OLD | NEW |
(Empty) | |
| 1 // Copyright 2016 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "cc/base/pyramid_sequence.h" |
| 6 |
| 7 #include <algorithm> |
| 8 #include <string> |
| 9 |
| 10 #define ENUM_TO_INDEX(x) static_cast<unsigned int>(x) |
| 11 |
| 12 namespace cc { |
| 13 |
| 14 namespace { |
| 15 |
| 16 int LevelsToSkipAlongDirection(int levels) { |
| 17 return levels > 0 ? levels : 0; |
| 18 } |
| 19 |
| 20 int LevelsToSkipCrossDirection(int levels) { |
| 21 return levels >= 0 ? levels + 1 : 0; |
| 22 } |
| 23 |
| 24 // The following function returns default coverage as spiral order {R, T, L, B}. |
| 25 // TODO(prashant.n): Implement precedence in coverage directions instead of |
| 26 // default spiral coverage. http://crbug.com/629052. |
| 27 CoverageDirection* GetCoverageDirectionSequence() { |
| 28 static CoverageDirection |
| 29 spiral_coverage[ENUM_TO_INDEX(CoverageDirection::SIZE)] = { |
| 30 CoverageDirection::RIGHT, CoverageDirection::TOP, |
| 31 CoverageDirection::LEFT, CoverageDirection::BOTTOM}; |
| 32 return spiral_coverage; |
| 33 } |
| 34 |
| 35 int GetPositionForDirection(CoverageDirection* positions, |
| 36 CoverageDirection direction) { |
| 37 for (unsigned int i = 0; i < ENUM_TO_INDEX(CoverageDirection::SIZE); ++i) { |
| 38 if (positions[i] == direction) |
| 39 return i; |
| 40 } |
| 41 |
| 42 NOTREACHED(); |
| 43 return -1; |
| 44 } |
| 45 |
| 46 } // namespace |
| 47 |
| 48 namespace internal { |
| 49 |
| 50 // Interval implementation. |
| 51 Interval::Iterator* Interval::Begin() { |
| 52 return new Iterator(this); |
| 53 } |
| 54 |
| 55 Interval::ReverseIterator* Interval::ReverseBegin() { |
| 56 return new ReverseIterator(this); |
| 57 } |
| 58 |
| 59 int Interval::GetSpan() const { |
| 60 return empty_ ? 0 : std::abs(end_ - start_) + 1; |
| 61 } |
| 62 |
| 63 int Interval::GetForwardClampedIndex(int index) const { |
| 64 DCHECK_LE(start_, end_); |
| 65 return (index < start_) ? start_ : ((index > end_) ? end_ : index); |
| 66 } |
| 67 |
| 68 int Interval::GetBackwardClampedIndex(int index) const { |
| 69 DCHECK_GE(start_, end_); |
| 70 return (index > start_) ? start_ : ((index < end_) ? end_ : index); |
| 71 } |
| 72 |
| 73 void Interval::ForwardClampTo(const Interval* other) { |
| 74 DCHECK_LE(start_, end_); |
| 75 DCHECK_LE(other->start_, other->end_); |
| 76 start_ = other->GetForwardClampedIndex(start_); |
| 77 end_ = other->GetForwardClampedIndex(end_); |
| 78 } |
| 79 |
| 80 void Interval::BackwardClampTo(const Interval* other) { |
| 81 DCHECK_GE(start_, end_); |
| 82 DCHECK_GE(other->start_, other->end_); |
| 83 start_ = other->GetBackwardClampedIndex(start_); |
| 84 end_ = other->GetBackwardClampedIndex(end_); |
| 85 } |
| 86 |
| 87 void Interval::ForwardInflate(int level, Interval* output) const { |
| 88 output->start_ = start_ - level; |
| 89 output->end_ = end_ + level; |
| 90 } |
| 91 |
| 92 void Interval::BackwardInflate(int level, Interval* output) const { |
| 93 output->start_ = start_ + level; |
| 94 output->end_ = end_ - level; |
| 95 } |
| 96 |
| 97 bool Interval::Contains(int index) const { |
| 98 return (start_ <= end_) ? (index >= start_ && index <= end_) |
| 99 : (index <= start_ && index >= end_); |
| 100 } |
| 101 |
| 102 bool Interval::Intersects(const Interval* interval) const { |
| 103 return interval->Contains(start_) || interval->Contains(end_); |
| 104 } |
| 105 |
| 106 void Interval::Intersect(const Interval* interval) { |
| 107 DCHECK(Intersects(interval)); |
| 108 DCHECK(((start_ <= end_) && (interval->start_ <= interval->end_)) || |
| 109 ((start_ >= end_) && (interval->start_ >= interval->end_))); |
| 110 |
| 111 bool forward_direction = (GetSpan() > interval->GetSpan()) |
| 112 ? (start_ <= end_) |
| 113 : (interval->start_ <= interval->end_); |
| 114 |
| 115 if (forward_direction) { |
| 116 start_ = std::max(start_, interval->start_); |
| 117 end_ = std::min(end_, interval->end_); |
| 118 } else { |
| 119 start_ = std::min(start_, interval->start_); |
| 120 end_ = std::max(end_, interval->end_); |
| 121 } |
| 122 } |
| 123 |
| 124 // Interval::IteratorBase implementation. |
| 125 Interval::IteratorBase::IteratorBase(Interval* interval) |
| 126 : interval_(interval), within_bounds_(!interval->empty_), step_(0) {} |
| 127 |
| 128 Interval::IteratorBase& Interval::IteratorBase::operator++() { |
| 129 current_index_ += step_; |
| 130 within_bounds_ = IsWithinBounds(); |
| 131 |
| 132 return *this; |
| 133 } |
| 134 |
| 135 // Interval::Iterator implementation. |
| 136 Interval::Iterator::Iterator(Interval* interval) |
| 137 : Interval::IteratorBase(interval) { |
| 138 step_ = (interval_->start_ <= interval_->end_) ? 1 : -1; |
| 139 current_index_ = interval_->start_; |
| 140 } |
| 141 |
| 142 bool Interval::Iterator::IsWithinBounds() { |
| 143 if (step_ == 1) { |
| 144 DCHECK(current_index_ >= interval_->start_); |
| 145 |
| 146 if (interval_->start_ == interval_->end_ || |
| 147 current_index_ > interval_->end_) |
| 148 return false; |
| 149 |
| 150 return true; |
| 151 } else { |
| 152 DCHECK(current_index_ <= interval_->start_); |
