OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2016 Google Inc. | 2 * Copyright 2016 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkColorSpace.h" | 8 #include "SkColorSpace.h" |
9 #include "SkColorSpace_Base.h" | 9 #include "SkColorSpace_Base.h" |
10 #include "SkEndian.h" | 10 #include "SkEndian.h" |
11 #include "SkOnce.h" | 11 #include "SkOnce.h" |
12 | 12 |
| 13 #define SkColorSpacePrintf(...) |
| 14 |
13 static bool color_space_almost_equal(float a, float b) { | 15 static bool color_space_almost_equal(float a, float b) { |
14 return SkTAbs(a - b) < 0.01f; | 16 return SkTAbs(a - b) < 0.01f; |
15 } | 17 } |
16 | 18 |
17 ////////////////////////////////////////////////////////////////////////////////
////////////////// | 19 ////////////////////////////////////////////////////////////////////////////////
////////////////// |
18 | 20 |
19 SkColorSpace::SkColorSpace(GammaNamed gammaNamed, const SkMatrix44& toXYZD50, Na
med named) | 21 SkColorSpace::SkColorSpace(GammaNamed gammaNamed, const SkMatrix44& toXYZD50, Na
med named) |
20 : fGammaNamed(gammaNamed) | 22 : fGammaNamed(gammaNamed) |
21 , fToXYZD50(toXYZD50) | 23 , fToXYZD50(toXYZD50) |
22 , fNamed(named) | 24 , fNamed(named) |
23 {} | 25 {} |
24 | 26 |
25 SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, const SkMatrix44& t
oXYZD50, | 27 SkColorSpace_Base::SkColorSpace_Base(GammaNamed gammaNamed, const SkMatrix44& to
XYZD50, Named named, |
26 Named named, sk_sp<SkData> profileData) | 28 sk_sp<SkData> profileData) |
27 : INHERITED(kNonStandard_GammaNamed, toXYZD50, named) | 29 : INHERITED(gammaNamed, toXYZD50, named) |
28 , fGammas(std::move(gammas)) | 30 , fGammas(nullptr) |
29 , fProfileData(std::move(profileData)) | 31 , fProfileData(std::move(profileData)) |
30 {} | 32 {} |
31 | 33 |
32 SkColorSpace_Base::SkColorSpace_Base(sk_sp<SkGammas> gammas, GammaNamed gammaNam
ed, | |
33 const SkMatrix44& toXYZD50, Named named, | |
34 sk_sp<SkData> profileData) | |
35 : INHERITED(gammaNamed, toXYZD50, named) | |
36 , fGammas(std::move(gammas)) | |
37 , fProfileData(std::move(profileData)) | |
38 {} | |
39 | |
40 SkColorSpace_Base::SkColorSpace_Base(SkColorLookUpTable* colorLUT, sk_sp<SkGamma
s> gammas, | 34 SkColorSpace_Base::SkColorSpace_Base(SkColorLookUpTable* colorLUT, sk_sp<SkGamma
s> gammas, |
41 const SkMatrix44& toXYZD50, sk_sp<SkData> p
rofileData) | 35 const SkMatrix44& toXYZD50, sk_sp<SkData> p
rofileData) |
42 : INHERITED(kNonStandard_GammaNamed, toXYZD50, kUnknown_Named) | 36 : INHERITED(kNonStandard_GammaNamed, toXYZD50, kUnknown_Named) |
43 , fColorLUT(colorLUT) | 37 , fColorLUT(colorLUT) |
44 , fGammas(std::move(gammas)) | 38 , fGammas(std::move(gammas)) |
45 , fProfileData(std::move(profileData)) | 39 , fProfileData(std::move(profileData)) |
46 {} | 40 {} |
47 | 41 |
48 static constexpr float gSRGB_toXYZD50[] { | 42 static constexpr float gSRGB_toXYZD50[] { |
49 0.4358f, 0.2224f, 0.0139f, // * R | 43 0.4358f, 0.2224f, 0.0139f, // * R |
(...skipping 25 matching lines...) Expand all Loading... |
75 color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) && | 69 color_space_almost_equal(toXYZD50.getFloat(2, 2), standard[8]) && |
76 color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) && | 70 color_space_almost_equal(toXYZD50.getFloat(0, 3), 0.0f) && |
77 color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) && | 71 color_space_almost_equal(toXYZD50.getFloat(1, 3), 0.0f) && |
78 color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) && | 72 color_space_almost_equal(toXYZD50.getFloat(2, 3), 0.0f) && |
79 color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) && | 73 color_space_almost_equal(toXYZD50.getFloat(3, 0), 0.0f) && |
80 color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) && | 74 color_space_almost_equal(toXYZD50.getFloat(3, 1), 0.0f) && |
81 color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) && | 75 color_space_almost_equal(toXYZD50.getFloat(3, 2), 0.0f) && |
82 color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f); | 76 color_space_almost_equal(toXYZD50.getFloat(3, 3), 1.0f); |
83 } | 77 } |
84 | 78 |
85 static SkOnce g2Dot2CurveGammasOnce; | 79 static void set_gamma_value(SkGammaCurve* gamma, float value) { |
86 static SkGammas* g2Dot2CurveGammas; | 80 if (color_space_almost_equal(2.2f, value)) { |
87 static SkOnce gLinearGammasOnce; | 81 gamma->fNamed = SkColorSpace::k2Dot2Curve_GammaNamed; |
88 static SkGammas* gLinearGammas; | 82 } else if (color_space_almost_equal(1.0f, value)) { |
89 | 83 gamma->fNamed = SkColorSpace::kLinear_GammaNamed; |
90 sk_sp<SkColorSpace> SkColorSpace::NewRGB(const float gammaVals[3], const SkMatri
x44& toXYZD50) { | 84 } else if (color_space_almost_equal(0.0f, value)) { |
91 return SkColorSpace_Base::NewRGB(gammaVals, toXYZD50, nullptr); | 85 SkColorSpacePrintf("Treating invalid zero gamma as linear."); |
| 86 gamma->fNamed = SkColorSpace::kLinear_GammaNamed; |
| 87 } else { |
| 88 gamma->fValue = value; |
| 89 } |
92 } | 90 } |
93 | 91 |
94 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(const float gammaVals[3], const Sk
Matrix44& toXYZD50, | 92 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(float values[3], const SkMatrix44&
toXYZD50) { |
95 sk_sp<SkData> profileData) { | 93 SkGammaCurve curves[3]; |
96 sk_sp<SkGammas> gammas = nullptr; | 94 set_gamma_value(&curves[0], values[0]); |
