Chromium Code Reviews| Index: media/base/audio_latency.cc |
| diff --git a/media/base/audio_latency.cc b/media/base/audio_latency.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..f7e781d344719ad27849093c7b2f2442c6cdd02a |
| --- /dev/null |
| +++ b/media/base/audio_latency.cc |
| @@ -0,0 +1,128 @@ |
| +// Copyright 2016 The Chromium Authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +#include "media/base/audio_latency.h" |
| + |
| +#include <stdint.h> |
| +#include <algorithm> |
| + |
| +#include "base/logging.h" |
| +#include "build/build_config.h" |
| + |
| +namespace media { |
| + |
| +namespace { |
| +#if !defined(OS_WIN) |
| +// Taken from "Bit Twiddling Hacks" |
| +// http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| +uint32_t RoundUpToPowerOfTwo(uint32_t v) { |
| + v--; |
| + v |= v >> 1; |
| + v |= v >> 2; |
| + v |= v >> 4; |
| + v |= v >> 8; |
| + v |= v >> 16; |
| + v++; |
| + return v; |
| +} |
| +#endif |
| +} // namespace |
| + |
| +// static |
| +int AudioLatency::GetHighLatencyBufferSize(int sample_rate, |
| + int preferred_buffer_size) { |
| + // Empirically, we consider 20ms of samples to be high latency. |
| + const double twenty_ms_size = 2.0 * sample_rate / 100; |
| + |
| +#if defined(OS_WIN) |
| + preferred_buffer_size = std::max(preferred_buffer_size, 1); |
| + |
| + // Windows doesn't use power of two buffer sizes, so we should always round up |
| + // to the nearest multiple of the output buffer size. |
| + const int high_latency_buffer_size = |
| + std::ceil(twenty_ms_size / preferred_buffer_size) * preferred_buffer_size; |
| +#else |
| + // On other platforms use the nearest higher power of two buffer size. For a |
| + // given sample rate, this works out to: |
| + // |
| + // <= 3200 : 64 |
| + // <= 6400 : 128 |
| + // <= 12800 : 256 |
| + // <= 25600 : 512 |
| + // <= 51200 : 1024 |
| + // <= 102400 : 2048 |
| + // <= 204800 : 4096 |
| + // |
| + // On Linux, the minimum hardware buffer size is 512, so the lower calculated |
| + // values are unused. OSX may have a value as low as 128. |
| + const int high_latency_buffer_size = RoundUpToPowerOfTwo(twenty_ms_size); |
| +#endif // defined(OS_WIN) |
| + |
| +#if defined(OS_CHROMEOS) |
| + return high_latency_buffer_size; // No preference. |
| +#else |
| + return std::max(preferred_buffer_size, high_latency_buffer_size); |
| +#endif // defined(OS_CHROMEOS) |
| +} |
| + |
| +// static |
| +int AudioLatency::GetRtcBufferSize(int sample_rate, int hardware_buffer_size) { |
| + // Use native hardware buffer size as default. On Windows, we strive to open |
| + // up using this native hardware buffer size to achieve best |
| + // possible performance and to ensure that no FIFO is needed on the browser |
| + // side to match the client request. That is why there is no #if case for |
| + // Windows below. |
| + int frames_per_buffer = hardware_buffer_size; |
| + |
| + // No |hardware_buffer_size| is specified, fail back to 10 ms buffer size. |
|
Henrik Grunell
2016/06/29 12:20:54
Fail back or fall back?
o1ka
2016/06/29 13:57:31
Done.
|
| + if (!frames_per_buffer) { |
| + frames_per_buffer = sample_rate / 100; |
| + DVLOG(1) << "Using 10 ms sink output buffer size: " << frames_per_buffer; |
| + return frames_per_buffer; |
| + } |
| + |
| +#if defined(OS_LINUX) || defined(OS_MACOSX) |
| + // On Linux and MacOS, the low level IO implementations on the browser side |
| + // supports all buffer size the clients want. We use the native peer |
| + // connection buffer size (10ms) to achieve best possible performance. |
| + frames_per_buffer = sample_rate / 100; |
| +#elif defined(OS_ANDROID) |
| + // TODO(olka/henrika): This settings are very old, need to be revisited. |
| + int frames_per_10ms = sample_rate / 100; |
| + if (frames_per_buffer < 2 * frames_per_10ms) { |
| + // Examples of low-latency frame sizes and the resulting |buffer_size|: |
| + // Nexus 7 : 240 audio frames => 2*480 = 960 |
| + // Nexus 10 : 256 => 2*441 = 882 |
| + // Galaxy Nexus: 144 => 2*441 = 882 |
| + frames_per_buffer = 2 * frames_per_10ms; |
| + DVLOG(1) << "Low-latency output detected on Android"; |
| + } |
| +#endif |
| + |
| + DVLOG(1) << "Using sink output buffer size: " << frames_per_buffer; |
| + return frames_per_buffer; |
| +} |
| + |
| +// static |
| +int AudioLatency::GetInteractiveBufferSize(int hardware_buffer_size) { |
| +#if defined(OS_ANDROID) |
| + // The optimum low-latency hardware buffer size is usually too small on |
| + // Android for WebAudio to render without glitching. So, if it is small, use |
| + // a larger size. |
| + // |
| + // Since WebAudio renders in 128-frame blocks, the small buffer sizes (144 for |
| + // a Galaxy Nexus), cause significant processing jitter. Sometimes multiple |
| + // blocks will processed, but other times will not be since the WebAudio can't |
| + // satisfy the request. By using a larger render buffer size, we smooth out |
| + // the jitter. |
| + const int kSmallBufferSize = 1024; |
| + const int kDefaultCallbackBufferSize = 2048; |
| + if (hardware_buffer_size <= kSmallBufferSize) |
| + return kDefaultCallbackBufferSize; |
| +#endif |
| + |
| + return hardware_buffer_size; |
| +} |
| + |
| +} // namespace media |