| 153 |
| 154 if (interval_->start_ == interval_->end_ || |
| 155 current_index_ < interval_->end_) |
| 156 return false; |
| 157 |
| 158 return true; |
| 159 } |
| 160 } |
| 161 |
| 162 // Interval::ReverseIterator implementation. |
| 163 Interval::ReverseIterator::ReverseIterator(Interval* interval) |
| 164 : Interval::IteratorBase(interval) { |
| 165 step_ = (interval_->start_ <= interval_->end_) ? -1 : 1; |
| 166 current_index_ = interval_->end_; |
| 167 } |
| 168 |
| 169 bool Interval::ReverseIterator::IsWithinBounds() { |
| 170 if (step_ == 1) { |
| 171 DCHECK(current_index_ >= interval_->end_); |
| 172 |
| 173 if (interval_->start_ == interval_->end_ || |
| 174 current_index_ > interval_->start_) |
| 175 return false; |
| 176 |
| 177 return true; |
| 178 } else { |
| 179 DCHECK(current_index_ <= interval_->end_); |
| 180 |
| 181 if (interval_->start_ == interval_->end_ || |
| 182 current_index_ < interval_->start_) |
| 183 return false; |
| 184 |
| 185 return true; |
| 186 } |
| 187 } |
| 188 |
| 189 // LinearSequence implementation. |
| 190 LinearSequence::LinearSequence(bool forward_direction, |
| 191 std::unique_ptr<Interval> interval, |
| 192 std::unique_ptr<Interval> affinity_interval, |
| 193 std::unique_ptr<Interval> inflate_limit) |
| 194 : forward_direction_(forward_direction), |
| 195 interval_(std::move(interval)), |
| 196 inflate_limit_(std::move(inflate_limit)), |
| 197 affinity_interval_(std::move(affinity_interval)), |
| 198 initial_interval_(std::unique_ptr<Interval>( |
| 199 new Interval(interval_->start(), interval_->end()))) { |
| 200 TrisectInterval(); |
| 201 } |
| 202 |
| 203 LinearSequence::~LinearSequence() = default; |
| 204 |
| 205 LinearSequence::Iterator* LinearSequence::Begin() { |
| 206 return new Iterator(this); |
| 207 } |
| 208 |
| 209 LinearSequence::ReverseIterator* LinearSequence::ReverseBegin() { |
| 210 return new ReverseIterator(this); |
| 211 } |
| 212 |
| 213 void LinearSequence::InflateToLevel(int level) { |
| 214 if (forward_direction_) { |
| 215 initial_interval_->ForwardInflate(level, interval_.get()); |
| 216 interval_->ForwardClampTo(inflate_limit_.get()); |
| 217 } else { |
| 218 initial_interval_->BackwardInflate(level, interval_.get()); |
| 219 interval_->BackwardClampTo(inflate_limit_.get()); |
| 220 } |
| 221 |
| 222 TrisectInterval(); |
| 223 } |
| 224 |
| 225 void LinearSequence::TrisectInterval() { |
| 226 if (interval_->IsEmpty()) { |
| 227 affinity_sub_interval_ = Interval(); |
| 228 before_sub_interval_ = Interval(); |
| 229 after_sub_interval_ = Interval(); |
| 230 return; |
| 231 } |
| 232 |
| 233 if (forward_direction_) { |
| 234 affinity_sub_interval_ = *(affinity_interval_.get()); |
| 235 if (affinity_sub_interval_.Intersects(interval_.get())) { |
| 236 affinity_sub_interval_.Intersect(interval_.get()); |
| 237 |
| 238 // Compute before sub-interval. |
| 239 if (affinity_sub_interval_.start() > interval_->start()) |
| 240 before_sub_interval_ = |
| 241 Interval(affinity_sub_interval_.start() - 1, interval_->start()); |
| 242 else if (affinity_sub_interval_.start() == interval_->start()) |
| 243 before_sub_interval_ = Interval(); |
| 244 |
| 245 // Compute after sub-interval. |
| 246 if (affinity_sub_interval_.end() < interval_->end()) |
| 247 after_sub_interval_ = |
| 248 Interval(affinity_sub_interval_.end() + 1, interval_->end()); |
| 249 else if (affinity_sub_interval_.end() == interval_->end()) |
| 250 after_sub_interval_ = Interval(); |
| 251 } else { |
| 252 // The affinity interval is either before or after the |interval_|. |
| 253 if (affinity_sub_interval_.end() < interval_->start()) { |
| 254 before_sub_interval_ = Interval(); |
| 255 after_sub_interval_ = *(interval_.get()); |
| 256 } else { |
| 257 after_sub_interval_ = Interval(); |
| 258 before_sub_interval_ = Interval(interval_->end(), interval_->start()); |
| 259 } |
| 260 |
| 261 affinity_sub_interval_ = Interval(); |
| 262 } |
| 263 } else { |
| 264 affinity_sub_interval_ = *(affinity_interval_.get()); |
| 265 if (affinity_sub_interval_.Intersects(interval_.get())) { |
| 266 affinity_sub_interval_.Intersect(interval_.get()); |
| 267 |
| 268 // Compute before sub-interval. |
| 269 if (affinity_sub_interval_.start() < interval_->start()) |
| 270 before_sub_interval_ = |
| 271 Interval(affinity_sub_interval_.start() + 1, interval_->start()); |
| 272 else if (affinity_sub_interval_.start() == interval_->start()) |
| 273 before_sub_interval_ = Interval(); |
| 274 |
| 275 // Compute after sub-interval. |
| 276 if (affinity_sub_interval_.end() > interval_->end()) |
| 277 after_sub_interval_ = |
| 278 Interval(affinity_sub_interval_.end() - 1, interval_->end()); |
| 279 else if (affinity_sub_interval_.end() == interval_->end()) |
| 280 after_sub_interval_ = Interval(); |
| 281 } else { |
| 282 // The affinity interval is either before or after the |interval_|. |
| 283 if (affinity_sub_interval_.end() > interval_->start()) { |
| 284 before_sub_interval_ = Interval(); |
| 285 after_sub_interval_ = *(interval_.get()); |
| 286 } else { |
| 287 after_sub_interval_ = Interval(); |