97 GammaNamed gammaNamed = kNonStandard_GammaNamed; | 95 set_gamma_value(&curves[1], values[1]); |
| 96 set_gamma_value(&curves[2], values[2]); |
98 | 97 |
99 // Check if we really have sRGB or Adobe RGB | 98 GammaNamed gammaNamed = SkGammas::Named(curves); |
100 if (color_space_almost_equal(2.2f, gammaVals[0]) && | 99 if (kNonStandard_GammaNamed == gammaNamed) { |
101 color_space_almost_equal(2.2f, gammaVals[1]) && | 100 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::move(curv
es[1]), |
102 color_space_almost_equal(2.2f, gammaVals[2])) | 101 std::move(curves[2]))); |
103 { | 102 return sk_sp<SkColorSpace>(new SkColorSpace_Base(nullptr, gammas, toXYZD
50, nullptr)); |
104 g2Dot2CurveGammasOnce([] { | |
105 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f); | |
106 }); | |
107 gammas = sk_ref_sp(g2Dot2CurveGammas); | |
108 gammaNamed = k2Dot2Curve_GammaNamed; | |
109 | |
110 if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) { | |
111 return SkColorSpace::NewNamed(kSRGB_Named); | |
112 } else if (xyz_almost_equal(toXYZD50, gAdobeRGB_toXYZD50)) { | |
113 return SkColorSpace::NewNamed(kAdobeRGB_Named); | |
114 } | |
115 } else if (color_space_almost_equal(1.0f, gammaVals[0]) && | |
116 color_space_almost_equal(1.0f, gammaVals[1]) && | |
117 color_space_almost_equal(1.0f, gammaVals[2])) | |
118 { | |
119 gLinearGammasOnce([] { | |
120 gLinearGammas = new SkGammas(1.0f, 1.0f, 1.0f); | |
121 }); | |
122 gammas = sk_ref_sp(gLinearGammas); | |
123 gammaNamed = kLinear_GammaNamed; | |
124 } | 103 } |
125 | 104 |
126 if (!gammas) { | 105 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZD50, nullptr); |
127 gammas = sk_sp<SkGammas>(new SkGammas(gammaVals[0], gammaVals[1], gammaV
als[2])); | 106 } |
| 107 |
| 108 sk_sp<SkColorSpace> SkColorSpace_Base::NewRGB(GammaNamed gammaNamed, const SkMat
rix44& toXYZD50, |
| 109 sk_sp<SkData> profileData) { |
| 110 switch (gammaNamed) { |
| 111 case kSRGB_GammaNamed: |
| 112 if (xyz_almost_equal(toXYZD50, gSRGB_toXYZD50)) { |
| 113 return SkColorSpace::NewNamed(kSRGB_Named); |
| 114 } |
| 115 break; |
| 116 case k2Dot2Curve_GammaNamed: |
| 117 if (xyz_almost_equal(toXYZD50, gAdobeRGB_toXYZD50)) { |
| 118 return SkColorSpace::NewNamed(kAdobeRGB_Named); |
| 119 } |
| 120 break; |
| 121 case kNonStandard_GammaNamed: |
| 122 // This is not allowed. |
| 123 return nullptr; |
| 124 default: |
| 125 break; |
128 } | 126 } |
129 return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammas, gammaNamed, toXYZD5
0, kUnknown_Named, | 127 |
130 std::move(profileData))); | 128 return sk_sp<SkColorSpace>(new SkColorSpace_Base(gammaNamed, toXYZD50, kUnkn
own_Named, |
| 129 profileData)); |
| 130 } |
| 131 |
| 132 sk_sp<SkColorSpace> SkColorSpace::NewRGB(GammaNamed gammaNamed, const SkMatrix44
& toXYZD50) { |
| 133 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZD50, nullptr); |
131 } | 134 } |
132 | 135 |
133 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { | 136 sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { |
134 static SkOnce sRGBOnce; | 137 static SkOnce sRGBOnce; |
135 static SkColorSpace* sRGB; | 138 static SkColorSpace* sRGB; |
136 static SkOnce adobeRGBOnce; | 139 static SkOnce adobeRGBOnce; |
137 static SkColorSpace* adobeRGB; | 140 static SkColorSpace* adobeRGB; |
138 | 141 |
139 switch (named) { | 142 switch (named) { |
140 case kSRGB_Named: { | 143 case kSRGB_Named: { |
141 g2Dot2CurveGammasOnce([] { | |
142 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f); | |
143 }); | |
144 | |
145 sRGBOnce([] { | 144 sRGBOnce([] { |
146 SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor); | 145 SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor); |
147 srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50); | 146 srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50); |
148 sRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas), k2Dot
2Curve_GammaNamed, | 147 sRGB = new SkColorSpace_Base(kSRGB_GammaNamed, srgbToxyzD50, kSR
GB_Named, nullptr); |
149 srgbToxyzD50, kSRGB_Named, nullptr)
; | |
150 }); | 148 }); |
151 return sk_ref_sp(sRGB); | 149 return sk_ref_sp(sRGB); |
152 } | 150 } |
153 case kAdobeRGB_Named: { | 151 case kAdobeRGB_Named: { |
154 g2Dot2CurveGammasOnce([] { | |
155 g2Dot2CurveGammas = new SkGammas(2.2f, 2.2f, 2.2f); | |
156 }); | |
157 | |
158 adobeRGBOnce([] { | 152 adobeRGBOnce([] { |
159 SkMatrix44 adobergbToxyzD50(SkMatrix44::kUninitialized_Construct
or); | 153 SkMatrix44 adobergbToxyzD50(SkMatrix44::kUninitialized_Construct
or); |
160 adobergbToxyzD50.set3x3ColMajorf(gAdobeRGB_toXYZD50); | 154 adobergbToxyzD50.set3x3ColMajorf(gAdobeRGB_toXYZD50); |
161 adobeRGB = new SkColorSpace_Base(sk_ref_sp(g2Dot2CurveGammas), | 155 adobeRGB = new SkColorSpace_Base(k2Dot2Curve_GammaNamed, adoberg
bToxyzD50, |
162 k2Dot2Curve_GammaNamed, adoberg
bToxyzD50, | |
163 kAdobeRGB_Named, nullptr); | 156 kAdobeRGB_Named, nullptr); |
164 }); | 157 }); |
165 return sk_ref_sp(adobeRGB); | 158 return sk_ref_sp(adobeRGB); |
166 } | 159 } |
167 default: | 160 default: |
168 break; | 161 break; |
169 } | 162 } |
170 return nullptr; | 163 return nullptr; |
171 } | 164 } |
172 | 165 |
173 ////////////////////////////////////////////////////////////////////////////////
/////////////////// | 166 ////////////////////////////////////////////////////////////////////////////////
