Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 /* | 1 /* |
| 2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #include "SkColorSpace.h" | 8 #include "SkColorSpace.h" |
| 9 #include "SkColorSpace_Base.h" | 9 #include "SkColorSpace_Base.h" |
| 10 #include "SkEndian.h" | 10 #include "SkEndian.h" |
| 11 #include "SkOnce.h" | 11 #include "SkOnce.h" |
| 12 | 12 |
| 13 #define SkColorSpacePrintf(...) | |
| 14 | |
| 13 static bool color_space_almost_equal(float a, float b) { | 15 static bool color_space_almost_equal(float a, float b) { |
| 14 return SkTAbs(a - b) < 0.01f; | 16 return SkTAbs(a - b) < 0.01f; |
| 15 } | 17 } |
| 16 | 18 |
| 17 //////////////////////////////////////////////////////////////////////////////// ////////////////// | 19 //////////////////////////////////////////////////////////////////////////////// ////////////////// |
| 18 | 20 |
| 19 SkColorSpace::SkColorSpace(GammaNamed gammaNamed, const SkMatrix44& toXYZD50, Na med named) | 21 SkColorSpace::SkColorSpace(GammaNamed gammaNamed, const SkMatrix44& toXYZD50, Na med named) |
| 20 : fGammaNamed(gammaNamed) | 22 : fGammaNamed(gammaNamed) |
| 21 , fToXYZD50(toXYZD50) | 23 , fToXYZD50(toXYZD50) |
| 22 , fNamed(named) | 24 , fNamed(named) |
| 23 {} | 25 {} |
| 24 | 26 |
| 25 SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, const SkMatrix44& t oXYZD50, | 27 SkColorSpace_Base::SkColorSpace_Base(GammaNamed gammaNamed, const SkMatrix44& to XYZD50, Named named, |
|
msarett
2016/06/14 21:30:28
Now SkColorSpace's have a GammaNamed *or* the incr
| |
| 26 Named named, sk_sp<SkData> profileData) | 28 sk_sp<SkData> profileData) |
| 27 : INHERITED(kNonStandard_GammaNamed, toXYZD50, named) | 29 : INHERITED(gammaNamed, toXYZD50, named) |
| 28 , fGammas(std::move(gammas)) | 30 , fGammas(nullptr) |
| 29 , fProfileData(std::move(profileData)) | 31 , fProfileData(std::move(profileData)) |
| 30 {} | 32 {} |
| 31 | 33 |
| 32 SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, GammaNamed gammaNam ed, | |
| 33 const SkMatrix44& toXYZD50, Named named, | |
| 34 sk_sp<SkData> profileData) | |
| 35 : INHERITED(gammaNamed, toXYZD50, named) | |
| 36 , fGammas(std::move(gammas)) | |
| 37 , fProfileData(std::move(profileData)) | |
| 38 {} | |
| 39 | |
| 40 SkColorSpace_Base::SkColorSpace_Base(SkColorLookUpTable* colorLUT, sk_sp<SkGamma s> gammas, | 34 SkColorSpace_Base::SkColorSpace_Base(SkColorLookUpTable* colorLUT, sk_sp<SkGamma s> gammas, |
| 41 const SkMatrix44& toXYZD50, sk_sp<SkData> p rofileData) | 35 const SkMatrix44& toXYZD50, sk_sp<SkData> p rofileData) |
| 42 : INHERITED(kNonStandard_GammaNamed, toXYZD50, kUnknown_Named) | 36 : INHERITED(kNonStandard_GammaNamed, toXYZD50, kUnknown_Named) |
| 43 , fColorLUT(colorLUT) | 37 , fColorLUT(colorLUT) |
| 44 , fGammas(std::move(gammas)) | 38 , fGammas(std::move(gammas)) |
| 45 , fProfileData(std::move(profileData)) | 39 , fProfileData(std::move(profileData)) |
| 46 {} | 40 {} |
| 47 | 41 |
| 48 static constexpr float gSRGB_toXYZD50[] { | 42 static constexpr float gSRGB_toXYZD50[] { |
| 49 0.4358f, 0.2224f, 0.0139f, // * R | 43 0.4358f, 0.2224f, 0.0139f, // * R |
| (...skipping 25 matching lines...) Expand all Loading... | |
| 75 color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) && | 69 color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) && |
| 76 color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) && | 70 color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) && |
| 77 color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) && | 71 color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) && |
| 78 color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) && | 72 color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) && |
| 79 color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) && | 73 color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) && |
| 80 color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) && | 74 color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) && |
| 81 color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) && | 75 color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) && |
| 82 color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f); | 76 color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f); |
| 83 } | 77 } |
| 84 | 78 |
| 85 static SkOnce g2Dot2CurveGammasOnce; | 79 static void set_gamma_value(SkGammaCurve* gamma, float value) { |
| 86 static SkGammas* g2Dot2CurveGammas; | 80 if (color_space_almost_equal(2.2f, value)) { |
| 87 static SkOnce gLinearGammasOnce; | 81 gamma->fNamed = SkColorSpace::k2Dot2Curve_GammaNamed; |
| 88 static SkGammas* gLinearGammas; | 82 } else if (color_space_almost_equal(1.0f, value)) { |
| 89 | 83 gamma->fNamed = SkColorSpace::kLinear_GammaNamed; |
| 90 sk_sp<SkColorSpace> SkColorSpace::NewRGB(const float gammaVals[3], const SkMatri x44& toXYZD50) { | 84 } else if (color_space_almost_equal(0.0f, value)) { |
| 91 return SkColorSpace_Base::NewRGB(gammaVals, toXYZD50, nullptr); | 85 SkColorSpacePrintf("Treating invalid zero gamma as linear."); |
| 86 gamma->fNamed = SkColorSpace::kLinear_GammaNamed; | |
| 87 } | |
| 92 } | 88 } |
| 93 | 89 |
| 94 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(const float gammaVals[3], const Sk Matrix44& toXYZD50, | 90 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(float values[3], const SkMatrix44& toXYZD50) { |
| 95 sk_sp<SkData> profileData) { | 91 SkGammaCurve curves[3]; |