| 288 before_sub_interval_ = Interval(interval_->end(), interval_->start()); |
| 289 } |
| 290 |
| 291 affinity_sub_interval_ = Interval(); |
| 292 } |
| 293 } |
| 294 } |
| 295 |
| 296 // LinearSequence::IteratorBase implementation. |
| 297 LinearSequence::IteratorBase::IteratorBase(LinearSequence* level_sequence) |
| 298 : level_sequence_(level_sequence), within_bounds_(true) {} |
| 299 |
| 300 LinearSequence::IteratorBase::~IteratorBase() = default; |
| 301 |
| 302 LinearSequence::IteratorBase& LinearSequence::IteratorBase::operator++() { |
| 303 if (within_bounds_) { |
| 304 ++(*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 305 current_sub_interval_iterator_)])); |
| 306 current_sub_interval_iterator_ = GetCurrentSubIntervalIteratorType(); |
| 307 current_index_ = |
| 308 sub_interval_iterators_[ENUM_TO_INDEX(current_sub_interval_iterator_)] |
| 309 ->index(); |
| 310 within_bounds_ = IsWithinBounds(); |
| 311 } |
| 312 return *this; |
| 313 } |
| 314 |
| 315 bool LinearSequence::IteratorBase::IsWithinBounds() { |
| 316 return *(sub_interval_iterators_[ENUM_TO_INDEX( |
| 317 SubIntervalIteratorType::AFFINITY)]) || |
| 318 *(sub_interval_iterators_[ENUM_TO_INDEX( |
| 319 SubIntervalIteratorType::BEFORE)]) || |
| 320 *(sub_interval_iterators_[ENUM_TO_INDEX( |
| 321 SubIntervalIteratorType::AFTER)]); |
| 322 } |
| 323 |
| 324 // LinearSequence::Iterator implementation. |
| 325 LinearSequence::Iterator::Iterator(LinearSequence* level_sequence) |
| 326 : LinearSequence::IteratorBase(level_sequence), before_first_(true) { |
| 327 sub_interval_iterators_[ENUM_TO_INDEX(SubIntervalIteratorType::AFFINITY)] |
| 328 .reset(level_sequence_->affinity_sub_interval_.Begin()); |
| 329 |
| 330 sub_interval_iterators_[ENUM_TO_INDEX(SubIntervalIteratorType::BEFORE)].reset( |
| 331 level_sequence_->before_sub_interval_.Begin()); |
| 332 |
| 333 sub_interval_iterators_[ENUM_TO_INDEX(SubIntervalIteratorType::AFTER)].reset( |
| 334 level_sequence_->after_sub_interval_.Begin()); |
| 335 |
| 336 current_sub_interval_iterator_ = GetCurrentSubIntervalIteratorType(); |
| 337 current_index_ = |
| 338 sub_interval_iterators_[ENUM_TO_INDEX(current_sub_interval_iterator_)] |
| 339 ->index(); |
| 340 } |
| 341 |
| 342 LinearSequence::Iterator::~Iterator() = default; |
| 343 |
| 344 LinearSequence::IteratorBase::SubIntervalIteratorType |
| 345 LinearSequence::Iterator::GetCurrentSubIntervalIteratorType() { |
| 346 if (*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 347 SubIntervalIteratorType::AFFINITY)])) |
| 348 return SubIntervalIteratorType::AFFINITY; |
| 349 |
| 350 if (before_first_) { |
| 351 before_first_ = false; |
| 352 if (*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 353 SubIntervalIteratorType::BEFORE)])) |
| 354 return SubIntervalIteratorType::BEFORE; |
| 355 |
| 356 return SubIntervalIteratorType::AFTER; |
| 357 } else { |
| 358 before_first_ = true; |
| 359 if (*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 360 SubIntervalIteratorType::AFTER)])) |
| 361 return SubIntervalIteratorType::AFTER; |
| 362 |
| 363 return SubIntervalIteratorType::BEFORE; |
| 364 } |
| 365 } |
| 366 |
| 367 // LinearSequence::ReverseIterator implementation. |
| 368 LinearSequence::ReverseIterator::ReverseIterator(LinearSequence* level_sequence) |
| 369 : LinearSequence::IteratorBase(level_sequence), |
| 370 after_first_(true), |
| 371 before_sub_interval_span_( |
| 372 level_sequence_->before_sub_interval_.GetSpan()), |
| 373 after_sub_interval_span_(level_sequence_->after_sub_interval_.GetSpan()) { |
| 374 sub_interval_iterators_[ENUM_TO_INDEX(SubIntervalIteratorType::AFFINITY)] |
| 375 .reset(level_sequence_->affinity_sub_interval_.ReverseBegin()); |
| 376 |
| 377 sub_interval_iterators_[ENUM_TO_INDEX(SubIntervalIteratorType::BEFORE)].reset( |
| 378 level_sequence_->before_sub_interval_.ReverseBegin()); |
| 379 |
| 380 sub_interval_iterators_[ENUM_TO_INDEX(SubIntervalIteratorType::AFTER)].reset( |
| 381 level_sequence_->after_sub_interval_.ReverseBegin()); |
| 382 |
| 383 current_sub_interval_iterator_ = GetCurrentSubIntervalIteratorType(); |
| 384 current_index_ = |
| 385 sub_interval_iterators_[ENUM_TO_INDEX(current_sub_interval_iterator_)] |
| 386 ->index(); |
| 387 } |
| 388 |
| 389 LinearSequence::ReverseIterator::~ReverseIterator() = default; |
| 390 |
| 391 LinearSequence::IteratorBase::SubIntervalIteratorType |
| 392 LinearSequence::ReverseIterator::GetCurrentSubIntervalIteratorType() { |
| 393 if (before_sub_interval_span_ > after_sub_interval_span_) { |
| 394 --before_sub_interval_span_; |
| 395 return SubIntervalIteratorType::BEFORE; |
| 396 } else if (before_sub_interval_span_ < after_sub_interval_span_) { |
| 397 --after_sub_interval_span_; |
| 398 return SubIntervalIteratorType::AFTER; |
| 399 } else { |
| 400 if (after_first_) { |
| 401 after_first_ = false; |
| 402 if (*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 403 SubIntervalIteratorType::AFTER)])) |
| 404 return SubIntervalIteratorType::AFTER; |
| 405 |
| 406 if (*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 407 SubIntervalIteratorType::BEFORE)])) |