/////////////////// |
174 | 167 |
175 #include "SkFixed.h" | 168 #include "SkFixed.h" |
176 #include "SkTemplates.h" | 169 #include "SkTemplates.h" |
177 | 170 |
178 #define SkColorSpacePrintf(...) | |
179 | |
180 #define return_if_false(pred, msg) \ | 171 #define return_if_false(pred, msg) \ |
181 do { \ | 172 do { \ |
182 if (!(pred)) { \ | 173 if (!(pred)) { \ |
183 SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \ | 174 SkColorSpacePrintf("Invalid ICC Profile: %s.\n", (msg)); \ |
184 return false; \ | 175 return false; \ |
185 } \ | 176 } \ |
186 } while (0) | 177 } while (0) |
187 | 178 |
188 #define return_null(msg) \ | 179 #define return_null(msg) \ |
189 do { \ | 180 do { \ |
(...skipping 173 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
363 }; | 354 }; |
364 | 355 |
365 static constexpr uint32_t kTAG_rXYZ = SkSetFourByteTag('r', 'X', 'Y', 'Z'); | 356 static constexpr uint32_t kTAG_rXYZ = SkSetFourByteTag('r', 'X', 'Y', 'Z'); |
366 static constexpr uint32_t kTAG_gXYZ = SkSetFourByteTag('g', 'X', 'Y', 'Z'); | 357 static constexpr uint32_t kTAG_gXYZ = SkSetFourByteTag('g', 'X', 'Y', 'Z'); |
367 static constexpr uint32_t kTAG_bXYZ = SkSetFourByteTag('b', 'X', 'Y', 'Z'); | 358 static constexpr uint32_t kTAG_bXYZ = SkSetFourByteTag('b', 'X', 'Y', 'Z'); |
368 static constexpr uint32_t kTAG_rTRC = SkSetFourByteTag('r', 'T', 'R', 'C'); | 359 static constexpr uint32_t kTAG_rTRC = SkSetFourByteTag('r', 'T', 'R', 'C'); |
369 static constexpr uint32_t kTAG_gTRC = SkSetFourByteTag('g', 'T', 'R', 'C'); | 360 static constexpr uint32_t kTAG_gTRC = SkSetFourByteTag('g', 'T', 'R', 'C'); |
370 static constexpr uint32_t kTAG_bTRC = SkSetFourByteTag('b', 'T', 'R', 'C'); | 361 static constexpr uint32_t kTAG_bTRC = SkSetFourByteTag('b', 'T', 'R', 'C'); |
371 static constexpr uint32_t kTAG_A2B0 = SkSetFourByteTag('A', '2', 'B', '0'); | 362 static constexpr uint32_t kTAG_A2B0 = SkSetFourByteTag('A', '2', 'B', '0'); |
372 | 363 |
373 bool load_xyz(float dst[3], const uint8_t* src, size_t len) { | 364 static bool load_xyz(float dst[3], const uint8_t* src, size_t len) { |
374 if (len < 20) { | 365 if (len < 20) { |
375 SkColorSpacePrintf("XYZ tag is too small (%d bytes)", len); | 366 SkColorSpacePrintf("XYZ tag is too small (%d bytes)", len); |
376 return false; | 367 return false; |
377 } | 368 } |
378 | 369 |
379 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8)); | 370 dst[0] = SkFixedToFloat(read_big_endian_int(src + 8)); |
380 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12)); | 371 dst[1] = SkFixedToFloat(read_big_endian_int(src + 12)); |
381 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16)); | 372 dst[2] = SkFixedToFloat(read_big_endian_int(src + 16)); |
382 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]); | 373 SkColorSpacePrintf("XYZ %g %g %g\n", dst[0], dst[1], dst[2]); |
383 return true; | 374 return true; |
384 } | 375 } |
385 | 376 |
386 static constexpr uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', '
v'); | 377 static constexpr uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', '
v'); |
387 static constexpr uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', '
a'); | 378 static constexpr uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', '
a'); |
388 | 379 |
389 bool load_gammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t* src, s
ize_t len) { | 380 static bool load_gammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t*
src, size_t len) { |
390 for (uint32_t i = 0; i < numGammas; i++) { | 381 for (uint32_t i = 0; i < numGammas; i++) { |
391 if (len < 12) { | 382 if (len < 12) { |
392 // FIXME (msarett): | 383 // FIXME (msarett): |
393 // We could potentially return false here after correctly parsing *s
ome* of the | 384 // We could potentially return false here after correctly parsing *s
ome* of the |
394 // gammas correctly. Should we somehow try to indicate a partial su
ccess? | 385 // gammas correctly. Should we somehow try to indicate a partial su
ccess? |
395 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); | 386 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len); |
396 return false; | 387 return false; |
397 } | 388 } |
398 | 389 |
399 // We need to count the number of bytes in the tag, so we are able to mo
ve to the | 390 // We need to count the number of bytes in the tag, so we are able to mo
ve to the |
(...skipping 11 matching lines...) Expand all Loading... |
411 !safe_add((size_t) 12, tagBytes, &tagBytes)) | 402 !safe_add((size_t) 12, tagBytes, &tagBytes)) |
412 { | 403 { |
413 SkColorSpacePrintf("Invalid gamma count"); | 404 SkColorSpacePrintf("Invalid gamma count"); |
414 return false; | 405 return false; |
415 } | 406 } |
416 | 407 |
417 if (0 == count) { | 408 if (0 == count) { |
418 // Some tags require a gamma curve, but the author doesn't a
ctually want | 409 // Some tags require a gamma curve, but the author doesn't a
ctually want |
419 // to transform the data. In this case, it is common to see
a curve with | 410 // to transform the data. In this case, it is common to see
a curve with |
420 // a count of 0. | 411 // a count of 0. |
421 gammas[i].fValue = 1.0f; | 412 gammas[i].fNamed = SkColorSpace::kLinear_GammaNamed; |
422 break; | 413 break; |
