Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(302)

Side by Side Diff: src/core/SkColorSpace.cpp

Issue 2067833003: Differentiate between sRGBGamma and 2Dot2Gamma (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Mipmap Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 /* 1 /*
2 * Copyright 2016 Google Inc. 2 * Copyright 2016 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkColorSpace.h" 8 #include "SkColorSpace.h"
9 #include "SkColorSpace_Base.h" 9 #include "SkColorSpace_Base.h"
10 #include "SkEndian.h" 10 #include "SkEndian.h"
11 #include "SkOnce.h" 11 #include "SkOnce.h"
12 12
13 #define SkColorSpacePrintf(...)
14
13 static bool color_space_almost_equal(float a, float b) { 15 static bool color_space_almost_equal(float a, float b) {
14 return SkTAbs(a - b) < 0.01f; 16 return SkTAbs(a - b) < 0.01f;
15 } 17 }
16 18
17 //////////////////////////////////////////////////////////////////////////////// ////////////////// 19 //////////////////////////////////////////////////////////////////////////////// //////////////////
18 20
19 SkColorSpace::SkColorSpace(GammaNamed gammaNamed, const SkMatrix44& toXYZD50, Na med named) 21 SkColorSpace::SkColorSpace(GammaNamed gammaNamed, const SkMatrix44& toXYZD50, Na med named)
20 : fGammaNamed(gammaNamed) 22 : fGammaNamed(gammaNamed)
21 , fToXYZD50(toXYZD50) 23 , fToXYZD50(toXYZD50)
22 , fNamed(named) 24 , fNamed(named)
23 {} 25 {}
24 26
25 SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, const SkMatrix44& t oXYZD50, 27 SkColorSpace_Base::SkColorSpace_Base(GammaNamed gammaNamed, const SkMatrix44& to XYZD50, Named named,
msarett 2016/06/14 21:30:28 Now SkColorSpace's have a GammaNamed *or* the incr
26 Named named, sk_sp<SkData> profileData) 28 sk_sp<SkData> profileData)
27 : INHERITED(kNonStandard_GammaNamed, toXYZD50, named) 29 : INHERITED(gammaNamed, toXYZD50, named)
28 , fGammas(std::move(gammas)) 30 , fGammas(nullptr)
29 , fProfileData(std::move(profileData)) 31 , fProfileData(std::move(profileData))
30 {} 32 {}
31 33
32 SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, GammaNamed gammaNam ed,
33 const SkMatrix44& toXYZD50, Named named,
34 sk_sp<SkData> profileData)
35 : INHERITED(gammaNamed, toXYZD50, named)
36 , fGammas(std::move(gammas))
37 , fProfileData(std::move(profileData))
38 {}
39
40 SkColorSpace_Base::SkColorSpace_Base(SkColorLookUpTable* colorLUT, sk_sp<SkGamma s> gammas, 34 SkColorSpace_Base::SkColorSpace_Base(SkColorLookUpTable* colorLUT, sk_sp<SkGamma s> gammas,
41 const SkMatrix44& toXYZD50, sk_sp<SkData> p rofileData) 35 const SkMatrix44& toXYZD50, sk_sp<SkData> p rofileData)
42 : INHERITED(kNonStandard_GammaNamed, toXYZD50, kUnknown_Named) 36 : INHERITED(kNonStandard_GammaNamed, toXYZD50, kUnknown_Named)
43 , fColorLUT(colorLUT) 37 , fColorLUT(colorLUT)
44 , fGammas(std::move(gammas)) 38 , fGammas(std::move(gammas))
45 , fProfileData(std::move(profileData)) 39 , fProfileData(std::move(profileData))
46 {} 40 {}
47 41
48 static constexpr float gSRGB_toXYZD50[] { 42 static constexpr float gSRGB_toXYZD50[] {
49 0.4358f, 0.2224f, 0.0139f, // * R 43 0.4358f, 0.2224f, 0.0139f, // * R
(...skipping 25 matching lines...) Expand all
75 color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) && 69 color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) &&
76 color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) && 70 color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) &&
77 color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) && 71 color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) &&
78 color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) && 72 color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) &&
79 color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) && 73 color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) &&
80 color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) && 74 color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) &&
81 color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) && 75 color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) &&
82 color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f); 76 color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f);
83 } 77 }
84 78
85 static SkOnce g2Dot2CurveGammasOnce; 79 static void set_gamma_value(SkGammaCurve* gamma, float value) {
86 static SkGammas* g2Dot2CurveGammas; 80 if (color_space_almost_equal(2.2f, value)) {
87 static SkOnce gLinearGammasOnce; 81 gamma->fNamed = SkColorSpace::k2Dot2Curve_GammaNamed;
88 static SkGammas* gLinearGammas; 82 } else if (color_space_almost_equal(1.0f, value)) {
89 83 gamma->fNamed = SkColorSpace::kLinear_GammaNamed;
90 sk_sp<SkColorSpace> SkColorSpace::NewRGB(const float gammaVals[3], const SkMatri x44& toXYZD50) { 84 } else if (color_space_almost_equal(0.0f, value)) {
91 return SkColorSpace_Base::NewRGB(gammaVals, toXYZD50, nullptr); 85 SkColorSpacePrintf("Treating invalid zero gamma as linear.");
86 gamma->fNamed = SkColorSpace::kLinear_GammaNamed;
87 }
92 } 88 }
93 89
94 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(const float gammaVals[3], const Sk Matrix44& toXYZD50, 90 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(float values[3], const SkMatrix44& toXYZD50) {