| 96 sk_sp<SkGammas> gammas = nullptr; | 92 set_gamma_value(&curves[0], values[0]); |
| 97 GammaNamed gammaNamed = kNonStandard_GammaNamed; | 93 set_gamma_value(&curves[1], values[1]); |
| 94 set_gamma_value(&curves[2], values[2]); | |
| 98 | 95 |
| 99 // Check if we really have sRGB or Adobe RGB | 96 GammaNamed gammaNamed = SkGammas::Named(curves); |
| 100 if (color_space_almost_equal(2.2f, gammaVals[0]) && | 97 if (kNonStandard_GammaNamed == gammaNamed) { |
| 101 color_space_almost_equal(2.2f, gammaVals[1]) && | 98 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::move(curv es[1]), |
| 102 color_space_almost_equal(2.2f, gammaVals[2])) | 99 std::move(curves[2]))); |
| 103 { | 100 return sk_sp<SkColorSpace>(new SkColorSpace_Base(nullptr, gammas, toXYZD 50, nullptr)); |
| 104 g2Dot2CurveGammasOnce([] { | |
| 105 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f); | |
| 106 }); | |
| 107 gammas = sk_ref_sp(g2Dot2CurveGammas); | |
| 108 gammaNamed = k2Dot2Curve_GammaNamed; | |
| 109 | |
| 110 if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) { | |
| 111 return SkColorSpace::NewNamed(kSRGB_Named); | |
| 112 } else if (xyz_almost_equal(toXYZD50, gAdobeRGB_toXYZD50)) { | |
| 113 return SkColorSpace::NewNamed(kAdobeRGB_Named); | |
| 114 } | |
| 115 } else if (color_space_almost_equal(1.0f, gammaVals[0]) && | |
| 116 color_space_almost_equal(1.0f, gammaVals[1]) && | |
| 117 color_space_almost_equal(1.0f, gammaVals[2])) | |
| 118 { | |
| 119 gLinearGammasOnce([] { | |
| 120 gLinearGammas = new SkGammas(1.0f, 1.0f, 1.0f); | |
| 121 }); | |
| 122 gammas = sk_ref_sp(gLinearGammas); | |
| 123 gammaNamed = kLinear_GammaNamed; | |
| 124 } | 101 } |
| 125 | 102 |
| 126 if (!gammas) { | 103 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZD50, nullptr); |
| 127 gammas = sk_sp<SkGammas>(new SkGammas(gammaVals[0], gammaVals[1], gammaV als[2])); | 104 } |
| 105 | |
| 106 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(GammaNamed gammaNamed, const SkMat rix44& toXYZD50, | |
| 107 sk_sp<SkData> profileData) { | |
| 108 switch (gammaNamed) { | |
| 109 case kSRGB_GammaNamed: | |
| 110 if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) { | |
| 111 return SkColorSpace::NewNamed(kSRGB_Named); | |
| 112 } | |
| 113 break; | |
| 114 case k2Dot2Curve_GammaNamed: | |
| 115 if (xyz_almost_equal(toXYZD50, gAdobeRGB_toXYZD50)) { | |
| 116 return SkColorSpace::NewNamed(kAdobeRGB_Named); | |
| 117 } | |
| 118 break; | |
| 119 case kNonStandard_GammaNamed: | |
| 120 // This is not allowed. | |
| 121 return nullptr; | |
| 122 default: | |
| 123 break; | |
| 128 } | 124 } |
| 129 return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammas, gammaNamed, toXYZD5 0, kUnknown_Named, | 125 |
| 130 std::move(profileData))); | 126 return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammaNamed, toXYZD50, kUnkn own_Named, |
| 127 profileData)); | |
| 128 } | |
| 129 | |
| 130 sk_sp<SkColorSpace> SkColorSpace::NewRGB(GammaNamed gammaNamed, const SkMatrix44 & toXYZD50) { | |
| 131 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZD50, nullptr); | |
| 131 } | 132 } |
| 132 | 133 |
| 133 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { | 134 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { |
| 134 static SkOnce sRGBOnce; | 135 static SkOnce sRGBOnce; |
| 135 static SkColorSpace* sRGB; | 136 static SkColorSpace* sRGB; |
| 136 static SkOnce adobeRGBOnce; | 137 static SkOnce adobeRGBOnce; |
| 137 static SkColorSpace* adobeRGB; | 138 static SkColorSpace* adobeRGB; |
| 138 | 139 |
| 139 switch (named) { | 140 switch (named) { |
| 140 case kSRGB_Named: { | 141 case kSRGB_Named: { |
| 141 g2Dot2CurveGammasOnce([] { | |
| 142 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f); | |
| 143 }); | |
| 144 | |
| 145 sRGBOnce([] { | 142 sRGBOnce([] { |
| 146 SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor); | 143 SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor); |
| 147 srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50); | 144 srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50); |
| 148 sRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas), k2Dot 2Curve_GammaNamed, | 145 sRGB = new SkColorSpace_Base(kSRGB_GammaNamed, srgbToxyzD50, kSR GB_Named, nullptr); |
| 149 srgbToxyzD50, kSRGB_Named, nullptr) ; | |
| 150 }); | 146 }); |
| 151 return sk_ref_sp(sRGB); | 147 return sk_ref_sp(sRGB); |
| 152 } | 148 } |
| 153 case kAdobeRGB_Named: { | 149 case kAdobeRGB_Named: { |
| 154 g2Dot2CurveGammasOnce([] { | |
| 155 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f); | |
| 156 }); | |
| 157 | |
| 158 adobeRGBOnce([] { | 150 adobeRGBOnce([] { |
| 159 SkMatrix44 adobergbToxyzD50(SkMatrix44::kUninitialized_Construct or); | 151 SkMatrix44 adobergbToxyzD50(SkMatrix44::kUninitialized_Construct or); |
| 160 adobergbToxyzD50.set3x3ColMajorf(gAdobeRGB_toXYZD50); | 152 adobergbToxyzD50.set3x3ColMajorf(gAdobeRGB_toXYZD50); |
| 161 adobeRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas), | 153 adobeRGB = new SkColorSpace_Base(k2Dot2Curve_GammaNamed, adoberg bToxyzD50, |
| 162 k2Dot2Curve_GammaNamed, adoberg bToxyzD50, | |
| 163 kAdobeRGB_Named, nullptr); | 154 kAdobeRGB_Named, nullptr); |
| 164 }); | 155 }); |
| 165 return sk_ref_sp(adobeRGB); | 156 return sk_ref_sp(adobeRGB); |
| 166 } | 157 } |
| 167 default: | 158 default: |
| 168 break; | 159 break; |
| 169 } | 160 } |