| 408 return SubIntervalIteratorType::BEFORE; |
| 409 } else { |
| 410 after_first_ = true; |
| 411 if (*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 412 SubIntervalIteratorType::BEFORE)])) |
| 413 return SubIntervalIteratorType::BEFORE; |
| 414 |
| 415 if (*(sub_interval_iterators_[ENUM_TO_INDEX( |
| 416 SubIntervalIteratorType::AFTER)])) |
| 417 return SubIntervalIteratorType::AFTER; |
| 418 } |
| 419 } |
| 420 |
| 421 return SubIntervalIteratorType::AFFINITY; |
| 422 } |
| 423 |
| 424 // TriangularSequence implementation. |
| 425 TriangularSequence::TriangularSequence( |
| 426 CoverageDirection coverage_direction, |
| 427 std::unique_ptr<LinearSequence> traversal_sequence, |
| 428 std::unique_ptr<Interval> level_interval, |
| 429 bool should_swap_index_representation, |
| 430 int levels_to_skip, |
| 431 int distance) |
| 432 : coverage_direction_(coverage_direction), |
| 433 traversal_sequence_(std::move(traversal_sequence)), |
| 434 level_interval_(std::move(level_interval)), |
| 435 should_swap_index_representation_(should_swap_index_representation), |
| 436 levels_to_skip_(levels_to_skip), |
| 437 distance_(distance) {} |
| 438 |
| 439 TriangularSequence::~TriangularSequence() = default; |
| 440 |
| 441 TriangularSequence::Iterator* TriangularSequence::Begin() { |
| 442 return new Iterator(this); |
| 443 } |
| 444 |
| 445 TriangularSequence::ReverseIterator* TriangularSequence::ReverseBegin() { |
| 446 return new ReverseIterator(this); |
| 447 } |
| 448 |
| 449 // TriangularSequence::IteratorBase implementation. |
| 450 TriangularSequence::IteratorBase::IteratorBase( |
| 451 TriangularSequence* triangular_sequence) |
| 452 : should_swap_index_representation_( |
| 453 triangular_sequence->should_swap_index_representation_) { |
| 454 DCHECK_NE(triangular_sequence->coverage_direction_, CoverageDirection::NONE); |
| 455 std::unique_ptr<Interval::Iterator> level_interval_it( |
| 456 triangular_sequence->level_interval_->Begin()); |
| 457 traversal_sequence_ = triangular_sequence->traversal_sequence_.get(); |
| 458 int span = triangular_sequence->level_interval_->GetSpan(); |
| 459 DCHECK_GE(span, triangular_sequence->levels_to_skip_); |
| 460 |
| 461 // Skip |levels_to_skip| levels in level interval. |
| 462 for (int i = 0; i < triangular_sequence->levels_to_skip_; ++i) |
| 463 ++(*level_interval_it); |
| 464 |
| 465 for (int i = triangular_sequence->levels_to_skip_; i < span; ++i) { |
| 466 level_distances_.push_back(LevelDistance( |
| 467 i, level_interval_it->index(), triangular_sequence->distance_ * i)); |
| 468 ++(*level_interval_it); |
| 469 } |
| 470 } |
| 471 |
| 472 TriangularSequence::IteratorBase::~IteratorBase() = default; |
| 473 |
| 474 TriangularSequence::IteratorBase& TriangularSequence::IteratorBase:: |
| 475 operator++() { |
| 476 Advance(); |
| 477 UpdateCurrent(); |
| 478 |
| 479 return *this; |
| 480 } |
| 481 |
| 482 // TriangularSequence::Iterator implementation. |
| 483 TriangularSequence::Iterator::Iterator(TriangularSequence* triangular_sequence) |
| 484 : TriangularSequence::IteratorBase(triangular_sequence) { |
| 485 UpdateCurrent(); |
| 486 } |
| 487 |
| 488 int TriangularSequence::Iterator::GetNextDistance() const { |
| 489 DCHECK(*this); |
| 490 return level_distances_.front().distance; |
| 491 } |
| 492 |
| 493 void TriangularSequence::Iterator::Advance() { |
| 494 if (!*this) |
| 495 return; |
| 496 |
| 497 level_distances_.erase(level_distances_.begin()); |
| 498 } |
| 499 |
| 500 void TriangularSequence::Iterator::UpdateCurrent() { |
| 501 if (!*this) |
| 502 return; |
| 503 |
| 504 current_level_index_ = level_distances_.front().level_index; |
| 505 traversal_sequence_->InflateToLevel(level_distances_.front().interval_level); |
| 506 } |
| 507 |
| 508 // TriangularSequence::ReverseIterator implementation. |
| 509 TriangularSequence::ReverseIterator::ReverseIterator( |
| 510 TriangularSequence* triangular_sequence) |
| 511 : TriangularSequence::IteratorBase(triangular_sequence) { |
| 512 UpdateCurrent(); |
| 513 } |
| 514 |
| 515 int TriangularSequence::ReverseIterator::GetNextDistance() const { |
| 516 DCHECK(!level_distances_.empty()); |
| 517 return level_distances_.back().distance; |
| 518 } |
| 519 |
| 520 void TriangularSequence::ReverseIterator::Advance() { |
| 521 if (!*this) |
| 522 return; |
| 523 |
| 524 level_distances_.erase(level_distances_.end() - 1); |
| 525 } |
| 526 |
| 527 void TriangularSequence::ReverseIterator::UpdateCurrent() { |
| 528 if (!*this) |
| 529 return; |
| 530 |
| 531 current_level_index_ = level_distances_.back().level_index; |
| 532 traversal_sequence_->InflateToLevel(level_distances_.back().interval_level); |
| 533 } |
| 534 |
| 535 // PyramidSequence implementation. |
| 536 PyramidSequence::PyramidSequence(const IndexRect& around_index_rect, |
| 537 const IndexRect& consider_index_rect, |
| 538 const IndexRect& ignore_index_rect, |
| 539 int width, |
| 540 int height) |
| 541 : consider_index_rect_(consider_index_rect), |
| 542 ignore_index_rect_(ignore_index_rect) { |