95 sk_sp<SkData> profileData) { 91 SkGammaCurve curves[3];
96 sk_sp<SkGammas> gammas = nullptr; 92 set_gamma_value(&curves[0], values[0]);
97 GammaNamed gammaNamed = kNonStandard_GammaNamed; 93 set_gamma_value(&curves[1], values[1]);
94 set_gamma_value(&curves[2], values[2]);
98 95
99 // Check if we really have sRGB or Adobe RGB 96 GammaNamed gammaNamed = SkGammas::Named(curves);
100 if (color_space_almost_equal(2.2f, gammaVals[0]) && 97 if (kNonStandard_GammaNamed == gammaNamed) {
101 color_space_almost_equal(2.2f, gammaVals[1]) && 98 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::move(curv es[1]),
102 color_space_almost_equal(2.2f, gammaVals[2])) 99 std::move(curves[2])));
103 { 100 return sk_sp<SkColorSpace>(new SkColorSpace_Base(nullptr, gammas, toXYZD 50, nullptr));
104 g2Dot2CurveGammasOnce([] {
105 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f);
106 });
107 gammas = sk_ref_sp(g2Dot2CurveGammas);
108 gammaNamed = k2Dot2Curve_GammaNamed;
109
110 if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) {
111 return SkColorSpace::NewNamed(kSRGB_Named);
112 } else if (xyz_almost_equal(toXYZD50, gAdobeRGB_toXYZD50)) {
113 return SkColorSpace::NewNamed(kAdobeRGB_Named);
114 }
115 } else if (color_space_almost_equal(1.0f, gammaVals[0]) &&
116 color_space_almost_equal(1.0f, gammaVals[1]) &&
117 color_space_almost_equal(1.0f, gammaVals[2]))
118 {
119 gLinearGammasOnce([] {
120 gLinearGammas = new SkGammas(1.0f, 1.0f, 1.0f);
121 });
122 gammas = sk_ref_sp(gLinearGammas);
123 gammaNamed = kLinear_GammaNamed;
124 } 101 }
125 102
126 if (!gammas) { 103 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZD50, nullptr);
127 gammas = sk_sp<SkGammas>(new SkGammas(gammaVals[0], gammaVals[1], gammaV als[2])); 104 }
105
106 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(GammaNamed gammaNamed, const SkMat rix44& toXYZD50,
107 sk_sp<SkData> profileData) {
108 switch (gammaNamed) {
109 case kSRGB_GammaNamed:
110 if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) {
111 return SkColorSpace::NewNamed(kSRGB_Named);
112 }
113 break;
114 case k2Dot2Curve_GammaNamed:
115 if (xyz_almost_equal(toXYZD50, gAdobeRGB_toXYZD50)) {
116 return SkColorSpace::NewNamed(kAdobeRGB_Named);
117 }
118 break;
119 case kNonStandard_GammaNamed:
120 // This is not allowed.
121 return nullptr;
122 default:
123 break;
128 } 124 }
129 return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammas, gammaNamed, toXYZD5 0, kUnknown_Named, 125
130 std::move(profileData))); 126 return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammaNamed, toXYZD50, kUnkn own_Named,
127 profileData));
128 }
129
130 sk_sp<SkColorSpace> SkColorSpace::NewRGB(GammaNamed gammaNamed, const SkMatrix44 & toXYZD50) {
131 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZD50, nullptr);
131 } 132 }
132 133
133 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { 134 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) {
134 static SkOnce sRGBOnce; 135 static SkOnce sRGBOnce;
135 static SkColorSpace* sRGB; 136 static SkColorSpace* sRGB;
136 static SkOnce adobeRGBOnce; 137 static SkOnce adobeRGBOnce;
137 static SkColorSpace* adobeRGB; 138 static SkColorSpace* adobeRGB;
138 139
139 switch (named) { 140 switch (named) {
140 case kSRGB_Named: { 141 case kSRGB_Named: {
141 g2Dot2CurveGammasOnce([] {
142 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f);
143 });
144
145 sRGBOnce([] { 142 sRGBOnce([] {
146 SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor); 143 SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor);
147 srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50); 144 srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50);
148 sRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas), k2Dot 2Curve_GammaNamed, 145 sRGB = new SkColorSpace_Base(kSRGB_GammaNamed, srgbToxyzD50, kSR GB_Named, nullptr);
149 srgbToxyzD50, kSRGB_Named, nullptr) ;
150 }); 146 });
151 return sk_ref_sp(sRGB); 147 return sk_ref_sp(sRGB);
152 } 148 }
153 case kAdobeRGB_Named: { 149 case kAdobeRGB_Named: {
154 g2Dot2CurveGammasOnce([] {
155 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f);
156 });
157
158 adobeRGBOnce([] { 150 adobeRGBOnce([] {
159 SkMatrix44 adobergbToxyzD50(SkMatrix44::kUninitialized_Construct or); 151 SkMatrix44 adobergbToxyzD50(SkMatrix44::kUninitialized_Construct or);
160 adobergbToxyzD50.set3x3ColMajorf(gAdobeRGB_toXYZD50); 152 adobergbToxyzD50.set3x3ColMajorf(gAdobeRGB_toXYZD50);
161 adobeRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas), 153 adobeRGB = new SkColorSpace_Base(k2Dot2Curve_GammaNamed, adoberg bToxyzD50,
162 k2Dot2Curve_GammaNamed, adoberg bToxyzD50,
163 kAdobeRGB_Named, nullptr); 154 kAdobeRGB_Named, nullptr);
164 }); 155 });
165 return sk_ref_sp(adobeRGB); 156 return sk_ref_sp(adobeRGB);
166 } 157 }
167 default: 158 default:
168 break; 159 break;
169 } 160 }
170 return nullptr; 161 return nullptr;
171 } 162 }
172 163
173 //////////////////////////////////////////////////////////////////////////////// /////////////////// 164 //////////////////////////////////////////////////////////////////////////////// ///////////////////
174 165
175 #include "SkFixed.h" 166 #include "SkFixed.h"
176 #include "SkTemplates.h" 167 #include "SkTemplates.h"
177 168
178 #define SkColorSpacePrintf(...)