| 170 return nullptr; | 161 return nullptr; |
| 171 } | 162 } |
| 172 | 163 |
| 173 //////////////////////////////////////////////////////////////////////////////// /////////////////// | 164 //////////////////////////////////////////////////////////////////////////////// /////////////////// |
| 174 | 165 |
| 175 #include "SkFixed.h" | 166 #include "SkFixed.h" |
| 176 #include "SkTemplates.h" | 167 #include "SkTemplates.h" |
| 177 | 168 |
| 178 #define SkColorSpacePrintf(...) | |
| 179 | |
| 180 #define return_if_false(pred, msg) \ | 169 #define return_if_false(pred, msg) \ |
| 181 do { \ | 170 do { \ |
| 182 if (!(pred)) { \ | 171 if (!(pred)) { \ |
| 183 SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \ | 172 SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \ |
| 184 return false; \ | 173 return false; \ |
| 185 } \ | 174 } \ |
| 186 } while (0) | 175 } while (0) |
| 187 | 176 |
| 188 #define return_null(msg) \ | 177 #define return_null(msg) \ |
| 189 do { \ | 178 do { \ |
| (...skipping 173 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 363 }; | 352 }; |
| 364 | 353 |
| 365 static constexpr uint32_t kTAG_rXYZ = SkSetFourByteTag('r', 'X', 'Y', 'Z'); | 354 static constexpr uint32_t kTAG_rXYZ = SkSetFourByteTag('r', 'X', 'Y', 'Z'); |
| 366 static constexpr uint32_t kTAG_gXYZ = SkSetFourByteTag('g', 'X', 'Y', 'Z'); | 355 static constexpr uint32_t kTAG_gXYZ = SkSetFourByteTag('g', 'X', 'Y', 'Z'); |
| 367 static constexpr uint32_t kTAG_bXYZ = SkSetFourByteTag('b', 'X', 'Y', 'Z'); | 356 static constexpr uint32_t kTAG_bXYZ = SkSetFourByteTag('b', 'X', 'Y', 'Z'); |
| 368 static constexpr uint32_t kTAG_rTRC = SkSetFourByteTag('r', 'T', 'R', 'C'); | 357 static constexpr uint32_t kTAG_rTRC = SkSetFourByteTag('r', 'T', 'R', 'C'); |
| 369 static constexpr uint32_t kTAG_gTRC = SkSetFourByteTag('g', 'T', 'R', 'C'); | 358 static constexpr uint32_t kTAG_gTRC = SkSetFourByteTag('g', 'T', 'R', 'C'); |
| 370 static constexpr uint32_t kTAG_bTRC = SkSetFourByteTag('b', 'T', 'R', 'C'); | 359 static constexpr uint32_t kTAG_bTRC = SkSetFourByteTag('b', 'T', 'R', 'C'); |
| 371 static constexpr uint32_t kTAG_A2B0 = SkSetFourByteTag('A', '2', 'B', '0'); | 360 static constexpr uint32_t kTAG_A2B0 = SkSetFourByteTag('A', '2', 'B', '0'); |
| 372 | 361 |
| 373 bool load_xyz(float dst[3], const uint8_t* src, size_t len) { | 362 static bool load_xyz(float dst[3], const uint8_t* src, size_t len) { |
| 374 if (len < 20) { | 363 if (len < 20) { |
| 375 SkColorSpacePrintf("XYZ tag is too small (%d bytes)", len); | 364 SkColorSpacePrintf("XYZ tag is too small (%d bytes)", len); |
| 376 return false; | 365 return false; |
| 377 } | 366 } |
| 378 | 367 |
| 379 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8)); | 368 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8)); |
| 380 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12)); | 369 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12)); |
| 381 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16)); | 370 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16)); |
| 382 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]); | 371 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]); |
| 383 return true; | 372 return true; |
| 384 } | 373 } |
| 385 | 374 |
| 386 static constexpr uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', ' v'); | 375 static constexpr uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', ' v'); |
| 387 static constexpr uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', ' a'); | 376 static constexpr uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', ' a'); |
| 388 | 377 |
| 389 bool load_gammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t* src, s ize_t len) { | 378 static bool load_gammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t* src, size_t len) { |
| 390 for (uint32_t i = 0; i < numGammas; i++) { | 379 for (uint32_t i = 0; i < numGammas; i++) { |
| 391 if (len < 12) { | 380 if (len < 12) { |
| 392 // FIXME (msarett): | 381 // FIXME (msarett): |
| 393 // We could potentially return false here after correctly parsing *s ome* of the | 382 // We could potentially return false here after correctly parsing *s ome* of the |
| 394 // gammas correctly. Should we somehow try to indicate a partial su ccess? | 383 // gammas correctly. Should we somehow try to indicate a partial su ccess? |
| 395 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); | 384 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); |
| 396 return false; | 385 return false; |
| 397 } | 386 } |
| 398 | 387 |
| 399 // We need to count the number of bytes in the tag, so we are able to mo ve to the | 388 // We need to count the number of bytes in the tag, so we are able to mo ve to the |
| (...skipping 11 matching lines...) Expand all Loading... | |
| 411 !safe_add((size_t) 12, tagBytes, &tagBytes)) | 400 !safe_add((size_t) 12, tagBytes, &tagBytes)) |
| 412 { | 401 { |
| 413 SkColorSpacePrintf("Invalid gamma count"); | 402 SkColorSpacePrintf("Invalid gamma count"); |
| 414 return false; | 403 return false; |
| 415 } | 404 } |
| 416 | 405 |
| 417 if (0 == count) { | 406 if (0 == count) { |
| 418 // Some tags require a gamma curve, but the author doesn't a ctually want | 407 // Some tags require a gamma curve, but the author doesn't a ctually want |
| 419 // to transform the data. In this case, it is common to see a curve with | 408 // to transform the data. In this case, it is common to see a curve with |