| 543 // Compute center_index_rect and if it is valid (i.e. |around_index_rect| is |
| 544 // really around some index_rect) and both |consider_index_rect| and |
| 545 // |ignore_index_rect| are valid, then proceed, otherwise keep the pyramid |
| 546 // sequence empty. |
| 547 |
| 548 IndexRect center_index_rect(around_index_rect); |
| 549 center_index_rect.Inset(1, 1, 1, 1); |
| 550 if (!center_index_rect.is_valid() || !consider_index_rect.is_valid() || |
| 551 !ignore_index_rect.is_valid()) |
| 552 return; |
| 553 |
| 554 // Compute the max possible levels along all directions. |
| 555 int left_levels = around_index_rect.left() - consider_index_rect_.left() + 1; |
| 556 int right_levels = |
| 557 consider_index_rect_.right() - around_index_rect.right() + 1; |
| 558 int top_levels = around_index_rect.top() - consider_index_rect_.top() + 1; |
| 559 int bottom_levels = |
| 560 consider_index_rect_.bottom() - around_index_rect.bottom() + 1; |
| 561 |
| 562 // When center_index_rect and consider_index_rect are non-intersecting, then |
| 563 // we need to compute the levels to skip for avoiding traversal of levels |
| 564 // which do not fall in consider_index_rect. The pyramid sequence adds |
| 565 // diagonal indices to left and right directions and no diagonal indices for |
| 566 // top and bottom directions, so while considering skip levels for top/bottom, |
| 567 // we need to consider maximum of levels to skip "along" the top/bottom |
| 568 // directions and levels to skip "cross" left/right directions and for |
| 569 // considering skip levels for left/right, we need to consider maximum of |
| 570 // levels to skip "along" the left/right directions and levels to skip "along" |
| 571 // top/bottom directions. |
| 572 // Compute the levels to skip along and cross all directions. |
| 573 int skip_levels_along_left = |
| 574 around_index_rect.left() - consider_index_rect_.right(); |
| 575 int skip_levels_along_right = |
| 576 consider_index_rect_.left() - around_index_rect.right(); |
| 577 int skip_levels_along_top = |
| 578 around_index_rect.top() - consider_index_rect_.bottom(); |
| 579 int skip_levels_along_bottom = |
| 580 consider_index_rect_.top() - around_index_rect.bottom(); |
| 581 int skip_levels_cross_left = |
| 582 LevelsToSkipCrossDirection(skip_levels_along_left); |
| 583 int skip_levels_cross_right = |
| 584 LevelsToSkipCrossDirection(skip_levels_along_right); |
| 585 skip_levels_along_left = LevelsToSkipAlongDirection(skip_levels_along_left); |
| 586 skip_levels_along_right = LevelsToSkipAlongDirection(skip_levels_along_right); |
| 587 skip_levels_along_top = LevelsToSkipAlongDirection(skip_levels_along_top); |
| 588 skip_levels_along_bottom = |
| 589 LevelsToSkipAlongDirection(skip_levels_along_bottom); |
| 590 |
| 591 DCHECK(triangular_sequences_.empty()); |
| 592 triangular_sequences_.resize(ENUM_TO_INDEX(CoverageDirection::SIZE)); |
| 593 CoverageDirection* positions = GetCoverageDirectionSequence(); |
| 594 DCHECK(positions); |
| 595 |
| 596 #define NEW_UNIQUE(type, val) std::unique_ptr<type>(new val) |
| 597 |
| 598 // Add triangular sequences for all directions. |
| 599 // RIGHT sequence. |
| 600 if (right_levels > 0) { |
| 601 int start = around_index_rect.bottom(); |
| 602 int end = around_index_rect.top(); |
| 603 int skip_levels = |
| 604 std::max(skip_levels_along_right, |
| 605 std::max(skip_levels_along_bottom, skip_levels_along_top)); |
| 606 if (right_levels > skip_levels) { |
| 607 EmplaceAt( |
| 608 GetPositionForDirection(positions, CoverageDirection::RIGHT), |
| 609 NEW_UNIQUE( |
| 610 TriangularSequence, |
| 611 TriangularSequence( |
| 612 CoverageDirection::RIGHT, |
| 613 NEW_UNIQUE( |
| 614 LinearSequence, |
| 615 LinearSequence( |
| 616 false, NEW_UNIQUE(Interval, Interval(start, end)), |
| 617 NEW_UNIQUE(Interval, |
| 618 Interval(center_index_rect.bottom(), |
| 619 center_index_rect.top())), |
| 620 NEW_UNIQUE(Interval, |
| 621 Interval(consider_index_rect_.bottom(), |
| 622 consider_index_rect_.top())))), |
| 623 NEW_UNIQUE(Interval, Interval(around_index_rect.right(), |
| 624 consider_index_rect_.right())), |
| 625 true, skip_levels, width))); |
| 626 } |
| 627 } |
| 628 |
| 629 // TOP sequence. |
| 630 if (top_levels > 0) { |
| 631 int start = around_index_rect.right() - 1; |
| 632 int end = around_index_rect.left() + 1; |
| 633 int skip_levels = |
| 634 std::max(skip_levels_along_top, |
| 635 std::max(skip_levels_cross_right, skip_levels_cross_left)); |
| 636 if (top_levels > skip_levels) { |
| 637 EmplaceAt( |
| 638 GetPositionForDirection(positions, CoverageDirection::TOP), |
| 639 NEW_UNIQUE( |
| 640 TriangularSequence, |
| 641 TriangularSequence( |
| 642 CoverageDirection::TOP, |
| 643 NEW_UNIQUE( |
| 644 LinearSequence, |
| 645 LinearSequence( |
| 646 false, NEW_UNIQUE(Interval, Interval(start, end)), |
| 647 NEW_UNIQUE(Interval, |
| 648 Interval(center_index_rect.right(), |
| 649 center_index_rect.left())), |
| 650 NEW_UNIQUE(Interval, |
| 651 Interval(consider_index_rect_.right(), |
| 652 consider_index_rect_.left())))), |
| 653 NEW_UNIQUE(Interval, Interval(around_index_rect.top(), |