179
180 #define return_if_false(pred, msg) \ 169 #define return_if_false(pred, msg) \
181 do { \ 170 do { \
182 if (!(pred)) { \ 171 if (!(pred)) { \
183 SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \ 172 SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \
184 return false; \ 173 return false; \
185 } \ 174 } \
186 } while (0) 175 } while (0)
187 176
188 #define return_null(msg) \ 177 #define return_null(msg) \
189 do { \ 178 do { \
(...skipping 173 matching lines...) Expand 10 before | Expand all | Expand 10 after
363 }; 352 };
364 353
365 static constexpr uint32_t kTAG_rXYZ = SkSetFourByteTag('r', 'X', 'Y', 'Z'); 354 static constexpr uint32_t kTAG_rXYZ = SkSetFourByteTag('r', 'X', 'Y', 'Z');
366 static constexpr uint32_t kTAG_gXYZ = SkSetFourByteTag('g', 'X', 'Y', 'Z'); 355 static constexpr uint32_t kTAG_gXYZ = SkSetFourByteTag('g', 'X', 'Y', 'Z');
367 static constexpr uint32_t kTAG_bXYZ = SkSetFourByteTag('b', 'X', 'Y', 'Z'); 356 static constexpr uint32_t kTAG_bXYZ = SkSetFourByteTag('b', 'X', 'Y', 'Z');
368 static constexpr uint32_t kTAG_rTRC = SkSetFourByteTag('r', 'T', 'R', 'C'); 357 static constexpr uint32_t kTAG_rTRC = SkSetFourByteTag('r', 'T', 'R', 'C');
369 static constexpr uint32_t kTAG_gTRC = SkSetFourByteTag('g', 'T', 'R', 'C'); 358 static constexpr uint32_t kTAG_gTRC = SkSetFourByteTag('g', 'T', 'R', 'C');
370 static constexpr uint32_t kTAG_bTRC = SkSetFourByteTag('b', 'T', 'R', 'C'); 359 static constexpr uint32_t kTAG_bTRC = SkSetFourByteTag('b', 'T', 'R', 'C');
371 static constexpr uint32_t kTAG_A2B0 = SkSetFourByteTag('A', '2', 'B', '0'); 360 static constexpr uint32_t kTAG_A2B0 = SkSetFourByteTag('A', '2', 'B', '0');
372 361
373 bool load_xyz(float dst[3], const uint8_t* src, size_t len) { 362 static bool load_xyz(float dst[3], const uint8_t* src, size_t len) {
374 if (len < 20) { 363 if (len < 20) {
375 SkColorSpacePrintf("XYZ tag is too small (%d bytes)", len); 364 SkColorSpacePrintf("XYZ tag is too small (%d bytes)", len);
376 return false; 365 return false;
377 } 366 }
378 367
379 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8)); 368 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8));
380 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12)); 369 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12));
381 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16)); 370 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16));
382 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]); 371 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]);
383 return true; 372 return true;
384 } 373 }
385 374
386 static constexpr uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', ' v'); 375 static constexpr uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', ' v');
387 static constexpr uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', ' a'); 376 static constexpr uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', ' a');
388 377
389 bool load_gammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t* src, s ize_t len) { 378 static bool load_gammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t* src, size_t len) {
390 for (uint32_t i = 0; i < numGammas; i++) { 379 for (uint32_t i = 0; i < numGammas; i++) {
391 if (len < 12) { 380 if (len < 12) {
392 // FIXME (msarett): 381 // FIXME (msarett):
393 // We could potentially return false here after correctly parsing *s ome* of the 382 // We could potentially return false here after correctly parsing *s ome* of the
394 // gammas correctly. Should we somehow try to indicate a partial su ccess? 383 // gammas correctly. Should we somehow try to indicate a partial su ccess?
395 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); 384 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
396 return false; 385 return false;
397 } 386 }
398 387
399 // We need to count the number of bytes in the tag, so we are able to mo ve to the 388 // We need to count the number of bytes in the tag, so we are able to mo ve to the
(...skipping 11 matching lines...) Expand all
411 !safe_add((size_t) 12, tagBytes, &tagBytes)) 400 !safe_add((size_t) 12, tagBytes, &tagBytes))
412 { 401 {
413 SkColorSpacePrintf("Invalid gamma count"); 402 SkColorSpacePrintf("Invalid gamma count");
414 return false; 403 return false;
415 } 404 }
416 405
417 if (0 == count) { 406 if (0 == count) {
418 // Some tags require a gamma curve, but the author doesn't a ctually want 407 // Some tags require a gamma curve, but the author doesn't a ctually want
419 // to transform the data. In this case, it is common to see a curve with 408 // to transform the data. In this case, it is common to see a curve with
420 // a count of 0. 409 // a count of 0.