| 420 // a count of 0. | 409 // a count of 0. |
| 421 gammas[i].fValue = 1.0f; | 410 gammas[i].fNamed = SkColorSpace::kLinear_GammaNamed; |
| 422 break; | 411 break; |
| 423 } else if (len < tagBytes) { | 412 } else if (len < tagBytes) { |
| 424 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len) ; | 413 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len) ; |
| 425 return false; | 414 return false; |
| 426 } | 415 } |
| 427 | 416 |
| 428 const uint16_t* table = (const uint16_t*) (src + 12); | 417 const uint16_t* table = (const uint16_t*) (src + 12); |
| 429 if (1 == count) { | 418 if (1 == count) { |
| 430 // The table entry is the gamma (with a bias of 256). | 419 // The table entry is the gamma (with a bias of 256). |
| 431 uint16_t value = read_big_endian_short((const uint8_t*) tabl e); | 420 float value = (read_big_endian_short((const uint8_t*) table) ) / 256.0f; |
| 432 gammas[i].fValue = value / 256.0f; | 421 set_gamma_value(&gammas[i], value); |
| 433 if (0.0f == gammas[i].fValue) { | 422 SkColorSpacePrintf("gamma %g\n", value); |
| 434 SkColorSpacePrintf("Cannot have zero gamma value"); | |
| 435 return false; | |
| 436 } | |
| 437 SkColorSpacePrintf("gamma %d %g\n", value, gammas[i].fValue) ; | |
| 438 break; | 423 break; |
| 439 } | 424 } |
| 440 | 425 |
| 441 // Check for frequently occurring curves and use a fast approxim ation. | 426 // Check for frequently occurring sRGB curves. |
| 442 // We do this by sampling a few values and see if they match our expectation. | 427 // We do this by sampling a few values and see if they match our expectation. |
| 443 // A more robust solution would be to compare each value in this curve against | 428 // A more robust solution would be to compare each value in this curve against |
| 444 // a 2.2f curve see if we remain below an error threshold. At t his time, | 429 // an sRGB curve to see if we remain below an error threshold. At this time, |
| 445 // we haven't seen any images in the wild that make this kind of | 430 // we haven't seen any images in the wild that make this kind of |
| 446 // calculation necessary. We encounter identical gamma curves o ver and | 431 // calculation necessary. We encounter identical gamma curves o ver and |
| 447 // over again, but relatively few variations. | 432 // over again, but relatively few variations. |
| 448 if (1024 == count) { | 433 if (1024 == count) { |
| 449 // The magic values were chosen because they match a very co mmon sRGB | 434 // The magic values were chosen because they match a very co mmon sRGB |
| 450 // gamma table and the less common Canon sRGB gamma table (w hich use | 435 // gamma table and the less common Canon sRGB gamma table (w hich use |
| 451 // different rounding rules). | 436 // different rounding rules). |
| 452 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & | 437 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & |
| 453 3366 == read_big_endian_short((const uint8_t*) &tabl e[257]) && | 438 3366 == read_big_endian_short((const uint8_t*) &tabl e[257]) && |
| 454 14116 == read_big_endian_short((const uint8_t*) &tab le[513]) && | 439 14116 == read_big_endian_short((const uint8_t*) &tab le[513]) && |
| 455 34318 == read_big_endian_short((const uint8_t*) &tab le[768]) && | 440 34318 == read_big_endian_short((const uint8_t*) &tab le[768]) && |
| 456 65535 == read_big_endian_short((const uint8_t*) &tab le[1023])) { | 441 65535 == read_big_endian_short((const uint8_t*) &tab le[1023])) { |
| 457 gammas[i].fValue = 2.2f; | 442 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
| 458 break; | 443 break; |
| 459 } | 444 } |
| 460 } else if (26 == count) { | 445 } else if (26 == count) { |
| 461 // The magic values were chosen because they match a very co mmon sRGB | 446 // The magic values were chosen because they match a very co mmon sRGB |
| 462 // gamma table. | 447 // gamma table. |
| 463 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & | 448 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & |
| 464 3062 == read_big_endian_short((const uint8_t*) &tabl e[6]) && | 449 3062 == read_big_endian_short((const uint8_t*) &tabl e[6]) && |
| 465 12824 == read_big_endian_short((const uint8_t*) &tab le[12]) && | 450 12824 == read_big_endian_short((const uint8_t*) &tab le[12]) && |
| 466 31237 == read_big_endian_short((const uint8_t*) &tab le[18]) && | 451 31237 == read_big_endian_short((const uint8_t*) &tab le[18]) && |
| 467 65535 == read_big_endian_short((const uint8_t*) &tab le[25])) { | 452 65535 == read_big_endian_short((const uint8_t*) &tab le[25])) { |
| 468 gammas[i].fValue = 2.2f; | 453 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
| 469 break; | 454 break; |
| 470 } | 455 } |
| 471 } else if (4096 == count) { | 456 } else if (4096 == count) { |
| 472 // The magic values were chosen because they match Nikon, Ep son, and | 457 // The magic values were chosen because they match Nikon, Ep son, and |
| 473 // LCMS sRGB gamma tables (all of which use different roundi ng rules). | 458 // LCMS sRGB gamma tables (all of which use different roundi ng rules). |
| 474 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & | 459 if (0 == read_big_endian_short((const uint8_t*) &table[0]) & & |
| 475 950 == read_big_endian_short((const uint8_t*) &table [515]) && | 460 950 == read_big_endian_short((const uint8_t*) &table [515]) && |