423 } else if (len < tagBytes) { | 414 } else if (len < tagBytes) { |
424 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len)
; | 415 SkColorSpacePrintf("gamma tag is too small (%d bytes)", len)
; |
425 return false; | 416 return false; |
426 } | 417 } |
427 | 418 |
428 const uint16_t* table = (const uint16_t*) (src + 12); | 419 const uint16_t* table = (const uint16_t*) (src + 12); |
429 if (1 == count) { | 420 if (1 == count) { |
430 // The table entry is the gamma (with a bias of 256). | 421 // The table entry is the gamma (with a bias of 256). |
431 uint16_t value = read_big_endian_short((const uint8_t*) tabl
e); | 422 float value = (read_big_endian_short((const uint8_t*) table)
) / 256.0f; |
432 gammas[i].fValue = value / 256.0f; | 423 set_gamma_value(&gammas[i], value); |
433 if (0.0f == gammas[i].fValue) { | 424 SkColorSpacePrintf("gamma %g\n", value); |
434 SkColorSpacePrintf("Cannot have zero gamma value"); | |
435 return false; | |
436 } | |
437 SkColorSpacePrintf("gamma %d %g\n", value, gammas[i].fValue)
; | |
438 break; | 425 break; |
439 } | 426 } |
440 | 427 |
441 // Check for frequently occurring curves and use a fast approxim
ation. | 428 // Check for frequently occurring sRGB curves. |
442 // We do this by sampling a few values and see if they match our
expectation. | 429 // We do this by sampling a few values and see if they match our
expectation. |
443 // A more robust solution would be to compare each value in this
curve against | 430 // A more robust solution would be to compare each value in this
curve against |
444 // a 2.2f curve see if we remain below an error threshold. At t
his time, | 431 // an sRGB curve to see if we remain below an error threshold.
At this time, |
445 // we haven't seen any images in the wild that make this kind of | 432 // we haven't seen any images in the wild that make this kind of |
446 // calculation necessary. We encounter identical gamma curves o
ver and | 433 // calculation necessary. We encounter identical gamma curves o
ver and |
447 // over again, but relatively few variations. | 434 // over again, but relatively few variations. |
448 if (1024 == count) { | 435 if (1024 == count) { |
449 // The magic values were chosen because they match a very co
mmon sRGB | 436 // The magic values were chosen because they match a very co
mmon sRGB |
450 // gamma table and the less common Canon sRGB gamma table (w
hich use | 437 // gamma table and the less common Canon sRGB gamma table (w
hich use |
451 // different rounding rules). | 438 // different rounding rules). |
452 if (0 == read_big_endian_short((const uint8_t*) &table[0]) &
& | 439 if (0 == read_big_endian_short((const uint8_t*) &table[0]) &
& |
453 3366 == read_big_endian_short((const uint8_t*) &tabl
e[257]) && | 440 3366 == read_big_endian_short((const uint8_t*) &tabl
e[257]) && |
454 14116 == read_big_endian_short((const uint8_t*) &tab
le[513]) && | 441 14116 == read_big_endian_short((const uint8_t*) &tab
le[513]) && |
455 34318 == read_big_endian_short((const uint8_t*) &tab
le[768]) && | 442 34318 == read_big_endian_short((const uint8_t*) &tab
le[768]) && |
456 65535 == read_big_endian_short((const uint8_t*) &tab
le[1023])) { | 443 65535 == read_big_endian_short((const uint8_t*) &tab
le[1023])) { |
457 gammas[i].fValue = 2.2f; | 444 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
458 break; | 445 break; |
459 } | 446 } |
460 } else if (26 == count) { | 447 } else if (26 == count) { |
461 // The magic values were chosen because they match a very co
mmon sRGB | 448 // The magic values were chosen because they match a very co
mmon sRGB |
462 // gamma table. | 449 // gamma table. |
463 if (0 == read_big_endian_short((const uint8_t*) &table[0]) &
& | 450 if (0 == read_big_endian_short((const uint8_t*) &table[0]) &
& |
464 3062 == read_big_endian_short((const uint8_t*) &tabl
e[6]) && | 451 3062 == read_big_endian_short((const uint8_t*) &tabl
e[6]) && |
465 12824 == read_big_endian_short((const uint8_t*) &tab
le[12]) && | 452 12824 == read_big_endian_short((const uint8_t*) &tab
le[12]) && |
466 31237 == read_big_endian_short((const uint8_t*) &tab
le[18]) && | 453 31237 == read_big_endian_short((const uint8_t*) &tab
le[18]) && |
467 65535 == read_big_endian_short((const uint8_t*) &tab
le[25])) { | 454 65535 == read_big_endian_short((const uint8_t*) &tab
le[25])) { |
468 gammas[i].fValue = 2.2f; | 455 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
469 break; | 456 break; |
470 } | 457 } |
471 } else if (4096 == count) { | 458 } else if (4096 == count) { |
472 // The magic values were chosen because they match Nikon, Ep
son, and | 459 // The magic values were chosen because they match Nikon, Ep
son, and |
473 // LCMS sRGB gamma tables (all of which use different roundi
ng rules). | 460 // LCMS sRGB gamma tables (all of which use different roundi
ng rules). |
474 if (0 == read_big_endian_short((const uint8_t*) &table[0]) &
& | 461 if (0 == read_big_endian_short((const uint8_t*) &table[0]) &
& |
475 950 == read_big_endian_short((const uint8_t*) &table
[515]) && | 462 950 == read_big_endian_short((const uint8_t*) &table
[515]) && |
476 3342 == read_big_endian_short((const uint8_t*) &tabl
e[1025]) && | 463 3342 == read_big_endian_short((const uint8_t*) &tabl
e[1025]) && |
477 14079 == read_big_endian_short((const uint8_t*) &tab
