| Index: src/gpu/instanced/InstanceProcessor.cpp
|
| diff --git a/src/gpu/instanced/InstanceProcessor.cpp b/src/gpu/instanced/InstanceProcessor.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..1e71cc8c5fac51ed5a0bd87765520fd89d9c504a
|
| --- /dev/null
|
| +++ b/src/gpu/instanced/InstanceProcessor.cpp
|
| @@ -0,0 +1,2098 @@
|
| +/*
|
| + * Copyright 2016 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "InstanceProcessor.h"
|
| +
|
| +#include "GrContext.h"
|
| +#include "GrRenderTargetPriv.h"
|
| +#include "GrResourceCache.h"
|
| +#include "GrResourceProvider.h"
|
| +#include "glsl/GrGLSLGeometryProcessor.h"
|
| +#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
| +#include "glsl/GrGLSLProgramBuilder.h"
|
| +#include "glsl/GrGLSLVarying.h"
|
| +
|
| +namespace gr_instanced {
|
| +
|
| +bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& caps,
|
| + AntialiasMode* lastSupportedAAMode) {
|
| + if (!glslCaps.canUseAnyFunctionInShader() ||
|
| + !glslCaps.flatInterpolationSupport() ||
|
| + !glslCaps.integerSupport() ||
|
| + 0 == glslCaps.maxVertexSamplers() ||
|
| + !caps.shaderCaps()->texelBufferSupport() ||
|
| + caps.maxVertexAttributes() < kNumVertexAttribs) {
|
| + return false;
|
| + }
|
| + if (caps.sampleLocationsSupport() &&
|
| + glslCaps.sampleVariablesSupport() &&
|
| + glslCaps.shaderDerivativeSupport()) {
|
| + if (0 != caps.maxRasterSamples() &&
|
| + glslCaps.sampleMaskOverrideCoverageSupport()) {
|
| + *lastSupportedAAMode = AntialiasMode::kMixedSamples;
|
| + } else {
|
| + *lastSupportedAAMode = AntialiasMode::kMSAA;
|
| + }
|
| + } else {
|
| + *lastSupportedAAMode = AntialiasMode::kCoverage;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer)
|
| + : fBatchInfo(batchInfo) {
|
| + this->initClassID<InstanceProcessor>();
|
| +
|
| + this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision));
|
| + this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType));
|
| + this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType));
|
| + this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType,
|
| + kHigh_GrSLPrecision));
|
| + this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType,
|
| + kHigh_GrSLPrecision));
|
| + this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrSLPrecision));
|
| + this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision));
|
| +
|
| + GR_STATIC_ASSERT(0 == kShapeCoords_AttribIdx);
|
| + GR_STATIC_ASSERT(1 == kVertexAttrs_AttribIdx);
|
| + GR_STATIC_ASSERT(2 == kInstanceInfo_AttribIdx);
|
| + GR_STATIC_ASSERT(3 == kShapeMatrixX_AttribIdx);
|
| + GR_STATIC_ASSERT(4 == kShapeMatrixY_AttribIdx);
|
| + GR_STATIC_ASSERT(5 == kColor_AttribIdx);
|
| + GR_STATIC_ASSERT(6 == kLocalRect_AttribIdx);
|
| + GR_STATIC_ASSERT(7 == kNumVertexAttribs);
|
| +
|
| + if (fBatchInfo.fHasParams) {
|
| + SkASSERT(paramsBuffer);
|
| + fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrShaderFlag);
|
| + this->addBufferAccess(&fParamsAccess);
|
| + }
|
| +
|
| + if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) {
|
| + if (!fBatchInfo.isSimpleRects() ||
|
| + AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) {
|
| + this->setWillUseSampleLocations();
|
| + }
|
| + }
|
| +}
|
| +
|
| +class GLSLInstanceProcessor : public GrGLSLGeometryProcessor {
|
| +public:
|
| + void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
|
| +
|
| +private:
|
| + void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override {}
|
| +
|
| + class VertexInputs;
|
| + class Backend;
|
| + class BackendNonAA;
|
| + class BackendCoverage;
|
| + class BackendMultisample;
|
| +
|
| + typedef GrGLSLGeometryProcessor INHERITED;