| 476 3342 == read_big_endian_short((const uint8_t*) &tabl e[1025]) && | 461 3342 == read_big_endian_short((const uint8_t*) &tabl e[1025]) && |
| 477 14079 == read_big_endian_short((const uint8_t*) &tab le[2051]) && | 462 14079 == read_big_endian_short((const uint8_t*) &tab le[2051]) && |
| 478 65535 == read_big_endian_short((const uint8_t*) &tab le[4095])) { | 463 65535 == read_big_endian_short((const uint8_t*) &tab le[4095])) { |
| 479 gammas[i].fValue = 2.2f; | 464 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
| 480 break; | 465 break; |
| 481 } | 466 } |
| 482 } | 467 } |
| 483 | 468 |
| 484 // Otherwise, fill in the interpolation table. | 469 // Otherwise, fill in the interpolation table. |
| 485 gammas[i].fTableSize = count; | 470 gammas[i].fTableSize = count; |
| 486 gammas[i].fTable = std::unique_ptr<float[]>(new float[count]); | 471 gammas[i].fTable = std::unique_ptr<float[]>(new float[count]); |
| 487 for (uint32_t j = 0; j < count; j++) { | 472 for (uint32_t j = 0; j < count; j++) { |
| 488 gammas[i].fTable[j] = | 473 gammas[i].fTable[j] = |
| 489 (read_big_endian_short((const uint8_t*) &table[j])) / 65535.0f; | 474 (read_big_endian_short((const uint8_t*) &table[j])) / 65535.0f; |
| (...skipping 13 matching lines...) Expand all Loading... | |
| 503 uint16_t format = read_big_endian_short(src + 8); | 488 uint16_t format = read_big_endian_short(src + 8); |
| 504 if (kExponential_ParaCurveType == format) { | 489 if (kExponential_ParaCurveType == format) { |
| 505 tagBytes = 12 + 4; | 490 tagBytes = 12 + 4; |
| 506 if (len < tagBytes) { | 491 if (len < tagBytes) { |
| 507 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); | 492 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); |
| 508 return false; | 493 return false; |
| 509 } | 494 } |
| 510 | 495 |
| 511 // Y = X^g | 496 // Y = X^g |
| 512 int32_t g = read_big_endian_int(src + 12); | 497 int32_t g = read_big_endian_int(src + 12); |
| 513 gammas[i].fValue = SkFixedToFloat(g); | 498 set_gamma_value(&gammas[i], SkFixedToFloat(g)); |
| 514 } else { | 499 } else { |
| 515 // Here's where the real parametric gammas start. There are many | 500 // Here's where the real parametric gammas start. There are many |
| 516 // permutations of the same equations. | 501 // permutations of the same equations. |
| 517 // | 502 // |
| 518 // Y = (aX + b)^g + c for X >= d | 503 // Y = (aX + b)^g + c for X >= d |
| 519 // Y = eX + f otherwise | 504 // Y = eX + f otherwise |
| 520 // | 505 // |
| 521 // We will fill in with zeros as necessary to always match t he above form. | 506 // We will fill in with zeros as necessary to always match t he above form. |
| 522 float g = 0.0f, a = 0.0f, b = 0.0f, c = 0.0f, d = 0.0f, e = 0.0f, f = 0.0f; | 507 float g = 0.0f, a = 0.0f, b = 0.0f, c = 0.0f, d = 0.0f, e = 0.0f, f = 0.0f; |
| 523 switch(format) { | 508 switch(format) { |
| (...skipping 76 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 600 } | 585 } |
| 601 | 586 |
| 602 // Recognize and simplify a very common parametric represent ation of sRGB gamma. | 587 // Recognize and simplify a very common parametric represent ation of sRGB gamma. |
| 603 if (color_space_almost_equal(0.9479f, a) && | 588 if (color_space_almost_equal(0.9479f, a) && |
| 604 color_space_almost_equal(0.0521f, b) && | 589 color_space_almost_equal(0.0521f, b) && |
| 605 color_space_almost_equal(0.0000f, c) && | 590 color_space_almost_equal(0.0000f, c) && |
| 606 color_space_almost_equal(0.0405f, d) && | 591 color_space_almost_equal(0.0405f, d) && |
| 607 color_space_almost_equal(0.0774f, e) && | 592 color_space_almost_equal(0.0774f, e) && |
| 608 color_space_almost_equal(0.0000f, f) && | 593 color_space_almost_equal(0.0000f, f) && |
| 609 color_space_almost_equal(2.4000f, g)) { | 594 color_space_almost_equal(2.4000f, g)) { |
| 610 gammas[i].fValue = 2.2f; | 595 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
| 611 } else { | 596 } else { |
| 612 // Fail on invalid gammas. | 597 // Fail on invalid gammas. |
| 613 if (d <= 0.0f) { | 598 if (d <= 0.0f) { |
| 614 // Y = (aX + b)^g + c for always | 599 // Y = (aX + b)^g + c for always |
| 615 if (0.0f == a || 0.0f == g) { | 600 if (0.0f == a || 0.0f == g) { |
| 616 SkColorSpacePrintf("A or G is zero, constant gam ma function " | 601 SkColorSpacePrintf("A or G is zero, constant gam ma function " |
| 617 "is nonsense"); | 602 "is nonsense"); |
| 618 return false; | 603 return false; |
| 619 } | 604 } |
| 620 } else if (d >= 1.0f) { | 605 } else if (d >= 1.0f) { |
| (...skipping 20 matching lines...) Expand all Loading... | |
| 641 } | 626 } |
| 642 | 627 |
| 643 break; | 628 break; |
| 644 } | 629 } |
| 645 default: | 630 default: |
| 646 SkColorSpacePrintf("Unsupported gamma tag type %d\n", type); | 631 SkColorSpacePrintf("Unsupported gamma tag type %d\n", type); |
| 647 return false; | 632 return false; |
| 648 } | 633 } |
| 649 | 634 |
| 650 // Ensure that we have successfully read a gamma representation. | 635 // Ensure that we have successfully read a gamma representation. |
| 651 SkASSERT(gammas[i].isValue() || gammas[i].isTable() || gammas[i].isParam etric()); | 636 SkASSERT(gammas[i].isNamed() || gammas[i].isValue() || gammas[i].isTable () || |
| 637 gammas[i].isParametric()); | |
| 652 | 638 |
| 653 // Adjust src and len if there is another gamma curve to load. | 639 // Adjust src and len if there is another gamma curve to load. |
| 654 if (i != numGammas - 1) { | 640 if (i != numGammas - 1) { |