le[2051]) && | 464 14079 == read_big_endian_short((const uint8_t*) &tab
le[2051]) && |
478 65535 == read_big_endian_short((const uint8_t*) &tab
le[4095])) { | 465 65535 == read_big_endian_short((const uint8_t*) &tab
le[4095])) { |
479 gammas[i].fValue = 2.2f; | 466 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
480 break; | 467 break; |
481 } | 468 } |
482 } | 469 } |
483 | 470 |
484 // Otherwise, fill in the interpolation table. | 471 // Otherwise, fill in the interpolation table. |
485 gammas[i].fTableSize = count; | 472 gammas[i].fTableSize = count; |
486 gammas[i].fTable = std::unique_ptr<float[]>(new float[count]); | 473 gammas[i].fTable = std::unique_ptr<float[]>(new float[count]); |
487 for (uint32_t j = 0; j < count; j++) { | 474 for (uint32_t j = 0; j < count; j++) { |
488 gammas[i].fTable[j] = | 475 gammas[i].fTable[j] = |
489 (read_big_endian_short((const uint8_t*) &table[j]))
/ 65535.0f; | 476 (read_big_endian_short((const uint8_t*) &table[j]))
/ 65535.0f; |
(...skipping 13 matching lines...) Expand all Loading... |
503 uint16_t format = read_big_endian_short(src + 8); | 490 uint16_t format = read_big_endian_short(src + 8); |
504 if (kExponential_ParaCurveType == format) { | 491 if (kExponential_ParaCurveType == format) { |
505 tagBytes = 12 + 4; | 492 tagBytes = 12 + 4; |
506 if (len < tagBytes) { | 493 if (len < tagBytes) { |
507 SkColorSpacePrintf("gamma tag is too small (%d bytes)",
len); | 494 SkColorSpacePrintf("gamma tag is too small (%d bytes)",
len); |
508 return false; | 495 return false; |
509 } | 496 } |
510 | 497 |
511 // Y = X^g | 498 // Y = X^g |
512 int32_t g = read_big_endian_int(src + 12); | 499 int32_t g = read_big_endian_int(src + 12); |
513 gammas[i].fValue = SkFixedToFloat(g); | 500 set_gamma_value(&gammas[i], SkFixedToFloat(g)); |
514 } else { | 501 } else { |
515 // Here's where the real parametric gammas start. There are
many | 502 // Here's where the real parametric gammas start. There are
many |
516 // permutations of the same equations. | 503 // permutations of the same equations. |
517 // | 504 // |
518 // Y = (aX + b)^g + c for X >= d | 505 // Y = (aX + b)^g + c for X >= d |
519 // Y = eX + f otherwise | 506 // Y = eX + f otherwise |
520 // | 507 // |
521 // We will fill in with zeros as necessary to always match t
he above form. | 508 // We will fill in with zeros as necessary to always match t
he above form. |
522 float g = 0.0f, a = 0.0f, b = 0.0f, c = 0.0f, d = 0.0f, e =
0.0f, f = 0.0f; | 509 float g = 0.0f, a = 0.0f, b = 0.0f, c = 0.0f, d = 0.0f, e =
0.0f, f = 0.0f; |
523 switch(format) { | 510 switch(format) { |
(...skipping 76 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
600 } | 587 } |
601 | 588 |
602 // Recognize and simplify a very common parametric represent
ation of sRGB gamma. | 589 // Recognize and simplify a very common parametric represent
ation of sRGB gamma. |
603 if (color_space_almost_equal(0.9479f, a) && | 590 if (color_space_almost_equal(0.9479f, a) && |
604 color_space_almost_equal(0.0521f, b) && | 591 color_space_almost_equal(0.0521f, b) && |
605 color_space_almost_equal(0.0000f, c) && | 592 color_space_almost_equal(0.0000f, c) && |
606 color_space_almost_equal(0.0405f, d) && | 593 color_space_almost_equal(0.0405f, d) && |
607 color_space_almost_equal(0.0774f, e) && | 594 color_space_almost_equal(0.0774f, e) && |
608 color_space_almost_equal(0.0000f, f) && | 595 color_space_almost_equal(0.0000f, f) && |
609 color_space_almost_equal(2.4000f, g)) { | 596 color_space_almost_equal(2.4000f, g)) { |
610 gammas[i].fValue = 2.2f; | 597 gammas[i].fNamed = SkColorSpace::kSRGB_GammaNamed; |
611 } else { | 598 } else { |
612 // Fail on invalid gammas. | 599 // Fail on invalid gammas. |
613 if (d <= 0.0f) { | 600 if (d <= 0.0f) { |
614 // Y = (aX + b)^g + c for always | 601 // Y = (aX + b)^g + c for always |
615 if (0.0f == a || 0.0f == g) { | 602 if (0.0f == a || 0.0f == g) { |
616 SkColorSpacePrintf("A or G is zero, constant gam
ma function " | 603 SkColorSpacePrintf("A or G is zero, constant gam
ma function " |
617 "is nonsense"); | 604 "is nonsense"); |
618 return false; | 605 return false; |
619 } | 606 } |
620 } else if (d >= 1.0f) { | 607 } else if (d >= 1.0f) { |
(...skipping 20 matching lines...) Expand all Loading... |
641 } | 628 } |
642 | 629 |
643 break; | 630 break; |
644 } | 631 } |
645 default: | 632 default: |
646 SkColorSpacePrintf("Unsupported gamma tag type %d\n", type); | 633 SkColorSpacePrintf("Unsupported gamma tag type %d\n", type); |
647 return false; | 634 return false; |
648 } | 635 } |
649 | 636 |
650 // Ensure that we have successfully read a gamma representation. | 637 // Ensure that we have successfully read a gamma representation. |
651 SkASSERT(gammas[i].isValue() || gammas[i].isTable() || gammas[i].isParam
etric()); | 638 SkASSERT(gammas[i].isNamed() || gammas[i].isValue() || gammas[i].isTable
() || |
| 639 gammas[i].isParametric()); |
652 | 640 |
653 // Adjust src and len if there is another gamma curve to load. | 641 // Adjust src and len if there is another gamma curve to load. |
654 if (i != numGammas - 1) { | 642 if (i != numGammas - 1) { |
655 // Each curve is padded to 4-byte alignment. | 643 // Each curve is padded to 4-byte alignment. |
656 tagBytes = SkAlign4(tagBytes); | 644 tagBytes = SkAlign4(tagBytes); |
657 if (len < tagBytes) { | 645 if (len < tagBytes) { |
