConstructDouble((0x3ff - k) << 20, 0); |
- y = x - (e + t); |
- y += 1; |
- // Add k to y's exponent |
- y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); |
- } |
- } |
- return y; |
-} |
- |
- |
// ES6 draft 09-27-13, section 20.2.2.30. |
// Math.sinh |
// Method : |
@@ -763,8 +569,7 @@ utils.InstallFunctions(GlobalMath, DONT_ENUM, [ |
"tan", MathTan, |
"sinh", MathSinh, |
"cosh", MathCosh, |
- "tanh", MathTanh, |
- "expm1", MathExpm1 |
+ "tanh", MathTanh |
]); |
%SetForceInlineFlag(MathSin); |