| 655 // Each curve is padded to 4-byte alignment. | 641 // Each curve is padded to 4-byte alignment. |
| 656 tagBytes = SkAlign4(tagBytes); | 642 tagBytes = SkAlign4(tagBytes); |
| 657 if (len < tagBytes) { | 643 if (len < tagBytes) { |
| 658 return false; | 644 return false; |
| 659 } | 645 } |
| 660 | 646 |
| 661 src += tagBytes; | 647 src += tagBytes; |
| (...skipping 127 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 789 if (0 != offsetToColorLUT && offsetToColorLUT < len) { | 775 if (0 != offsetToColorLUT && offsetToColorLUT < len) { |
| 790 if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offse tToColorLUT, | 776 if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offse tToColorLUT, |
| 791 len - offsetToColorLUT)) { | 777 len - offsetToColorLUT)) { |
| 792 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n"); | 778 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n"); |
| 793 } | 779 } |
| 794 } | 780 } |
| 795 | 781 |
| 796 uint32_t offsetToMCurves = read_big_endian_int(src + 20); | 782 uint32_t offsetToMCurves = read_big_endian_int(src + 20); |
| 797 if (0 != offsetToMCurves && offsetToMCurves < len) { | 783 if (0 != offsetToMCurves && offsetToMCurves < len) { |
| 798 if (!load_gammas(gammas, outputChannels, src + offsetToMCurves, len - of fsetToMCurves)) { | 784 if (!load_gammas(gammas, outputChannels, src + offsetToMCurves, len - of fsetToMCurves)) { |
| 799 SkColorSpacePrintf("Failed to read M curves from A to B tag.\n"); | 785 SkColorSpacePrintf("Failed to read M curves from A to B tag. Using linear gamma.\n"); |
| 786 gammas[0].fNamed = SkColorSpace::kLinear_GammaNamed; | |
| 787 gammas[1].fNamed = SkColorSpace::kLinear_GammaNamed; | |
| 788 gammas[2].fNamed = SkColorSpace::kLinear_GammaNamed; | |
| 800 } | 789 } |
| 801 } | 790 } |
| 802 | 791 |
| 803 uint32_t offsetToMatrix = read_big_endian_int(src + 16); | 792 uint32_t offsetToMatrix = read_big_endian_int(src + 16); |
| 804 if (0 != offsetToMatrix && offsetToMatrix < len) { | 793 if (0 != offsetToMatrix && offsetToMatrix < len) { |
| 805 if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) { | 794 if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) { |
| 806 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); | 795 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); |
| 796 toXYZ->setIdentity(); | |
| 807 } | 797 } |
| 808 } | 798 } |
| 809 | 799 |
| 810 return true; | 800 return true; |
| 811 } | 801 } |
| 812 | 802 |
| 813 sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* input, size_t len) { | 803 sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* input, size_t len) { |
| 814 if (!input || len < kICCHeaderSize) { | 804 if (!input || len < kICCHeaderSize) { |
| 815 return_null("Data is null or not large enough to contain an ICC profile" ); | 805 return_null("Data is null or not large enough to contain an ICC profile" ); |
| 816 } | 806 } |
| (...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 865 const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ); | 855 const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ); |
| 866 const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ); | 856 const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ); |
| 867 if (r && g && b) { | 857 if (r && g && b) { |
| 868 float toXYZ[9]; | 858 float toXYZ[9]; |
| 869 if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLen gth) || | 859 if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLen gth) || |
| 870 !load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLen gth) || | 860 !load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLen gth) || |
| 871 !load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLen gth)) | 861 !load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLen gth)) |
| 872 { | 862 { |
| 873 return_null("Need valid rgb tags for XYZ space"); | 863 return_null("Need valid rgb tags for XYZ space"); |
| 874 } | 864 } |
| 865 SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); | |
| 866 mat.set3x3ColMajorf(toXYZ); | |
| 875 | 867 |
| 876 // It is not uncommon to see missing or empty gamma tags. This indicates | 868 // It is not uncommon to see missing or empty gamma tags. This indicates |
| 877 // that we should use unit gamma. | 869 // that we should use unit gamma. |
| 878 SkGammaCurve curves[3]; | 870 SkGammaCurve curves[3]; |
| 879 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC); | 871 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC); |
| 880 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC); | 872 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC); |
| 881 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC); | 873 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC); |
| 882 if (!r || !load_gammas(&curves[0], 1, r->addr((const uint8_t*) b ase), r->fLength)) | 874 if (!r || !load_gammas(&curves[0], 1, r->addr((const uint8_t*) b ase), r->fLength)) |
| 883 { | 875 { |
| 884 SkColorSpacePrintf("Failed to read R gamma tag.\n"); | 876 SkColorSpacePrintf("Failed to read R gamma tag.\n"); |
| 877 curves[0].fNamed = SkColorSpace::kLinear_GammaNamed; | |
| 885 } | 878 } |
| 886 if (!g || !load_gammas(&curves[1], 1, g->addr((const uint8_t*) b ase), g->fLength)) | 879 if (!g || !load_gammas(&curves[1], 1, g->addr((const uint8_t*) b ase), g->fLength)) |
| 887 { | 880 { |