658 return false; | 646 return false; |
659 } | 647 } |
660 | 648 |
661 src += tagBytes; | 649 src += tagBytes; |
(...skipping 127 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
789 if (0 != offsetToColorLUT && offsetToColorLUT < len) { | 777 if (0 != offsetToColorLUT && offsetToColorLUT < len) { |
790 if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offse
tToColorLUT, | 778 if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offse
tToColorLUT, |
791 len - offsetToColorLUT)) { | 779 len - offsetToColorLUT)) { |
792 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n"); | 780 SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n"); |
793 } | 781 } |
794 } | 782 } |
795 | 783 |
796 uint32_t offsetToMCurves = read_big_endian_int(src + 20); | 784 uint32_t offsetToMCurves = read_big_endian_int(src + 20); |
797 if (0 != offsetToMCurves && offsetToMCurves < len) { | 785 if (0 != offsetToMCurves && offsetToMCurves < len) { |
798 if (!load_gammas(gammas, outputChannels, src + offsetToMCurves, len - of
fsetToMCurves)) { | 786 if (!load_gammas(gammas, outputChannels, src + offsetToMCurves, len - of
fsetToMCurves)) { |
799 SkColorSpacePrintf("Failed to read M curves from A to B tag.\n"); | 787 SkColorSpacePrintf("Failed to read M curves from A to B tag. Using
linear gamma.\n"); |
| 788 gammas[0].fNamed = SkColorSpace::kLinear_GammaNamed; |
| 789 gammas[1].fNamed = SkColorSpace::kLinear_GammaNamed; |
| 790 gammas[2].fNamed = SkColorSpace::kLinear_GammaNamed; |
800 } | 791 } |
801 } | 792 } |
802 | 793 |
803 uint32_t offsetToMatrix = read_big_endian_int(src + 16); | 794 uint32_t offsetToMatrix = read_big_endian_int(src + 16); |
804 if (0 != offsetToMatrix && offsetToMatrix < len) { | 795 if (0 != offsetToMatrix && offsetToMatrix < len) { |
805 if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) { | 796 if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) { |
806 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); | 797 SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); |
| 798 toXYZ->setIdentity(); |
807 } | 799 } |
808 } | 800 } |
809 | 801 |
810 return true; | 802 return true; |
811 } | 803 } |
812 | 804 |
813 sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* input, size_t len) { | 805 sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* input, size_t len) { |
814 if (!input || len < kICCHeaderSize) { | 806 if (!input || len < kICCHeaderSize) { |
815 return_null("Data is null or not large enough to contain an ICC profile"
); | 807 return_null("Data is null or not large enough to contain an ICC profile"
); |
816 } | 808 } |
(...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
865 const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ); | 857 const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ); |
866 const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ); | 858 const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ); |
867 if (r && g && b) { | 859 if (r && g && b) { |
868 float toXYZ[9]; | 860 float toXYZ[9]; |
869 if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLen
gth) || | 861 if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLen
gth) || |
870 !load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLen
gth) || | 862 !load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLen
gth) || |
871 !load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLen
gth)) | 863 !load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLen
gth)) |
872 { | 864 { |
873 return_null("Need valid rgb tags for XYZ space"); | 865 return_null("Need valid rgb tags for XYZ space"); |
874 } | 866 } |
| 867 SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); |
| 868 mat.set3x3ColMajorf(toXYZ); |
875 | 869 |
876 // It is not uncommon to see missing or empty gamma tags. This
indicates | 870 // It is not uncommon to see missing or empty gamma tags. This
indicates |
877 // that we should use unit gamma. | 871 // that we should use unit gamma. |
878 SkGammaCurve curves[3]; | 872 SkGammaCurve curves[3]; |
879 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC); | 873 r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC); |
880 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC); | 874 g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC); |
881 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC); | 875 b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC); |
882 if (!r || !load_gammas(&curves[0], 1, r->addr((const uint8_t*) b
ase), r->fLength)) | 876 if (!r || !load_gammas(&curves[0], 1, r->addr((const uint8_t*) b
ase), r->fLength)) |
883 { | 877 { |
884 SkColorSpacePrintf("Failed to read R gamma tag.\n"); | 878 SkColorSpacePrintf("Failed to read R gamma tag.\n"); |
| 879 curves[0].fNamed = SkColorSpace::kLinear_GammaNamed; |
885 } | 880 } |
886 if (!g || !load_gammas(&curves[1], 1, g->addr((const uint8_t*) b
ase), g->fLength)) | 881 if (!g || !load_gammas(&curves[1], 1, g->addr((const uint8_t*) b
ase), g->fLength)) |
887 { | 882 { |
888 SkColorSpacePrintf("Failed to read G gamma tag.\n"); | 883 SkColorSpacePrintf("Failed to read G gamma tag.\n"); |
| 884 curves[1].fNamed = SkColorSpace::kLinear_GammaNamed; |
889 } | 885 } |
890 if (!b || !load_gammas(&curves[2], 1, b->addr((const uint8_t*) b
ase), b->fLength)) | 886 if (!b || !load_gammas(&curves[2], 1, b->addr((const uint8_t*) b