|
| +};
|
| +
|
| +GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps&) const {
|
| + return new GLSLInstanceProcessor();
|
| +}
|
| +
|
| +class GLSLInstanceProcessor::VertexInputs {
|
| +public:
|
| + VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexBuilder)
|
| + : fInstProc(instProc),
|
| + fVertexBuilder(vertexBuilder) {
|
| + }
|
| +
|
| + void initParams(const SamplerHandle paramsBuffer) {
|
| + fParamsBuffer = paramsBuffer;
|
| + fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask);
|
| + fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);",
|
| + this->attr(kInstanceInfo_AttribIdx));
|
| + }
|
| +
|
| + const char* attr(AttribIdx idx) const { return fInstProc.getAttrib(idx).fName; }
|
| +
|
| + void fetchNextParam(GrSLType type = kVec4f_GrSLType) const {
|
| + SkASSERT(fParamsBuffer.isValid());
|
| + if (type != kVec4f_GrSLType) {
|
| + fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type));
|
| + }
|
| + fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++");
|
| + if (type != kVec4f_GrSLType) {
|
| + fVertexBuilder->codeAppend(")");
|
| + }
|
| + }
|
| +
|
| + void skipParams(unsigned n) const {
|
| + SkASSERT(fParamsBuffer.isValid());
|
| + fVertexBuilder->codeAppendf("paramsIdx += %u;", n);
|
| + }
|
| +
|
| +private:
|
| + const InstanceProcessor& fInstProc;
|
| + GrGLSLVertexBuilder* fVertexBuilder;
|
| + SamplerHandle fParamsBuffer;
|
| +};
|
| +
|
| +class GLSLInstanceProcessor::Backend {
|
| +public:
|
| + static Backend* SK_WARN_UNUSED_RESULT Create(const GrGLSLProgramBuilder*, BatchInfo,
|
| + const VertexInputs&);
|
| + virtual ~Backend() {}
|
| +
|
| + void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*);
|
| + virtual void setupRect(GrGLSLVertexBuilder*) = 0;
|
| + virtual void setupOval(GrGLSLVertexBuilder*) = 0;
|
| + void setupRRect(GrGLSLVertexBuilder*);
|
| +
|
| + void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*);
|
| + virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0;
|
| + virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0;
|
| + void setupInnerRRect(GrGLSLVertexBuilder*);
|
| +
|
| + const char* outShapeCoords() {
|
| + return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(kShapeCoords_AttribIdx);
|
| + }
|
| +
|
| + void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage,
|
| + const char* outColor);
|
| +
|
| +protected:
|
| + Backend(BatchInfo batchInfo, const VertexInputs& inputs)
|
| + : fBatchInfo(batchInfo),
|
| + fInputs(inputs),
|
| + fModifiesCoverage(false),
|
| + fModifiesColor(false),
|
| + fNeedsNeighborRadii(false),
|
| + fColor(kVec4f_GrSLType),
|
| + fTriangleIsArc(kInt_GrSLType),
|
| + fArcCoords(kVec2f_GrSLType),
|
| + fInnerShapeCoords(kVec2f_GrSLType),
|
| + fInnerRRect(kVec4f_GrSLType),
|
| + fModifiedShapeCoords(nullptr) {
|
| + if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) {
|
| + fModifiedShapeCoords = "adjustedShapeCoords";
|
| + }
|
| + }
|
| +
|
| + virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0;
|
| + virtual void adjustRRectVertices(GrGLSLVertexBuilder*);
|
| + virtual void onSetupRRect(GrGLSLVertexBuilder*) {}
|
| +
|
| + virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0;
|
| + virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0;
|
| +
|
| + virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*,
|
| + const char* outCoverage, const char* outColor) = 0;
|
| +
|
| + void setupSimpleRadii(GrGLSLVertexBuilder*);
|
| + void setupNinePatchRadii(GrGLSLVertexBuilder*);
|
| + void setupComplexRadii(GrGLSLVertexBuilder*);
|
| +
|
| + const BatchInfo fBatchInfo;
|
| + const VertexInputs& fInputs;