| 654 consider_index_rect_.top())), |
| 655 false, skip_levels, height))); |
| 656 } |
| 657 } |
| 658 |
| 659 // LEFT sequence. |
| 660 if (left_levels > 0) { |
| 661 int start = around_index_rect.top(); |
| 662 int end = around_index_rect.bottom(); |
| 663 int skip_levels = |
| 664 std::max(skip_levels_along_left, |
| 665 std::max(skip_levels_along_top, skip_levels_along_bottom)); |
| 666 if (left_levels > skip_levels) { |
| 667 EmplaceAt( |
| 668 GetPositionForDirection(positions, CoverageDirection::LEFT), |
| 669 NEW_UNIQUE( |
| 670 TriangularSequence, |
| 671 TriangularSequence( |
| 672 CoverageDirection::LEFT, |
| 673 NEW_UNIQUE( |
| 674 LinearSequence, |
| 675 LinearSequence( |
| 676 true, NEW_UNIQUE(Interval, Interval(start, end)), |
| 677 NEW_UNIQUE(Interval, |
| 678 Interval(center_index_rect.top(), |
| 679 center_index_rect.bottom())), |
| 680 NEW_UNIQUE(Interval, |
| 681 Interval(consider_index_rect_.top(), |
| 682 consider_index_rect_.bottom())))), |
| 683 NEW_UNIQUE(Interval, Interval(around_index_rect.left(), |
| 684 consider_index_rect_.left())), |
| 685 true, skip_levels, width))); |
| 686 } |
| 687 } |
| 688 |
| 689 // BOTTOM sequence. |
| 690 if (bottom_levels > 0) { |
| 691 int start = around_index_rect.left() + 1; |
| 692 int end = around_index_rect.right() - 1; |
| 693 int skip_levels = |
| 694 std::max(skip_levels_along_bottom, |
| 695 std::max(skip_levels_cross_left, skip_levels_cross_right)); |
| 696 if (bottom_levels > skip_levels) { |
| 697 EmplaceAt( |
| 698 GetPositionForDirection(positions, CoverageDirection::BOTTOM), |
| 699 NEW_UNIQUE( |
| 700 TriangularSequence, |
| 701 TriangularSequence( |
| 702 CoverageDirection::BOTTOM, |
| 703 NEW_UNIQUE( |
| 704 LinearSequence, |
| 705 LinearSequence( |
| 706 true, NEW_UNIQUE(Interval, Interval(start, end)), |
| 707 NEW_UNIQUE(Interval, |
| 708 Interval(center_index_rect.left(), |
| 709 center_index_rect.right())), |
| 710 NEW_UNIQUE(Interval, |
| 711 Interval(consider_index_rect_.left(), |
| 712 consider_index_rect_.right())))), |
| 713 NEW_UNIQUE(Interval, Interval(around_index_rect.bottom(), |
| 714 consider_index_rect_.bottom())), |
| 715 false, skip_levels, height))); |
| 716 } |
| 717 } |
| 718 |
| 719 // Remove dummy triangular sequences. |
| 720 triangular_sequences_.erase( |
| 721 std::remove_if( |
| 722 triangular_sequences_.begin(), triangular_sequences_.end(), |
| 723 [](const std::unique_ptr<TriangularSequence>& triangular_sequence) { |
| 724 return triangular_sequence.get() == nullptr; |
| 725 }), |
| 726 triangular_sequences_.end()); |
| 727 } |
| 728 |
| 729 PyramidSequence::~PyramidSequence() = default; |
| 730 |
| 731 PyramidSequence::Iterator* PyramidSequence::Begin() { |
| 732 return new Iterator(this); |
| 733 } |
| 734 |
| 735 PyramidSequence::ReverseIterator* PyramidSequence::ReverseBegin() { |
| 736 return new ReverseIterator(this); |
| 737 } |
| 738 |
| 739 void PyramidSequence::EmplaceAt( |
| 740 int position, |
| 741 std::unique_ptr<TriangularSequence> triangular_sequence) { |
| 742 triangular_sequences_[position] = std::move(triangular_sequence); |
| 743 } |
| 744 |
| 745 // PyramidSequence::IteratorBase implementation. |
| 746 PyramidSequence::IteratorBase::IteratorBase( |
| 747 const IndexRect& consider_index_rect, |
| 748 const IndexRect& ignore_index_rect) |
| 749 : consider_index_rect_(consider_index_rect), |
| 750 ignore_index_rect_(ignore_index_rect), |
| 751 current_triangular_sequence_it_(nullptr) {} |
| 752 |
| 753 PyramidSequence::IteratorBase::~IteratorBase() = default; |
| 754 |
| 755 PyramidSequence::IteratorBase::operator bool() const { |
| 756 return current_triangular_sequence_it_ && !IsEmpty(); |
| 757 } |
| 758 |
| 759 PyramidSequence::IteratorBase& PyramidSequence::IteratorBase::operator++() { |
| 760 Advance(); |
| 761 UpdateCurrent(); |
| 762 |
| 763 return *this; |
| 764 } |
| 765 |
| 766 // PyramidSequence::Iterator implementation. |
| 767 PyramidSequence::Iterator::Iterator(PyramidSequence* pyramid_sequence) |
| 768 : PyramidSequence::IteratorBase(pyramid_sequence->consider_index_rect_, |
| 769 pyramid_sequence->ignore_index_rect_) { |
| 770 for (TriangularSequence::Vector::iterator it = |
| 771 pyramid_sequence->triangular_sequences_.begin(); |
| 772 it != pyramid_sequence->triangular_sequences_.end(); ++it) { |
| 773 DCHECK(it->get()->coverage_direction() != CoverageDirection::NONE); |
| 774 triangular_sequence_iterators_.emplace_back(it->get()->Begin()); |
| 775 } |
| 776 |
| 777 current_triangular_sequence_it_ = GetNextTriangularSequenceIterator(); |
| 778 if (current_triangular_sequence_it_) { |
| 779 if (*current_triangular_sequence_it_) { |
| 780 current_traversal_sequence_iterator_ = |
| 781 current_triangular_sequence_it_->traversal_sequence()->Begin(); |
| 782 } |
| 783 |
| 784 UpdateCurrent(); |
| 785 } |
| 786 } |
| 787 |
| 788 PyramidSequence::Iterator::~Iterator() = default; |
| 789 |
| 790 bool PyramidSequence::Iterator::IsEmpty() const { |
| 791 return triangular_sequence_iterators_.empty(); |
| 792 } |
| 793 |