421 gammas[i].fValue = 1.0f; 410 gammas[i].fNamed = SkColorSpace::kLinear_GammaNamed;
422 break; 411 break;
423 } else if (len < tagBytes) { 412 } else if (len < tagBytes) {
424 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len) ; 413 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len) ;
425 return false; 414 return false;
426 } 415 }
427 416
428 const uint16_t* table = (const uint16_t*) (src + 12); 417 const uint16_t* table = (const uint16_t*) (src + 12);
429 if (1 == count) { 418 if (1 == count) {
430 // The table entry is the gamma (with a bias of 256). 419 // The table entry is the gamma (with a bias of 256).
431 uint16_t value = read_big_endian_short((const uint8_t*) tabl e); 420 float value = (read_big_endian_short((const uint8_t*) table) ) / 256.0f;
432 gammas[i].fValue = value / 256.0f; 421 set_gamma_value(&gammas[i], value);
433 if (0.0f == gammas[i].fValue) { 422 SkColorSpacePrintf("gamma %g\n", value);
434 SkColorSpacePrintf("Cannot have zero gamma value");
435 return false;
436 }
437 SkColorSpacePrintf("gamma %d %g\n", value, gammas[i].fValue) ;
438 break; 423 break;
439 } 424 }
440 425
441 // Check for frequently occurring curves and use a fast approxim ation. 426 // Check for frequently occurring sRGB curves.
442 // We do this by sampling a few values and see if they match our expectation. 427 // We do this by sampling a few values and see if they match our expectation.
443 // A more robust solution would be to compare each value in this curve against 428 // A more robust solution would be to compare each value in this curve against
444 // a 2.2f curve see if we remain below an error threshold. At t his time, 429 // an sRGB curve to see if we remain below an error threshold. At this time,
445 // we haven't seen any images in the wild that make this kind of 430 // we haven't seen any images in the wild that make this kind of
446 // calculation necessary. We encounter identical gamma curves o ver and 431 // calculation necessary. We encounter identical gamma curves o ver and
447 // over again, but relatively few variations. 432 // over again, but relatively few variations.
448 if (1024 == count) { 433 if (1024 == count) {
449 // The magic values were chosen because they match a very co mmon sRGB 434 // The magic values were chosen because they match a very co mmon sRGB
450 // gamma table and the less common Canon sRGB gamma table (w hich use 435 // gamma table and the less common Canon sRGB gamma table (w hich use
451 // different rounding rules). 436 // different rounding rules).
452 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & 437 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & &
453 3366 == read_big_endian_short((const uint8_t*) &tabl e[257]) && 438 3366 == read_big_endian_short((const uint8_t*) &tabl e[257]) &&
454 14116 == read_big_endian_short((const uint8_t*) &tab le[513]) && 439 14116 == read_big_endian_short((const uint8_t*) &tab le[513]) &&
455 34318 == read_big_endian_short((const uint8_t*) &tab le[768]) && 440 34318 == read_big_endian_short((const uint8_t*) &tab le[768]) &&
456 65535 == read_big_endian_short((const uint8_t*) &tab le[1023])) { 441 65535 == read_big_endian_short((const uint8_t*) &tab le[1023])) {
457 gammas[i].fValue = 2.2f; 442 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed;
458 break; 443 break;
459 } 444 }
460 } else if (26 == count) { 445 } else if (26 == count) {
461 // The magic values were chosen because they match a very co mmon sRGB 446 // The magic values were chosen because they match a very co mmon sRGB
462 // gamma table. 447 // gamma table.
463 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & 448 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & &
464 3062 == read_big_endian_short((const uint8_t*) &tabl e[6]) && 449 3062 == read_big_endian_short((const uint8_t*) &tabl e[6]) &&
465 12824 == read_big_endian_short((const uint8_t*) &tab le[12]) && 450 12824 == read_big_endian_short((const uint8_t*) &tab le[12]) &&
466 31237 == read_big_endian_short((const uint8_t*) &tab le[18]) && 451 31237 == read_big_endian_short((const uint8_t*) &tab le[18]) &&
467 65535 == read_big_endian_short((const uint8_t*) &tab le[25])) { 452 65535 == read_big_endian_short((const uint8_t*) &tab le[25])) {
468 gammas[i].fValue = 2.2f; 453 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed;
469 break; 454 break;
470 } 455 }
471 } else if (4096 == count) { 456 } else if (4096 == count) {
472 // The magic values were chosen because they match Nikon, Ep son, and 457 // The magic values were chosen because they match Nikon, Ep son, and
473 // LCMS sRGB gamma tables (all of which use different roundi ng rules). 458 // LCMS sRGB gamma tables (all of which use different roundi ng rules).
474 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & 459 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & &
475 950 == read_big_endian_short((const uint8_t*) &table [515]) && 460 950 == read_big_endian_short((const uint8_t*) &table [515]) &&
476 3342 == read_big_endian_short((const uint8_t*) &tabl e[1025]) && 461 3342 == read_big_endian_short((const uint8_t*) &tabl e[1025]) &&
477 14079 == read_big_endian_short((const uint8_t*) &tab le[2051]) && 462 14079 == read_big_endian_short((const uint8_t*) &tab le[2051]) &&
478 65535 == read_big_endian_short((const uint8_t*) &tab le[4095])) { 463 65535 == read_big_endian_short((const uint8_t*) &tab le[4095])) {
479 gammas[i].fValue = 2.2f; 464 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed;
480 break; 465 break;
481 } 466 }
482 } 467 }
483 468
484 // Otherwise, fill in the interpolation table. 469 // Otherwise, fill in the interpolation table.