|
| + bool fModifiesCoverage;
|
| + bool fModifiesColor;
|
| + bool fNeedsNeighborRadii;
|
| + GrGLSLVertToFrag fColor;
|
| + GrGLSLVertToFrag fTriangleIsArc;
|
| + GrGLSLVertToFrag fArcCoords;
|
| + GrGLSLVertToFrag fInnerShapeCoords;
|
| + GrGLSLVertToFrag fInnerRRect;
|
| + const char* fModifiedShapeCoords;
|
| +};
|
| +
|
| +void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
|
| + const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>();
|
| + GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
|
| + GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
|
| + GrGLSLVertexBuilder* v = args.fVertBuilder;
|
| + GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
|
| +
|
| + varyingHandler->emitAttributes(ip);
|
| +
|
| + VertexInputs inputs(ip, v);
|
| + if (ip.batchInfo().fHasParams) {
|
| + SkASSERT(1 == ip.numBuffers());
|
| + inputs.initParams(args.fBufferSamplers[0]);
|
| + }
|
| +
|
| + if (!ip.batchInfo().fHasPerspective) {
|
| + v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);",
|
| + inputs.attr(kShapeMatrixX_AttribIdx), inputs.attr(kShapeMatrixY_AttribIdx));
|
| + } else {
|
| + v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag);
|
| + v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));",
|
| + inputs.attr(kShapeMatrixX_AttribIdx), inputs.attr(kShapeMatrixY_AttribIdx));
|
| + v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {",
|
| + inputs.attr(kInstanceInfo_AttribIdx));
|
| + v->codeAppend ( "shapeMatrix[2] = ");
|
| + inputs.fetchNextParam(kVec3f_GrSLType);
|
| + v->codeAppend ( ";");
|
| + v->codeAppend ("}");
|
| + }
|
| +
|
| + int usedShapeTypes = 0;
|
| +
|
| + bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes);
|
| + if (!hasSingleShapeType) {
|
| + usedShapeTypes |= ip.batchInfo().fShapeTypes;
|
| + v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit);
|
| + v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;",
|
| + inputs.attr(kInstanceInfo_AttribIdx));
|
| + }
|
| +
|
| + SkAutoTDelete<Backend> backend(Backend::Create(v->getProgramBuilder(), ip.batchInfo(), inputs));
|
| + backend->init(varyingHandler, v);
|
| +
|
| + if (hasSingleShapeType) {
|
| + if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) {
|
| + backend->setupRect(v);
|
| + } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) {
|
| + backend->setupOval(v);
|
| + } else {
|
| + backend->setupRRect(v);
|
| + }
|
| + } else {
|
| + v->codeAppend ("switch (shapeType) {");
|
| + if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) {
|
| + v->codeAppend ("case RECT_SHAPE_TYPE: {");
|
| + backend->setupRect(v);
|
| + v->codeAppend ("} break;");
|
| + }
|
| + if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) {
|
| + v->codeAppend ("case OVAL_SHAPE_TYPE: {");
|
| + backend->setupOval(v);
|
| + v->codeAppend ("} break;");
|
| + }
|
| + if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) {
|
| + v->codeAppend ("default: {");
|
| + backend->setupRRect(v);
|
| + v->codeAppend ("} break;");
|
| + }
|
| + v->codeAppend ("}");
|
| + }
|
| +
|
| + if (ip.batchInfo().fInnerShapeTypes) {
|
| + bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes);
|
| + if (!hasSingleInnerShapeType) {
|
| + usedShapeTypes |= ip.batchInfo().fInnerShapeTypes;
|
| + v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMask);
|
| + v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit);
|
| + v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK) >> "
|
| + "INNER_SHAPE_TYPE_BIT);",
|
| + inputs.attr(kInstanceInfo_AttribIdx));
|
| + }
|
| + // Here we take advantage of the fact that outerRect == localRect in recordDRRect.