ase), b->fLength)) |
891 { | 887 { |
892 SkColorSpacePrintf("Failed to read B gamma tag.\n"); | 888 SkColorSpacePrintf("Failed to read B gamma tag.\n"); |
| 889 curves[2].fNamed = SkColorSpace::kLinear_GammaNamed; |
893 } | 890 } |
894 | 891 |
895 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::m
ove(curves[1]), | 892 GammaNamed gammaNamed = SkGammas::Named(curves); |
896 std::move(curves[2]))); | 893 if (kNonStandard_GammaNamed == gammaNamed) { |
897 SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); | 894 sk_sp<SkGammas> gammas = sk_make_sp<SkGammas>(std::move(curv
es[0]), |
898 mat.set3x3ColMajorf(toXYZ); | 895 std::move(curv
es[1]), |
899 if (gammas->isValues()) { | 896 std::move(curv
es[2])); |
900 // When we have values, take advantage of the NewFromRGB ini
tializer. | 897 return sk_sp<SkColorSpace>(new SkColorSpace_Base(nullptr, st
d::move(gammas), |
901 // This allows us to check for canonical sRGB and Adobe RGB. | 898 mat, std::m
ove(data))); |
902 float gammaVals[3]; | |
903 gammaVals[0] = gammas->fRed.fValue; | |
904 gammaVals[1] = gammas->fGreen.fValue; | |
905 gammaVals[2] = gammas->fBlue.fValue; | |
906 return SkColorSpace_Base::NewRGB(gammaVals, mat, std::move(d
ata)); | |
907 } else { | 899 } else { |
908 return sk_sp<SkColorSpace>(new SkColorSpace_Base(std::move(g
ammas), mat, | 900 return SkColorSpace_Base::NewRGB(gammaNamed, mat, std::move(
data)); |
909 kUnknown_Na
med, | |
910 std::move(d
ata))); | |
911 } | 901 } |
912 } | 902 } |
913 | 903 |
914 // Recognize color profile specified by A2B0 tag. | 904 // Recognize color profile specified by A2B0 tag. |
915 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0); | 905 const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0); |
916 if (a2b0) { | 906 if (a2b0) { |
917 SkAutoTDelete<SkColorLookUpTable> colorLUT(new SkColorLookUpTabl
e()); | 907 SkAutoTDelete<SkColorLookUpTable> colorLUT(new SkColorLookUpTabl
e()); |
918 SkGammaCurve curves[3]; | 908 SkGammaCurve curves[3]; |
919 SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor); | 909 SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor); |
920 if (!load_a2b0(colorLUT, curves, &toXYZ, a2b0->addr((const uint8
_t*) base), | 910 if (!load_a2b0(colorLUT, curves, &toXYZ, a2b0->addr((const uint8
_t*) base), |
921 a2b0->fLength)) { | 911 a2b0->fLength)) { |
922 return_null("Failed to parse A2B0 tag"); | 912 return_null("Failed to parse A2B0 tag"); |
923 } | 913 } |
924 | 914 |
925 sk_sp<SkGammas> gammas(new SkGammas(std::move(curves[0]), std::m
ove(curves[1]), | 915 GammaNamed gammaNamed = SkGammas::Named(curves); |
926 std::move(curves[2]))); | 916 if (colorLUT->fTable || kNonStandard_GammaNamed == gammaNamed) { |
927 if (colorLUT->fTable) { | 917 sk_sp<SkGammas> gammas = sk_make_sp<SkGammas>(std::move(curv
es[0]), |
| 918 std::move(curv
es[1]), |
| 919 std::move(curv
es[2])); |
| 920 |
928 return sk_sp<SkColorSpace>(new SkColorSpace_Base(colorLUT.re
lease(), | 921 return sk_sp<SkColorSpace>(new SkColorSpace_Base(colorLUT.re
lease(), |
929 std::move(g
ammas), toXYZ, | 922 std::move(g
ammas), toXYZ, |
930 std::move(d
ata))); | 923 std::move(d
ata))); |
931 } else if (gammas->isValues()) { | |
932 // When we have values, take advantage of the NewFromRGB ini
tializer. | |
933 // This allows us to check for canonical sRGB and Adobe RGB. | |
934 float gammaVals[3]; | |
935 gammaVals[0] = gammas->fRed.fValue; | |
936 gammaVals[1] = gammas->fGreen.fValue; | |
937 gammaVals[2] = gammas->fBlue.fValue; | |
938 return SkColorSpace_Base::NewRGB(gammaVals, toXYZ, std::move
(data)); | |
939 } else { | 924 } else { |
940 return sk_sp<SkColorSpace>(new SkColorSpace_Base(std::move(g
ammas), toXYZ, | 925 return SkColorSpace_Base::NewRGB(gammaNamed, toXYZ, std::mov
e(data)); |
941 kUnknown_Na
med, | |
942 std::move(d
ata))); | |
943 } | 926 } |
944 } | 927 } |
945 } | 928 } |
946 default: | 929 default: |
947 break; | 930 break; |
948 } | 931 } |
949 | 932 |
950 return_null("ICC profile contains unsupported colorspace"); | 933 return_null("ICC profile contains unsupported colorspace"); |
951 } | 934 } |
952 | 935 |
(...skipping 119 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1072 ptr[2] = SkEndian_SwapBE32(1); | 1055 ptr[2] = SkEndian_SwapBE32(1); |
1073 | 1056 |
1074 // Convert gamma to 16-bit fixed point. | 1057 // Convert gamma to 16-bit fixed point. |
1075 uint16_t* ptr16 = (uint16_t*) (ptr + 3); | 1058 uint16_t* ptr16 = (uint16_t*) (ptr + 3); |
1076 ptr16[0] = SkEndian_SwapBE16((uint16_t) (value * 256.0f)); | 1059 ptr16[0] = SkEndian_SwapBE16((uint16_t) (value * 256.0f)); |
1077 | 1060 |
1078 // Pad tag with zero. | 1061 // Pad tag with zero. |
1079 ptr16[1] = 0; | 1062 ptr16[1] = 0; |
1080 } | 1063 } |
1081 | 1064 |
| 1065 static float get_gamma_value(const SkGammaCurve* curve) { |
| 1066 switch (curve->fNamed) { |
| 1067 case SkColorSpace::kSRGB_GammaNamed: |
| 1068 // FIXME (msarett): |
| 1069 // kSRGB cannot be represented by a value. Here we fall through to
2.2f, |
| 1070 // which is a close guess. To be more accurate, we need to represen
t sRGB |
| 1071 // gamma with a parametric curve. |
| 1072 case SkColorSpace::k2Dot2Curve_GammaNamed: |
| 1073 return 2.2f; |
| 1074 case SkColorSpace::kLinear_GammaNamed: |
| 1075 return 1.0f; |
| 1076 default: |
| 1077 SkASSERT(curve->isValue()); |