485 gammas[i].fTableSize = count; 470 gammas[i].fTableSize = count;
486 gammas[i].fTable = std::unique_ptr<float[]>(new float[count]); 471 gammas[i].fTable = std::unique_ptr<float[]>(new float[count]);
487 for (uint32_t j = 0; j < count; j++) { 472 for (uint32_t j = 0; j < count; j++) {
488 gammas[i].fTable[j] = 473 gammas[i].fTable[j] =
489 (read_big_endian_short((const uint8_t*) &table[j])) / 65535.0f; 474 (read_big_endian_short((const uint8_t*) &table[j])) / 65535.0f;
(...skipping 13 matching lines...) Expand all
503 uint16_t format = read_big_endian_short(src + 8); 488 uint16_t format = read_big_endian_short(src + 8);
504 if (kExponential_ParaCurveType == format) { 489 if (kExponential_ParaCurveType == format) {
505 tagBytes = 12 + 4; 490 tagBytes = 12 + 4;
506 if (len < tagBytes) { 491 if (len < tagBytes) {
507 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); 492 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
508 return false; 493 return false;
509 } 494 }
510 495
511 // Y = X^g 496 // Y = X^g
512 int32_t g = read_big_endian_int(src + 12); 497 int32_t g = read_big_endian_int(src + 12);
513 gammas[i].fValue = SkFixedToFloat(g); 498 set_gamma_value(&gammas[i], SkFixedToFloat(g));
514 } else { 499 } else {
515 // Here's where the real parametric gammas start. There are many 500 // Here's where the real parametric gammas start. There are many
516 // permutations of the same equations. 501 // permutations of the same equations.
517 // 502 //
518 // Y = (aX + b)^g + c for X >= d 503 // Y = (aX + b)^g + c for X >= d
519 // Y = eX + f otherwise 504 // Y = eX + f otherwise
520 // 505 //
521 // We will fill in with zeros as necessary to always match t he above form. 506 // We will fill in with zeros as necessary to always match t he above form.
522 float g = 0.0f, a = 0.0f, b = 0.0f, c = 0.0f, d = 0.0f, e = 0.0f, f = 0.0f; 507 float g = 0.0f, a = 0.0f, b = 0.0f, c = 0.0f, d = 0.0f, e = 0.0f, f = 0.0f;
523 switch(format) { 508 switch(format) {
(...skipping 76 matching lines...) Expand 10 before | Expand all | Expand 10 after
600 } 585 }
601 586
602 // Recognize and simplify a very common parametric represent ation of sRGB gamma. 587 // Recognize and simplify a very common parametric represent ation of sRGB gamma.
603 if (color_space_almost_equal(0.9479f, a) && 588 if (color_space_almost_equal(0.9479f, a) &&
604 color_space_almost_equal(0.0521f, b) && 589 color_space_almost_equal(0.0521f, b) &&
605 color_space_almost_equal(0.0000f, c) && 590 color_space_almost_equal(0.0000f, c) &&
606 color_space_almost_equal(0.0405f, d) && 591 color_space_almost_equal(0.0405f, d) &&
607 color_space_almost_equal(0.0774f, e) && 592 color_space_almost_equal(0.0774f, e) &&
608 color_space_almost_equal(0.0000f, f) && 593 color_space_almost_equal(0.0000f, f) &&
609 color_space_almost_equal(2.4000f, g)) { 594 color_space_almost_equal(2.4000f, g)) {
610 gammas[i].fValue = 2.2f; 595 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed;
611 } else { 596 } else {
612 // Fail on invalid gammas. 597 // Fail on invalid gammas.
613 if (d <= 0.0f) { 598 if (d <= 0.0f) {
614 // Y = (aX + b)^g + c for always 599 // Y = (aX + b)^g + c for always
615 if (0.0f == a || 0.0f == g) { 600 if (0.0f == a || 0.0f == g) {
616 SkColorSpacePrintf("A or G is zero, constant gam ma function " 601 SkColorSpacePrintf("A or G is zero, constant gam ma function "
617 "is nonsense"); 602 "is nonsense");
618 return false; 603 return false;
619 } 604 }
620 } else if (d >= 1.0f) { 605 } else if (d >= 1.0f) {
(...skipping 20 matching lines...) Expand all
641 } 626 }
642 627
643 break; 628 break;
644 } 629 }
645 default: 630 default:
646 SkColorSpacePrintf("Unsupported gamma tag type %d\n", type); 631 SkColorSpacePrintf("Unsupported gamma tag type %d\n", type);
647 return false; 632 return false;
648 } 633 }
649 634
650 // Ensure that we have successfully read a gamma representation. 635 // Ensure that we have successfully read a gamma representation.
651 SkASSERT(gammas[i].isValue() || gammas[i].isTable() || gammas[i].isParam etric()); 636 SkASSERT(gammas[i].isNamed() || gammas[i].isValue() || gammas[i].isTable () ||
637 gammas[i].isParametric());
652 638
653 // Adjust src and len if there is another gamma curve to load. 639 // Adjust src and len if there is another gamma curve to load.
654 if (i != numGammas - 1) { 640 if (i != numGammas - 1) {
655 // Each curve is padded to 4-byte alignment. 641 // Each curve is padded to 4-byte alignment.