| 888 SkColorSpacePrintf("Failed to read G gamma tag.\n"); | 881 SkColorSpacePrintf("Failed to read G gamma tag.\n"); |
| 882 curves[1].fNamed = SkColorSpace::kLinear_GammaNamed; | |
| 889 } | 883 } |
| 890 if (!b || !load_gammas(&curves[2], 1, b->addr((const uint8_t*) b ase), b->fLength)) | 884 if (!b || !load_gammas(&curves[2], 1, b->addr((const uint8_t*) b ase), b->fLength)) |
| 891 { | 885 { |
| 892 SkColorSpacePrintf("Failed to read B gamma tag.\n"); | 886 SkColorSpacePrintf("Failed to read B gamma tag.\n"); |
| 887 curves[2].fNamed = SkColorSpace::kLinear_GammaNamed; | |
| 893 } | 888 } |
| 894 | 889 |
| 895 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::m ove(curves[1]), | 890 GammaNamed gammaNamed = SkGammas::Named(curves); |
| 896 std::move(curves[2]))); | 891 if (kNonStandard_GammaNamed == gammaNamed) { |
| 897 SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); | 892 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), st d::move(curves[1]), |
| 898 mat.set3x3ColMajorf(toXYZ); | 893 std::move(curves[2]))); |
| 899 if (gammas->isValues()) { | 894 return sk_sp<SkColorSpace>(new SkColorSpace_Base(nullptr, st d::move(gammas), |
| 900 // When we have values, take advantage of the NewFromRGB ini tializer. | 895 mat, std::m ove(data))); |
| 901 // This allows us to check for canonical sRGB and Adobe RGB. | |
| 902 float gammaVals[3]; | |
| 903 gammaVals[0] = gammas->fRed.fValue; | |
| 904 gammaVals[1] = gammas->fGreen.fValue; | |
| 905 gammaVals[2] = gammas->fBlue.fValue; | |
| 906 return SkColorSpace_Base::NewRGB(gammaVals, mat, std::move(d ata)); | |
| 907 } else { | 896 } else { |
| 908 return sk_sp<SkColorSpace>(new SkColorSpace_Base(std::move(g ammas), mat, | 897 return SkColorSpace_Base::NewRGB(gammaNamed, mat, std::move( data)); |
| 909 kUnknown_Na med, | |
| 910 std::move(d ata))); | |
| 911 } | 898 } |
| 912 } | 899 } |
| 913 | 900 |
| 914 // Recognize color profile specified by A2B0 tag. | 901 // Recognize color profile specified by A2B0 tag. |
| 915 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0); | 902 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0); |
| 916 if (a2b0) { | 903 if (a2b0) { |
| 917 SkAutoTDelete<SkColorLookUpTable> colorLUT(new SkColorLookUpTabl e()); | 904 SkAutoTDelete<SkColorLookUpTable> colorLUT(new SkColorLookUpTabl e()); |
| 918 SkGammaCurve curves[3]; | 905 SkGammaCurve curves[3]; |
| 919 SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor); | 906 SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor); |
| 920 if (!load_a2b0(colorLUT, curves, &toXYZ, a2b0->addr((const uint8 _t*) base), | 907 if (!load_a2b0(colorLUT, curves, &toXYZ, a2b0->addr((const uint8 _t*) base), |
| 921 a2b0->fLength)) { | 908 a2b0->fLength)) { |
| 922 return_null("Failed to parse A2B0 tag"); | 909 return_null("Failed to parse A2B0 tag"); |
| 923 } | 910 } |
| 924 | 911 |
| 925 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::m ove(curves[1]), | 912 GammaNamed gammaNamed = SkGammas::Named(curves); |
| 926 std::move(curves[2]))); | 913 if (colorLUT->fTable || kNonStandard_GammaNamed == gammaNamed) { |
| 927 if (colorLUT->fTable) { | 914 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), st d::move(curves[1]), |
| 915 std::move(curves[2]))); | |
| 916 | |
| 928 return sk_sp<SkColorSpace>(new SkColorSpace_Base(colorLUT.re lease(), | 917 return sk_sp<SkColorSpace>(new SkColorSpace_Base(colorLUT.re lease(), |
| 929 std::move(g ammas), toXYZ, | 918 std::move(g ammas), toXYZ, |
| 930 std::move(d ata))); | 919 std::move(d ata))); |
| 931 } else if (gammas->isValues()) { | |
| 932 // When we have values, take advantage of the NewFromRGB ini tializer. | |
| 933 // This allows us to check for canonical sRGB and Adobe RGB. | |
| 934 float gammaVals[3]; | |
| 935 gammaVals[0] = gammas->fRed.fValue; | |
| 936 gammaVals[1] = gammas->fGreen.fValue; | |
| 937 gammaVals[2] = gammas->fBlue.fValue; | |
| 938 return SkColorSpace_Base::NewRGB(gammaVals, toXYZ, std::move (data)); | |
| 939 } else { | 920 } else { |
| 940 return sk_sp<SkColorSpace>(new SkColorSpace_Base(std::move(g ammas), toXYZ, | 921 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZ, std::mov e(data)); |
| 941 kUnknown_Na med, | |
| 942 std::move(d ata))); | |
| 943 } | 922 } |
| 944 } | 923 } |
| 945 } | 924 } |
| 946 default: | 925 default: |
| 947 break; | 926 break; |
| 948 } | 927 } |
| 949 | 928 |
| 950 return_null("ICC profile contains unsupported colorspace"); | 929 return_null("ICC profile contains unsupported colorspace"); |
| 951 } | 930 } |
| 952 | 931 |
| (...skipping 119 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1072 ptr[2] = SkEndian_SwapBE32(1); | 1051 ptr[2] = SkEndian_SwapBE32(1); |
| 1073 | 1052 |
| 1074 // Convert gamma to 16-bit fixed point. | 1053 // Convert gamma to 16-bit fixed point. |
| 1075 uint16_t* ptr16 = (uint16_t*) (ptr + 3); | 1054 uint16_t* ptr16 = (uint16_t*) (ptr + 3); |
| 1076 ptr16[0] = SkEndian_SwapBE16((uint16_t) (value * 256.0f)); | 1055 ptr16[0] = SkEndian_SwapBE16((uint16_t) (value * 256.0f)); |
| 1077 | 1056 |
| 1078 // Pad tag with zero. | 1057 // Pad tag with zero. |
| 1079 ptr16[1] = 0; | 1058 ptr16[1] = 0; |
| 1080 } | 1059 } |
| 1081 | 1060 |
| 1061 static float get_gamma_value(const SkGammaCurve* curve) { | |
| 1062 switch (curve->fNamed) { | |
| 1063 case SkColorSpace::kSRGB_GammaNamed: | |
| 1064 // FIXME (msarett): kSRGB cannot be represented by a value. | |
| 1065 case SkColorSpace::k2Dot2Curve_GammaNamed: | |