| 1078 return curve->fValue; |
| 1079 } |
| 1080 } |
| 1081 |
1082 sk_sp<SkData> SkColorSpace_Base::writeToICC() const { | 1082 sk_sp<SkData> SkColorSpace_Base::writeToICC() const { |
1083 // Return if this object was created from a profile, or if we have already s
erialized | 1083 // Return if this object was created from a profile, or if we have already s
erialized |
1084 // the profile. | 1084 // the profile. |
1085 if (fProfileData) { | 1085 if (fProfileData) { |
1086 return fProfileData; | 1086 return fProfileData; |
1087 } | 1087 } |
1088 | 1088 |
1089 // The client may create an SkColorSpace using an SkMatrix44, but currently
we only | 1089 // The client may create an SkColorSpace using an SkMatrix44, but currently
we only |
1090 // support writing profiles with 3x3 matrices. | 1090 // support writing profiles with 3x3 matrices. |
1091 // TODO (msarett): Fix this! | 1091 // TODO (msarett): Fix this! |
(...skipping 21 matching lines...) Expand all Loading... |
1113 | 1113 |
1114 // Write XYZ tags | 1114 // Write XYZ tags |
1115 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 0); | 1115 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 0); |
1116 ptr += kTAG_XYZ_Bytes; | 1116 ptr += kTAG_XYZ_Bytes; |
1117 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 1); | 1117 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 1); |
1118 ptr += kTAG_XYZ_Bytes; | 1118 ptr += kTAG_XYZ_Bytes; |
1119 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 2); | 1119 write_xyz_tag((uint32_t*) ptr, fToXYZD50, 2); |
1120 ptr += kTAG_XYZ_Bytes; | 1120 ptr += kTAG_XYZ_Bytes; |
1121 | 1121 |
1122 // Write TRC tags | 1122 // Write TRC tags |
1123 SkASSERT(as_CSB(this)->fGammas->fRed.isValue()); | 1123 GammaNamed gammaNamed = this->gammaNamed(); |
1124 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fRed.fValue); | 1124 if (kNonStandard_GammaNamed == gammaNamed) { |
1125 ptr += SkAlign4(kTAG_TRC_Bytes); | 1125 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f
Red)); |
1126 SkASSERT(as_CSB(this)->fGammas->fGreen.isValue()); | 1126 ptr += SkAlign4(kTAG_TRC_Bytes); |
1127 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fGreen.fValue); | 1127 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f
Green)); |
1128 ptr += SkAlign4(kTAG_TRC_Bytes); | 1128 ptr += SkAlign4(kTAG_TRC_Bytes); |
1129 SkASSERT(as_CSB(this)->fGammas->fBlue.isValue()); | 1129 write_trc_tag((uint32_t*) ptr, get_gamma_value(&as_CSB(this)->fGammas->f
Blue)); |
1130 write_trc_tag((uint32_t*) ptr, as_CSB(this)->fGammas->fBlue.fValue); | 1130 ptr += SkAlign4(kTAG_TRC_Bytes); |
1131 ptr += SkAlign4(kTAG_TRC_Bytes); | 1131 } else { |
| 1132 switch (gammaNamed) { |
| 1133 case SkColorSpace::kSRGB_GammaNamed: |
| 1134 // FIXME (msarett): |
| 1135 // kSRGB cannot be represented by a value. Here we fall through
to 2.2f, |
| 1136 // which is a close guess. To be more accurate, we need to repr
esent sRGB |
| 1137 // gamma with a parametric curve. |
| 1138 case SkColorSpace::k2Dot2Curve_GammaNamed: |
| 1139 write_trc_tag((uint32_t*) ptr, 2.2f); |
| 1140 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1141 write_trc_tag((uint32_t*) ptr, 2.2f); |
| 1142 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1143 write_trc_tag((uint32_t*) ptr, 2.2f); |
| 1144 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1145 break; |
| 1146 case SkColorSpace::kLinear_GammaNamed: |
| 1147 write_trc_tag((uint32_t*) ptr, 1.0f); |
| 1148 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1149 write_trc_tag((uint32_t*) ptr, 1.0f); |
| 1150 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1151 write_trc_tag((uint32_t*) ptr, 1.0f); |
| 1152 ptr += SkAlign4(kTAG_TRC_Bytes); |
| 1153 break; |
| 1154 default: |
| 1155 SkASSERT(false); |
| 1156 break; |
| 1157 } |
| 1158 } |
1132 | 1159 |
1133 // Write white point tag | 1160 // Write white point tag |
1134 uint32_t* ptr32 = (uint32_t*) ptr; | 1161 uint32_t* ptr32 = (uint32_t*) ptr; |
1135 ptr32[0] = SkEndian_SwapBE32(kXYZ_PCSSpace); | 1162 ptr32[0] = SkEndian_SwapBE32(kXYZ_PCSSpace); |
1136 ptr32[1] = 0; | 1163 ptr32[1] = 0; |
1137 // TODO (msarett): These values correspond to the D65 white point. This may
not always be | 1164 // TODO (msarett): These values correspond to the D65 white point. This may
not always be |
1138 // correct. | 1165 // correct. |
1139 ptr32[2] = SkEndian_SwapBE32(0x0000f351); | 1166 ptr32[2] = SkEndian_SwapBE32(0x0000f351); |
1140 ptr32[3] = SkEndian_SwapBE32(0x00010000); | 1167 ptr32[3] = SkEndian_SwapBE32(0x00010000); |
1141 ptr32[4] = SkEndian_SwapBE32(0x000116cc); | 1168 ptr32[4] = SkEndian_SwapBE32(0x000116cc); |
1142 ptr += kTAG_XYZ_Bytes; | 1169 ptr += kTAG_XYZ_Bytes; |
1143 | 1170 |
1144 // Write copyright tag | 1171 // Write copyright tag |
1145 memcpy(ptr, gEmptyTextTag, sizeof(gEmptyTextTag)); | 1172 memcpy(ptr, gEmptyTextTag, sizeof(gEmptyTextTag)); |
1146 | 1173 |
1147 // TODO (msarett): Should we try to hold onto the data so we can return imme
diately if | 1174 // TODO (msarett): Should we try to hold onto the data so we can return imme
diately if |
1148 // the client calls again? | 1175 // the client calls again? |
1149 return SkData::MakeFromMalloc(profile.release(), kICCProfileSize); | 1176 return SkData::MakeFromMalloc(profile.release(), kICCProfileSize); |
1150 } | 1177 } |
OLD | NEW |