656 tagBytes = SkAlign4(tagBytes); 642 tagBytes = SkAlign4(tagBytes);
657 if (len < tagBytes) { 643 if (len < tagBytes) {
658 return false; 644 return false;
659 } 645 }
660 646
661 src += tagBytes; 647 src += tagBytes;
(...skipping 127 matching lines...) Expand 10 before | Expand all | Expand 10 after
789 if (0 != offsetToColorLUT && offsetToColorLUT < len) { 775 if (0 != offsetToColorLUT && offsetToColorLUT < len) {
790 if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offse tToColorLUT, 776 if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offse tToColorLUT,
791 len - offsetToColorLUT)) { 777 len - offsetToColorLUT)) {
792 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n"); 778 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n");
793 } 779 }
794 } 780 }
795 781
796 uint32_t offsetToMCurves = read_big_endian_int(src + 20); 782 uint32_t offsetToMCurves = read_big_endian_int(src + 20);
797 if (0 != offsetToMCurves && offsetToMCurves < len) { 783 if (0 != offsetToMCurves && offsetToMCurves < len) {
798 if (!load_gammas(gammas, outputChannels, src + offsetToMCurves, len - of fsetToMCurves)) { 784 if (!load_gammas(gammas, outputChannels, src + offsetToMCurves, len - of fsetToMCurves)) {
799 SkColorSpacePrintf("Failed to read M curves from A to B tag.\n"); 785 SkColorSpacePrintf("Failed to read M curves from A to B tag. Using linear gamma.\n");
786 gammas[0].fNamed = SkColorSpace::kLinear_GammaNamed;
787 gammas[1].fNamed = SkColorSpace::kLinear_GammaNamed;
788 gammas[2].fNamed = SkColorSpace::kLinear_GammaNamed;
800 } 789 }
801 } 790 }
802 791
803 uint32_t offsetToMatrix = read_big_endian_int(src + 16); 792 uint32_t offsetToMatrix = read_big_endian_int(src + 16);
804 if (0 != offsetToMatrix && offsetToMatrix < len) { 793 if (0 != offsetToMatrix && offsetToMatrix < len) {
805 if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) { 794 if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) {
806 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); 795 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n");
796 toXYZ->setIdentity();
807 } 797 }
808 } 798 }
809 799
810 return true; 800 return true;
811 } 801 }
812 802
813 sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* input, size_t len) { 803 sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* input, size_t len) {
814 if (!input || len < kICCHeaderSize) { 804 if (!input || len < kICCHeaderSize) {
815 return_null("Data is null or not large enough to contain an ICC profile" ); 805 return_null("Data is null or not large enough to contain an ICC profile" );
816 } 806 }
(...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after
865 const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ); 855 const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ);
866 const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ); 856 const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ);
867 if (r && g && b) { 857 if (r && g && b) {
868 float toXYZ[9]; 858 float toXYZ[9];
869 if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLen gth) || 859 if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLen gth) ||
870 !load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLen gth) || 860 !load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLen gth) ||
871 !load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLen gth)) 861 !load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLen gth))
872 { 862 {
873 return_null("Need valid rgb tags for XYZ space"); 863 return_null("Need valid rgb tags for XYZ space");
874 } 864 }
865 SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor);
866 mat.set3x3ColMajorf(toXYZ);
875 867
876 // It is not uncommon to see missing or empty gamma tags. This indicates 868 // It is not uncommon to see missing or empty gamma tags. This indicates
877 // that we should use unit gamma. 869 // that we should use unit gamma.
878 SkGammaCurve curves[3]; 870 SkGammaCurve curves[3];
879 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC); 871 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC);
880 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC); 872 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC);
881 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC); 873 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC);
882 if (!r || !load_gammas(&curves[0], 1, r->addr((const uint8_t*) b ase), r->fLength)) 874 if (!r || !load_gammas(&curves[0], 1, r->addr((const uint8_t*) b ase), r->fLength))
883 { 875 {
884 SkColorSpacePrintf("Failed to read R gamma tag.\n"); 876 SkColorSpacePrintf("Failed to read R gamma tag.\n");
877 curves[0].fNamed = SkColorSpace::kLinear_GammaNamed;
885 } 878 }
886 if (!g || !load_gammas(&curves[1], 1, g->addr((const uint8_t*) b ase), g->fLength)) 879 if (!g || !load_gammas(&curves[1], 1, g->addr((const uint8_t*) b ase), g->fLength))
887 { 880 {
888 SkColorSpacePrintf("Failed to read G gamma tag.\n"); 881 SkColorSpacePrintf("Failed to read G gamma tag.\n");
882 curves[1].fNamed = SkColorSpace::kLinear_GammaNamed;
889 } 883 }
890 if (!b || !load_gammas(&curves[2], 1, b->addr((const uint8_t*) b ase), b->fLength)) 884 if (!b || !load_gammas(&curves[2], 1, b->addr((const uint8_t*) b ase), b->fLength))
891 { 885 {
892 SkColorSpacePrintf("Failed to read B gamma tag.\n"); 886 SkColorSpacePrintf("Failed to read B gamma tag.\n");
887 curves[2].fNamed = SkColorSpace::kLinear_GammaNamed;
893 } 888 }
894 889
895 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::m ove(curves[1]), 890 GammaNamed gammaNamed = SkGammas::Named(curves);
896 std::move(curves[2]))); 891 if (kNonStandard_GammaNamed == gammaNamed) {
897 SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); 892 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), st d::move(curves[1]),
898 mat.set3x3ColMajorf(toXYZ); 893 std::move(curves[2])));
899 if (gammas->isValues()) { 894 return sk_sp<SkColorSpace>(new SkColorSpace_Base(nullptr, st d::move(gammas),
900 // When we have values, take advantage of the NewFromRGB ini tializer. 895 mat, std::m ove(data)));
901 // This allows us to check for canonical sRGB and Adobe RGB.