| 1066 return 2.2f; | |
| 1067 case SkColorSpace::kLinear_GammaNamed: | |
| 1068 return 1.0f; | |
| 1069 default: | |
| 1070 SkASSERT(curve->isValue()); | |
| 1071 return curve->fValue; | |
| 1072 } | |
| 1073 } | |
| 1074 | |
| 1082 sk_sp<SkData> SkColorSpace_Base::writeToICC() const { | 1075 sk_sp<SkData> SkColorSpace_Base::writeToICC() const { |
| 1083 // Return if this object was created from a profile, or if we have already s erialized | 1076 // Return if this object was created from a profile, or if we have already s erialized |
| 1084 // the profile. | 1077 // the profile. |
| 1085 if (fProfileData) { | 1078 if (fProfileData) { |
| 1086 return fProfileData; | 1079 return fProfileData; |
| 1087 } | 1080 } |
| 1088 | 1081 |
| 1089 // The client may create an SkColorSpace using an SkMatrix44, but currently we only | 1082 // The client may create an SkColorSpace using an SkMatrix44, but currently we only |
| 1090 // support writing profiles with 3x3 matrices. | 1083 // support writing profiles with 3x3 matrices. |
| 1091 // TODO (msarett): Fix this! | 1084 // TODO (msarett): Fix this! |
| (...skipping 21 matching lines...) Expand all Loading... | |
| 1113 | 1106 |
| 1114 // Write XYZ tags | 1107 // Write XYZ tags |
| 1115 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 0); | 1108 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 0); |
| 1116 ptr += kTAG_XYZ_Bytes; | 1109 ptr += kTAG_XYZ_Bytes; |
| 1117 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 1); | 1110 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 1); |
| 1118 ptr += kTAG_XYZ_Bytes; | 1111 ptr += kTAG_XYZ_Bytes; |
| 1119 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 2); | 1112 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 2); |
| 1120 ptr += kTAG_XYZ_Bytes; | 1113 ptr += kTAG_XYZ_Bytes; |
| 1121 | 1114 |
| 1122 // Write TRC tags | 1115 // Write TRC tags |
| 1123 SkASSERT(as_CSB(this)->fGammas->fRed.isValue()); | 1116 GammaNamed gammaNamed = this->gammaNamed(); |
| 1124 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fRed.fValue); | 1117 if (kNonStandard_GammaNamed == gammaNamed) { |
| 1125 ptr += SkAlign4(kTAG_TRC_Bytes); | 1118 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f Red)); |
| 1126 SkASSERT(as_CSB(this)->fGammas->fGreen.isValue()); | 1119 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1127 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fGreen.fValue); | 1120 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f Green)); |
| 1128 ptr += SkAlign4(kTAG_TRC_Bytes); | 1121 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1129 SkASSERT(as_CSB(this)->fGammas->fBlue.isValue()); | 1122 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f Blue)); |
| 1130 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fBlue.fValue); | 1123 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1131 ptr += SkAlign4(kTAG_TRC_Bytes); | 1124 } else { |
| 1125 switch (gammaNamed) { | |
| 1126 case SkColorSpace::kSRGB_GammaNamed: | |
| 1127 // FIXME (msarett): kSRGB cannot be represented by a value. | |
| 1128 case SkColorSpace::k2Dot2Curve_GammaNamed: | |
| 1129 write_trc_tag((uint32_t*) ptr, 2.2f); | |
| 1130 ptr += SkAlign4(kTAG_TRC_Bytes); | |
| 1131 write_trc_tag((uint32_t*) ptr, 2.2f); | |
| 1132 ptr += SkAlign4(kTAG_TRC_Bytes); | |
| 1133 write_trc_tag((uint32_t*) ptr, 2.2f); | |
| 1134 ptr += SkAlign4(kTAG_TRC_Bytes); | |
| 1135 break; | |
| 1136 case SkColorSpace::kLinear_GammaNamed: | |
| 1137 write_trc_tag((uint32_t*) ptr, 1.0f); | |
| 1138 ptr += SkAlign4(kTAG_TRC_Bytes); | |
| 1139 write_trc_tag((uint32_t*) ptr, 1.0f); | |
| 1140 ptr += SkAlign4(kTAG_TRC_Bytes); | |
| 1141 write_trc_tag((uint32_t*) ptr, 1.0f); | |
| 1142 ptr += SkAlign4(kTAG_TRC_Bytes); | |
| 1143 break; | |
| 1144 default: | |
| 1145 SkASSERT(false); | |
| 1146 break; | |
| 1147 } | |
| 1148 } | |
| 1132 | 1149 |
| 1133 // Write white point tag | 1150 // Write white point tag |
| 1134 uint32_t* ptr32 = (uint32_t*) ptr; | 1151 uint32_t* ptr32 = (uint32_t*) ptr; |
| 1135 ptr32[0] = SkEndian_SwapBE32(kXYZ_PCSSpace); | 1152 ptr32[0] = SkEndian_SwapBE32(kXYZ_PCSSpace); |
| 1136 ptr32[1] = 0; | 1153 ptr32[1] = 0; |
| 1137 // TODO (msarett): These values correspond to the D65 white point. This may not always be | 1154 // TODO (msarett): These values correspond to the D65 white point. This may not always be |
| 1138 // correct. | 1155 // correct. |
| 1139 ptr32[2] = SkEndian_SwapBE32(0x0000f351); | 1156 ptr32[2] = SkEndian_SwapBE32(0x0000f351); |
| 1140 ptr32[3] = SkEndian_SwapBE32(0x00010000); | 1157 ptr32[3] = SkEndian_SwapBE32(0x00010000); |
| 1141 ptr32[4] = SkEndian_SwapBE32(0x000116cc); | 1158 ptr32[4] = SkEndian_SwapBE32(0x000116cc); |
| 1142 ptr += kTAG_XYZ_Bytes; | 1159 ptr += kTAG_XYZ_Bytes; |
| 1143 | 1160 |
| 1144 // Write copyright tag | 1161 // Write copyright tag |
| 1145 memcpy(ptr, gEmptyTextTag, sizeof(gEmptyTextTag)); | 1162 memcpy(ptr, gEmptyTextTag, sizeof(gEmptyTextTag)); |
| 1146 | 1163 |
| 1147 // TODO (msarett): Should we try to hold onto the data so we can return imme diately if | 1164 // TODO (msarett): Should we try to hold onto the data so we can return imme diately if |
| 1148 // the client calls again? | 1165 // the client calls again? |
| 1149 return SkData::MakeFromMalloc(profile.release(), kICCProfileSize); | 1166 return SkData::MakeFromMalloc(profile.release(), kICCProfileSize); |
| 1150 } | 1167 } |
| OLD | NEW |