| 794 void PyramidSequence::Iterator::Advance() { |
| 795 if (!*this) |
| 796 return; |
| 797 |
| 798 ++(*current_traversal_sequence_iterator_); |
| 799 if (!(*current_traversal_sequence_iterator_)) { |
| 800 ++(*current_triangular_sequence_it_); |
| 801 current_triangular_sequence_it_ = GetNextTriangularSequenceIterator(); |
| 802 if (current_triangular_sequence_it_) { |
| 803 current_traversal_sequence_iterator_ = |
| 804 current_triangular_sequence_it_->traversal_sequence()->Begin(); |
| 805 } |
| 806 } |
| 807 } |
| 808 |
| 809 void PyramidSequence::Iterator::UpdateCurrent() { |
| 810 while (*this) { |
| 811 if (*current_traversal_sequence_iterator_) { |
| 812 if (current_triangular_sequence_it_->is_index_representation_swapped()) { |
| 813 index_x_ = current_triangular_sequence_it_->level_index(); |
| 814 index_y_ = current_traversal_sequence_iterator_->index(); |
| 815 } else { |
| 816 index_x_ = current_traversal_sequence_iterator_->index(); |
| 817 index_y_ = current_triangular_sequence_it_->level_index(); |
| 818 } |
| 819 |
| 820 if (consider_index_rect_.Contains(index_x_, index_y_) && |
| 821 !ignore_index_rect_.Contains(index_x_, index_y_)) |
| 822 break; |
| 823 } |
| 824 |
| 825 Advance(); |
| 826 } |
| 827 } |
| 828 |
| 829 TriangularSequence::IteratorBase* |
| 830 PyramidSequence::Iterator::GetNextTriangularSequenceIterator() { |
| 831 // Remove traversed TriangularSequence::Iterator(s). |
| 832 triangular_sequence_iterators_.erase( |
| 833 std::remove_if( |
| 834 triangular_sequence_iterators_.begin(), |
| 835 triangular_sequence_iterators_.end(), |
| 836 [](const std::unique_ptr<TriangularSequence::Iterator>& it) { |
| 837 return !(*(it.get())); |
| 838 }), |
| 839 triangular_sequence_iterators_.end()); |
| 840 |
| 841 if (triangular_sequence_iterators_.empty()) |
| 842 return nullptr; |
| 843 |
| 844 std::vector<std::unique_ptr<TriangularSequence::Iterator>>::iterator |
| 845 min_distance_it = triangular_sequence_iterators_.begin(); |
| 846 |
| 847 for (std::vector<std::unique_ptr<TriangularSequence::Iterator>>::iterator it = |
| 848 triangular_sequence_iterators_.begin(); |
| 849 it != triangular_sequence_iterators_.end(); ++it) { |
| 850 int distance = it->get()->GetNextDistance(); |
| 851 if (distance == 0) { |
| 852 min_distance_it = it; |
| 853 break; |
| 854 } |
| 855 |
| 856 if (min_distance_it->get()->GetNextDistance() > distance) |
| 857 min_distance_it = it; |
| 858 } |
| 859 |
| 860 return min_distance_it->get(); |
| 861 } |
| 862 |
| 863 // PyramidSequence::ReverseIterator implementation. |
| 864 PyramidSequence::ReverseIterator::ReverseIterator( |
| 865 PyramidSequence* pyramid_sequence) |
| 866 : PyramidSequence::IteratorBase(pyramid_sequence->consider_index_rect_, |
| 867 pyramid_sequence->ignore_index_rect_) { |
| 868 for (TriangularSequence::Vector::iterator it = |
| 869 pyramid_sequence->triangular_sequences_.begin(); |
| 870 it != pyramid_sequence->triangular_sequences_.end(); ++it) { |
| 871 triangular_sequence_reverse_iterators_.emplace_back( |
| 872 it->get()->ReverseBegin()); |
| 873 } |
| 874 |
| 875 current_triangular_sequence_it_ = GetNextTriangularSequenceReverseIterator(); |
| 876 if (current_triangular_sequence_it_) { |
| 877 if (*current_triangular_sequence_it_) { |
| 878 current_traversal_sequence_reverse_iterator_ = |
| 879 current_triangular_sequence_it_->traversal_sequence()->ReverseBegin(); |
| 880 } |
| 881 UpdateCurrent(); |
| 882 } |
| 883 } |
| 884 |
| 885 PyramidSequence::ReverseIterator::~ReverseIterator() = default; |
| 886 |
| 887 bool PyramidSequence::ReverseIterator::IsEmpty() const { |
| 888 return triangular_sequence_reverse_iterators_.empty(); |
| 889 } |
| 890 |
| 891 void PyramidSequence::ReverseIterator::Advance() { |
| 892 if (!*this) |
| 893 return; |
| 894 |
| 895 ++(*current_traversal_sequence_reverse_iterator_); |
| 896 if (!(*current_traversal_sequence_reverse_iterator_)) { |
| 897 ++(*current_triangular_sequence_it_); |
| 898 current_triangular_sequence_it_ = |
| 899 GetNextTriangularSequenceReverseIterator(); |
| 900 if (current_triangular_sequence_it_) { |
| 901 current_traversal_sequence_reverse_iterator_ = |
| 902 current_triangular_sequence_it_->traversal_sequence()->ReverseBegin(); |
| 903 } |
| 904 } |
| 905 } |
| 906 |
| 907 void PyramidSequence::ReverseIterator::UpdateCurrent() { |
| 908 while (*this) { |
| 909 if ((*current_traversal_sequence_reverse_iterator_)) { |
| 910 if (current_triangular_sequence_it_->is_index_representation_swapped()) { |
| 911 index_x_ = current_triangular_sequence_it_->level_index(); |
| 912 index_y_ = current_traversal_sequence_reverse_iterator_->index(); |
| 913 } else { |
| 914 index_x_ = current_traversal_sequence_reverse_iterator_->index(); |
| 915 index_y_ = current_triangular_sequence_it_->level_index(); |
| 916 } |
| 917 |
| 918 if (consider_index_rect_.Contains(index_x_, index_y_) && |
| 919 !ignore_index_rect_.Contains(index_x_, index_y_)) |
| 920 break; |
| 921 } |
| 922 |
| 923 Advance(); |
| 924 } |
| 925 } |
| 926 |
| 927 TriangularSequence::IteratorBase* |