|
| + v->codeAppendf("vec4 outer = %s;", inputs.attr(kLocalRect_AttribIdx));
|
| + v->codeAppend ("vec4 inner = ");
|
| + inputs.fetchNextParam();
|
| + v->codeAppend (";");
|
| + // innerCoords is a transform from shape coords to inner shape coords:
|
| + // e.g. innerShapeCoords = shapeCoords * innerCoords.xy + innerCoords.zw
|
| + v->codeAppend ("vec4 innerCoords = vec4(outer.zw - outer.xy, "
|
| + "outer.xy + outer.zw - inner.xy - inner.zw) / "
|
| + "(inner.zw - inner.xy).xyxy;");
|
| + v->codeAppendf("vec2 innerShapeCoords = %s * innerCoords.xy + innerCoords.zw;",
|
| + backend->outShapeCoords());
|
| +
|
| + backend->initInnerShape(varyingHandler, v);
|
| +
|
| + if (hasSingleInnerShapeType) {
|
| + if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) {
|
| + backend->setupInnerRect(v);
|
| + } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) {
|
| + backend->setupInnerOval(v);
|
| + } else {
|
| + backend->setupInnerRRect(v);
|
| + }
|
| + } else {
|
| + v->codeAppend("switch (innerShapeType) {");
|
| + if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) {
|
| + v->codeAppend("case RECT_SHAPE_TYPE: {");
|
| + backend->setupInnerRect(v);
|
| + v->codeAppend("} break;");
|
| + }
|
| + if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) {
|
| + v->codeAppend("case OVAL_SHAPE_TYPE: {");
|
| + backend->setupInnerOval(v);
|
| + v->codeAppend("} break;");
|
| + }
|
| + if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) {
|
| + v->codeAppend("default: {");
|
| + backend->setupInnerRRect(v);
|
| + v->codeAppend("} break;");
|
| + }
|
| + v->codeAppend("}");
|
| + }
|
| + }
|
| +
|
| + if (usedShapeTypes & kRect_ShapeFlag) {
|
| + v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect);
|
| + }
|
| + if (usedShapeTypes & kOval_ShapeFlag) {
|
| + v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval);
|
| + }
|
| +
|
| + backend->emitCode(v, f, args.fOutputCoverage, args.fOutputColor);
|
| +
|
| + const char* localCoords = nullptr;
|
| + if (ip.batchInfo().fUsesLocalCoords) {
|
| + localCoords = "localCoords";
|
| + v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords());
|
| + v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;",
|
| + inputs.attr(kLocalRect_AttribIdx), inputs.attr(kLocalRect_AttribIdx));
|
| + }
|
| + if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) {
|
| + v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag);
|
| + v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {",
|
| + inputs.attr(kInstanceInfo_AttribIdx));
|
| + if (!ip.batchInfo().fUsesLocalCoords) {
|
| + inputs.skipParams(2);
|
| + } else {
|
| + v->codeAppendf( "mat2x3 localMatrix;");
|
| + v->codeAppend ( "localMatrix[0] = ");
|
| + inputs.fetchNextParam(kVec3f_GrSLType);
|
| + v->codeAppend ( ";");
|
| + v->codeAppend ( "localMatrix[1] = ");
|
| + inputs.fetchNextParam(kVec3f_GrSLType);
|
| + v->codeAppend ( ";");
|
| + v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatrix).xy;");
|
| + }
|
| + v->codeAppend("}");
|
| + }
|
| +
|
| + GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : kVec2f_GrSLType;
|
| + v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;",
|
| + GrGLSLTypeString(positionType), backend->outShapeCoords());
|
| + gpArgs->fPositionVar.set(positionType, "deviceCoords");
|
| +
|
| + this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, localCoords,
|
| + args.fTransformsIn, args.fTransformsOut);
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder* v) {
|
| + if (fModifiedShapeCoords) {
|
| + v->codeAppendf("vec2 %s = %s;",
|