902 float gammaVals[3];
903 gammaVals[0] = gammas->fRed.fValue;
904 gammaVals[1] = gammas->fGreen.fValue;
905 gammaVals[2] = gammas->fBlue.fValue;
906 return SkColorSpace_Base::NewRGB(gammaVals, mat, std::move(d ata));
907 } else { 896 } else {
908 return sk_sp<SkColorSpace>(new SkColorSpace_Base(std::move(g ammas), mat, 897 return SkColorSpace_Base::NewRGB(gammaNamed, mat, std::move( data));
909 kUnknown_Na med,
910 std::move(d ata)));
911 } 898 }
912 } 899 }
913 900
914 // Recognize color profile specified by A2B0 tag. 901 // Recognize color profile specified by A2B0 tag.
915 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0); 902 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0);
916 if (a2b0) { 903 if (a2b0) {
917 SkAutoTDelete<SkColorLookUpTable> colorLUT(new SkColorLookUpTabl e()); 904 SkAutoTDelete<SkColorLookUpTable> colorLUT(new SkColorLookUpTabl e());
918 SkGammaCurve curves[3]; 905 SkGammaCurve curves[3];
919 SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor); 906 SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor);
920 if (!load_a2b0(colorLUT, curves, &toXYZ, a2b0->addr((const uint8 _t*) base), 907 if (!load_a2b0(colorLUT, curves, &toXYZ, a2b0->addr((const uint8 _t*) base),
921 a2b0->fLength)) { 908 a2b0->fLength)) {
922 return_null("Failed to parse A2B0 tag"); 909 return_null("Failed to parse A2B0 tag");
923 } 910 }
924 911
925 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::m ove(curves[1]), 912 GammaNamed gammaNamed = SkGammas::Named(curves);
926 std::move(curves[2]))); 913 if (colorLUT->fTable || kNonStandard_GammaNamed == gammaNamed) {
927 if (colorLUT->fTable) { 914 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), st d::move(curves[1]),
915 std::move(curves[2])));
916
928 return sk_sp<SkColorSpace>(new SkColorSpace_Base(colorLUT.re lease(), 917 return sk_sp<SkColorSpace>(new SkColorSpace_Base(colorLUT.re lease(),
929 std::move(g ammas), toXYZ, 918 std::move(g ammas), toXYZ,
930 std::move(d ata))); 919 std::move(d ata)));
931 } else if (gammas->isValues()) {
932 // When we have values, take advantage of the NewFromRGB ini tializer.
933 // This allows us to check for canonical sRGB and Adobe RGB.
934 float gammaVals[3];
935 gammaVals[0] = gammas->fRed.fValue;
936 gammaVals[1] = gammas->fGreen.fValue;
937 gammaVals[2] = gammas->fBlue.fValue;
938 return SkColorSpace_Base::NewRGB(gammaVals, toXYZ, std::move (data));
939 } else { 920 } else {
940 return sk_sp<SkColorSpace>(new SkColorSpace_Base(std::move(g ammas), toXYZ, 921 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZ, std::mov e(data));
941 kUnknown_Na med,
942 std::move(d ata)));
943 } 922 }
944 } 923 }
945 } 924 }
946 default: 925 default:
947 break; 926 break;
948 } 927 }
949 928
950 return_null("ICC profile contains unsupported colorspace"); 929 return_null("ICC profile contains unsupported colorspace");
951 } 930 }
952 931
(...skipping 119 matching lines...) Expand 10 before | Expand all | Expand 10 after
1072 ptr[2] = SkEndian_SwapBE32(1); 1051 ptr[2] = SkEndian_SwapBE32(1);
1073 1052
1074 // Convert gamma to 16-bit fixed point. 1053 // Convert gamma to 16-bit fixed point.
1075 uint16_t* ptr16 = (uint16_t*) (ptr + 3); 1054 uint16_t* ptr16 = (uint16_t*) (ptr + 3);
1076 ptr16[0] = SkEndian_SwapBE16((uint16_t) (value * 256.0f)); 1055 ptr16[0] = SkEndian_SwapBE16((uint16_t) (value * 256.0f));
1077 1056
1078 // Pad tag with zero. 1057 // Pad tag with zero.
1079 ptr16[1] = 0; 1058 ptr16[1] = 0;
1080 } 1059 }
1081 1060
1061 static float get_gamma_value(const SkGammaCurve* curve) {
1062 switch (curve->fNamed) {
1063 case SkColorSpace::kSRGB_GammaNamed:
1064 // FIXME (msarett): kSRGB cannot be represented by a value.
1065 case SkColorSpace::k2Dot2Curve_GammaNamed:
1066 return 2.2f;
1067 case SkColorSpace::kLinear_GammaNamed:
1068 return 1.0f;
1069 default:
1070 SkASSERT(curve->isValue());
1071 return curve->fValue;
1072 }
1073 }
1074
1082 sk_sp<SkData> SkColorSpace_Base::writeToICC() const { 1075 sk_sp<SkData> SkColorSpace_Base::writeToICC() const {
1083 // Return if this object was created from a profile, or if we have already s erialized 1076 // Return if this object was created from a profile, or if we have already s erialized
1084 // the profile. 1077 // the profile.