| 928 PyramidSequence::ReverseIterator::GetNextTriangularSequenceReverseIterator() { |
| 929 // Remove traversed TriangularSequence::ReverseIterator(s). |
| 930 triangular_sequence_reverse_iterators_.erase( |
| 931 std::remove_if( |
| 932 triangular_sequence_reverse_iterators_.begin(), |
| 933 triangular_sequence_reverse_iterators_.end(), |
| 934 [](const std::unique_ptr<TriangularSequence::ReverseIterator>& it) { |
| 935 return !(*(it.get())); |
| 936 }), |
| 937 triangular_sequence_reverse_iterators_.end()); |
| 938 |
| 939 if (triangular_sequence_reverse_iterators_.empty()) |
| 940 return nullptr; |
| 941 |
| 942 std::vector<std::unique_ptr<TriangularSequence::ReverseIterator>>:: |
| 943 reverse_iterator max_distance_it = |
| 944 triangular_sequence_reverse_iterators_.rbegin(); |
| 945 |
| 946 for (std::vector<std::unique_ptr<TriangularSequence::ReverseIterator>>:: |
| 947 reverse_iterator it = |
| 948 triangular_sequence_reverse_iterators_.rbegin(); |
| 949 it != triangular_sequence_reverse_iterators_.rend(); ++it) { |
| 950 int distance = it->get()->GetNextDistance(); |
| 951 |
| 952 if (max_distance_it->get()->GetNextDistance() < distance) |
| 953 max_distance_it = it; |
| 954 } |
| 955 |
| 956 return max_distance_it->get(); |
| 957 } |
| 958 |
| 959 } // namespace internal |
| 960 |
| 961 PyramidSequence::PyramidSequence() {} |
| 962 |
| 963 PyramidSequence::PyramidSequence(const IndexRect& around_index_rect, |
| 964 const IndexRect& consider_index_rect, |
| 965 const IndexRect& ignore_index_rect, |
| 966 int width, |
| 967 int height) |
| 968 : ptr_(new internal::PyramidSequence(around_index_rect, |
| 969 consider_index_rect, |
| 970 ignore_index_rect, |
| 971 width, |
| 972 height)) {} |
| 973 |
| 974 PyramidSequence::PyramidSequence(const PyramidSequence& other) = default; |
| 975 |
| 976 PyramidSequence::PyramidSequence(PyramidSequence&& other) = default; |
| 977 |
| 978 PyramidSequence::~PyramidSequence() = default; |
| 979 |
| 980 PyramidSequence& PyramidSequence::operator=(const PyramidSequence& other) = |
| 981 default; |
| 982 |
| 983 PyramidSequence& PyramidSequence::operator=(PyramidSequence&& other) = default; |
| 984 |
| 985 PyramidSequence::Iterator PyramidSequence::Begin() { |
| 986 return Iterator(ptr_->Begin()); |
| 987 } |
| 988 |
| 989 PyramidSequence::ReverseIterator PyramidSequence::ReverseBegin() { |
| 990 return ReverseIterator(ptr_->ReverseBegin()); |
| 991 } |
| 992 |
| 993 // iterator |
| 994 PyramidSequence::Iterator::Iterator() {} |
| 995 |
| 996 PyramidSequence::Iterator::Iterator(internal::PyramidSequence::Iterator* ptr) |
| 997 : ptr_(ptr) {} |
| 998 |
| 999 PyramidSequence::Iterator::Iterator(const PyramidSequence::Iterator& other) = |
| 1000 default; |
| 1001 |
| 1002 PyramidSequence::Iterator::Iterator(PyramidSequence::Iterator&& other) = |
| 1003 default; |
| 1004 |
| 1005 PyramidSequence::Iterator::~Iterator() = default; |
| 1006 |
| 1007 PyramidSequence::Iterator& PyramidSequence::Iterator::operator=( |
| 1008 const PyramidSequence::Iterator& other) = default; |
| 1009 |
| 1010 PyramidSequence::Iterator& PyramidSequence::Iterator::operator=( |
| 1011 PyramidSequence::Iterator&& other) = default; |
| 1012 |
| 1013 PyramidSequence::Iterator::operator bool() const { |
| 1014 return *ptr_; |
| 1015 } |
| 1016 |
| 1017 PyramidSequence::Iterator& PyramidSequence::Iterator::operator++() { |
| 1018 ++(*ptr_); |
| 1019 return *this; |
| 1020 } |
| 1021 |
| 1022 int PyramidSequence::Iterator::index_x() const { |
| 1023 return ptr_->index_x(); |
| 1024 } |
| 1025 |
| 1026 int PyramidSequence::Iterator::index_y() const { |
| 1027 return ptr_->index_y(); |
| 1028 } |
| 1029 |
| 1030 // reverse |
| 1031 PyramidSequence::ReverseIterator::ReverseIterator() {} |
| 1032 |
| 1033 PyramidSequence::ReverseIterator::ReverseIterator( |
| 1034 internal::PyramidSequence::ReverseIterator* ptr) |
| 1035 : ptr_(ptr) {} |
| 1036 |
| 1037 PyramidSequence::ReverseIterator::ReverseIterator( |
| 1038 const PyramidSequence::ReverseIterator& other) = default; |
| 1039 |
| 1040 PyramidSequence::ReverseIterator::ReverseIterator( |
| 1041 PyramidSequence::ReverseIterator&& other) = default; |
| 1042 |
| 1043 PyramidSequence::ReverseIterator::~ReverseIterator() = default; |
| 1044 |
| 1045 PyramidSequence::ReverseIterator& PyramidSequence::ReverseIterator::operator=( |
| 1046 const PyramidSequence::ReverseIterator& other) = default; |
| 1047 |
| 1048 PyramidSequence::ReverseIterator& PyramidSequence::ReverseIterator::operator=( |
| 1049 PyramidSequence::ReverseIterator&& other) = default; |
| 1050 |
| 1051 PyramidSequence::ReverseIterator::operator bool() const { |
| 1052 return *ptr_; |
| 1053 } |
| 1054 |
| 1055 PyramidSequence::ReverseIterator& PyramidSequence::ReverseIterator:: |
| 1056 operator++() { |
| 1057 ++(*ptr_); |
| 1058 return *this; |
| 1059 } |
| 1060 |
| 1061 int PyramidSequence::ReverseIterator::index_x() const { |
| 1062 return ptr_->index_x(); |
| 1063 } |
| 1064 |
| 1065 int PyramidSequence::ReverseIterator::index_y() const { |
| 1066 return ptr_->index_y(); |
| 1067 } |
| 1068 |
| 1069 } // namespace cc |
OLD | NEW |