| + fModifiedShapeCoords, fInputs.attr(kShapeCoords_AttribIdx));
|
| + }
|
| +
|
| + this->onInit(varyingHandler, v);
|
| +
|
| + if (!fColor.vsOut()) {
|
| + varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision);
|
| + v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(kColor_AttribIdx));
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) {
|
| + v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);",
|
| + fInputs.attr(kVertexAttrs_AttribIdx), fInputs.attr(kVertexAttrs_AttribIdx));
|
| + v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;");
|
| + v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : "");
|
| + v->codeAppend ("mat2 p = ");
|
| + fInputs.fetchNextParam(kMat22f_GrSLType);
|
| + v->codeAppend (";");
|
| + uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask;
|
| + if (0 == (types & (types - 1))) {
|
| + if (kSimpleRRect_ShapeFlag == types) {
|
| + this->setupSimpleRadii(v);
|
| + } else if (kNinePatch_ShapeFlag == types) {
|
| + this->setupNinePatchRadii(v);
|
| + } else if (kComplexRRect_ShapeFlag == types) {
|
| + this->setupComplexRadii(v);
|
| + }
|
| + } else {
|
| + v->codeAppend("switch (shapeType) {");
|
| + if (types & kSimpleRRect_ShapeFlag) {
|
| + v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpleRRect);
|
| + v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {");
|
| + this->setupSimpleRadii(v);
|
| + v->codeAppend ("} break;");
|
| + }
|
| + if (types & kNinePatch_ShapeFlag) {
|
| + v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatch);
|
| + v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {");
|
| + this->setupNinePatchRadii(v);
|
| + v->codeAppend ("} break;");
|
| + }
|
| + if (types & kComplexRRect_ShapeFlag) {
|
| + v->codeAppend ("default: {");
|
| + this->setupComplexRadii(v);
|
| + v->codeAppend ("} break;");
|
| + }
|
| + v->codeAppend("}");
|
| + }
|
| +
|
| + this->adjustRRectVertices(v);
|
| +
|
| + if (fArcCoords.vsOut()) {
|
| + v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;",
|
| + fArcCoords.vsOut(), fModifiedShapeCoords);
|
| + }
|
| + if (fTriangleIsArc.vsOut()) {
|
| + v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));",
|
| + fTriangleIsArc.vsOut(), fInputs.attr(kShapeCoords_AttribIdx));
|
| + }
|
| +
|
| + this->onSetupRRect(v);
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) {
|
| + if (fNeedsNeighborRadii) {
|
| + v->codeAppend ("neighborRadii = ");
|
| + }
|
| + v->codeAppend("radii = p[0] * 2.0 / p[1];");
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v) {
|
| + v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);");
|
| + if (fNeedsNeighborRadii) {
|
| + v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corner.y]);");
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) {
|
| + /**
|
| + * The x and y radii of each arc are stored in separate vectors,
|
| + * in the following order:
|
| + *
|
| + * __x1 _ _ _ x3__
|
| + *
|
| + * y1 | | y2
|
| + *
|
| + * | |
|
| + *
|
| + * y3 |__ _ _ _ __| y4
|
| + * x2 x4
|
| + *
|
| + */
|
| + v->codeAppend("mat2 p2 = ");
|
| + fInputs.fetchNextParam(kMat22f_GrSLType);
|
| + v->codeAppend(";");
|
| + v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);");
|
| + if (fNeedsNeighborRadii) {
|
| + v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], "
|
| + "p2[1u - corner.y][corner.x]);");
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v) {
|
| + // Resize the 4 triangles that arcs are drawn into so they match their corresponding radii.
|
| + // 0.5 is a special value that indicates the edge of an arc triangle.