1085 if (fProfileData) { 1078 if (fProfileData) {
1086 return fProfileData; 1079 return fProfileData;
1087 } 1080 }
1088 1081
1089 // The client may create an SkColorSpace using an SkMatrix44, but currently we only 1082 // The client may create an SkColorSpace using an SkMatrix44, but currently we only
1090 // support writing profiles with 3x3 matrices. 1083 // support writing profiles with 3x3 matrices.
1091 // TODO (msarett): Fix this! 1084 // TODO (msarett): Fix this!
(...skipping 21 matching lines...) Expand all
1113 1106
1114 // Write XYZ tags 1107 // Write XYZ tags
1115 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 0); 1108 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 0);
1116 ptr += kTAG_XYZ_Bytes; 1109 ptr += kTAG_XYZ_Bytes;
1117 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 1); 1110 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 1);
1118 ptr += kTAG_XYZ_Bytes; 1111 ptr += kTAG_XYZ_Bytes;
1119 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 2); 1112 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 2);
1120 ptr += kTAG_XYZ_Bytes; 1113 ptr += kTAG_XYZ_Bytes;
1121 1114
1122 // Write TRC tags 1115 // Write TRC tags
1123 SkASSERT(as_CSB(this)->fGammas->fRed.isValue()); 1116 GammaNamed gammaNamed = this->gammaNamed();
1124 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fRed.fValue); 1117 if (kNonStandard_GammaNamed == gammaNamed) {
1125 ptr += SkAlign4(kTAG_TRC_Bytes); 1118 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f Red));
1126 SkASSERT(as_CSB(this)->fGammas->fGreen.isValue()); 1119 ptr += SkAlign4(kTAG_TRC_Bytes);
1127 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fGreen.fValue); 1120 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f Green));
1128 ptr += SkAlign4(kTAG_TRC_Bytes); 1121 ptr += SkAlign4(kTAG_TRC_Bytes);
1129 SkASSERT(as_CSB(this)->fGammas->fBlue.isValue()); 1122 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f Blue));
1130 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fBlue.fValue); 1123 ptr += SkAlign4(kTAG_TRC_Bytes);
1131 ptr += SkAlign4(kTAG_TRC_Bytes); 1124 } else {
1125 switch (gammaNamed) {
1126 case SkColorSpace::kSRGB_GammaNamed:
1127 // FIXME (msarett): kSRGB cannot be represented by a value.
1128 case SkColorSpace::k2Dot2Curve_GammaNamed:
1129 write_trc_tag((uint32_t*) ptr, 2.2f);
1130 ptr += SkAlign4(kTAG_TRC_Bytes);
1131 write_trc_tag((uint32_t*) ptr, 2.2f);
1132 ptr += SkAlign4(kTAG_TRC_Bytes);
1133 write_trc_tag((uint32_t*) ptr, 2.2f);
1134 ptr += SkAlign4(kTAG_TRC_Bytes);
1135 break;
1136 case SkColorSpace::kLinear_GammaNamed:
1137 write_trc_tag((uint32_t*) ptr, 1.0f);
1138 ptr += SkAlign4(kTAG_TRC_Bytes);
1139 write_trc_tag((uint32_t*) ptr, 1.0f);
1140 ptr += SkAlign4(kTAG_TRC_Bytes);
1141 write_trc_tag((uint32_t*) ptr, 1.0f);
1142 ptr += SkAlign4(kTAG_TRC_Bytes);
1143 break;
1144 default:
1145 SkASSERT(false);
1146 break;
1147 }
1148 }
1132 1149
1133 // Write white point tag 1150 // Write white point tag
1134 uint32_t* ptr32 = (uint32_t*) ptr; 1151 uint32_t* ptr32 = (uint32_t*) ptr;
1135 ptr32[0] = SkEndian_SwapBE32(kXYZ_PCSSpace); 1152 ptr32[0] = SkEndian_SwapBE32(kXYZ_PCSSpace);
1136 ptr32[1] = 0; 1153 ptr32[1] = 0;
1137 // TODO (msarett): These values correspond to the D65 white point. This may not always be 1154 // TODO (msarett): These values correspond to the D65 white point. This may not always be
1138 // correct. 1155 // correct.
1139 ptr32[2] = SkEndian_SwapBE32(0x0000f351); 1156 ptr32[2] = SkEndian_SwapBE32(0x0000f351);
1140 ptr32[3] = SkEndian_SwapBE32(0x00010000); 1157 ptr32[3] = SkEndian_SwapBE32(0x00010000);
1141 ptr32[4] = SkEndian_SwapBE32(0x000116cc); 1158 ptr32[4] = SkEndian_SwapBE32(0x000116cc);
1142 ptr += kTAG_XYZ_Bytes; 1159 ptr += kTAG_XYZ_Bytes;
1143 1160
1144 // Write copyright tag 1161 // Write copyright tag
1145 memcpy(ptr, gEmptyTextTag, sizeof(gEmptyTextTag)); 1162 memcpy(ptr, gEmptyTextTag, sizeof(gEmptyTextTag));
1146 1163
1147 // TODO (msarett): Should we try to hold onto the data so we can return imme diately if 1164 // TODO (msarett): Should we try to hold onto the data so we can return imme diately if
1148 // the client calls again? 1165 // the client calls again?
1149 return SkData::MakeFromMalloc(profile.release(), kICCProfileSize); 1166 return SkData::MakeFromMalloc(profile.release(), kICCProfileSize);
1150 } 1167 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698