|
| + v->codeAppendf("if (abs(%s.x) == 0.5)"
|
| + "%s.x = cornerSign.x * (1.0 - radii.x);",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| + v->codeAppendf("if (abs(%s.y) == 0.5) "
|
| + "%s.y = cornerSign.y * (1.0 - radii.y);",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder* v) {
|
| + SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRect_ShapeFlag)));
|
| +
|
| + this->onInitInnerShape(varyingHandler, v);
|
| +
|
| + if (fInnerShapeCoords.vsOut()) {
|
| + v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) {
|
| + v->codeAppend("mat2 innerP = ");
|
| + fInputs.fetchNextParam(kMat22f_GrSLType);
|
| + v->codeAppend(";");
|
| + v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];");
|
| + this->onSetupInnerRRect(v);
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFragmentBuilder* f,
|
| + const char* outCoverage, const char* outColor) {
|
| + this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr,
|
| + fModifiesColor ? outColor : nullptr);
|
| + if (!fModifiesCoverage) {
|
| + // Even though the subclass doesn't use coverage, we are expected to assign some value.
|
| + f->codeAppendf("%s = vec4(1);", outCoverage);
|
| + }
|
| + if (!fModifiesColor) {
|
| + // The subclass didn't assign a value to the output color.
|
| + f->codeAppendf("%s = %s;", outColor, fColor.fsIn());
|
| + }
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +class GLSLInstanceProcessor::BackendNonAA : public Backend {
|
| +public:
|
| + BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs)
|
| + : INHERITED(batchInfo, inputs) {
|
| + if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) {
|
| + fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage;
|
| + fModifiesCoverage = !fModifiesColor;
|
| + }
|
| + }
|
| +
|
| +private:
|
| + void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
|
| + void setupRect(GrGLSLVertexBuilder*) override;
|
| + void setupOval(GrGLSLVertexBuilder*) override;
|
| +
|
| + void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
|
| + void setupInnerRect(GrGLSLVertexBuilder*) override;
|
| + void setupInnerOval(GrGLSLVertexBuilder*) override;
|
| + void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
|
| +
|
| + void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*,
|
| + const char*) override;
|
| +
|
| + typedef Backend INHERITED;
|
| +};
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder*) {
|
| + if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
|
| + varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision);
|
| + varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecision);
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) {
|
| + if (fTriangleIsArc.vsOut()) {
|
| + v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) {
|
| + SkASSERT(fArcCoords.vsOut());
|
| + SkASSERT(fTriangleIsArc.vsOut());
|
| + v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords());
|
| + v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(kVertexAttrs_AttribIdx));
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder*) {
|
| + varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_GrSLPrecision);
|
| + if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes &&
|
| + kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
|
| + varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision);
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v) {
|
| + if (fInnerRRect.vsOut()) {
|
| + v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v) {
|
| + if (fInnerRRect.vsOut()) {
|
| + v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
|
| + v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut());
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*,
|
| + GrGLSLPPFragmentBuilder* f,
|
| + const char* outCoverage,
|
| + const char* outColor) {
|
| + const char* dropFragment = nullptr;
|
| + if (!fBatchInfo.fCannotDiscard) {
|
| + dropFragment = "discard";
|
| + } else if (fModifiesCoverage) {
|
| + f->appendPrecisionModifier(kLow_GrSLPrecision);
|
| + f->codeAppend ("float covered = 1.0;");
|
| + dropFragment = "covered = 0.0";
|
| + } else if (fModifiesColor) {
|
| + f->appendPrecisionModifier(kLow_GrSLPrecision);
|
| + f->codeAppendf("vec4 color = %s;", fColor.fsIn());
|
| + dropFragment = "color = vec4(0)";
|
| + }
|
| + if (fTriangleIsArc.fsIn()) {
|
| + SkASSERT(dropFragment);
|
| + f->appendPrecisionModifier(kLow_GrSLPrecision);
|
| + f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;",
|
| + fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn(), dropFragment);
|
| + }
|
| + if (fBatchInfo.fInnerShapeTypes) {
|
| + SkASSERT(dropFragment);
|
| + f->codeAppendf("// Inner shape.\n");
|
| + if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
|
| + f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;",
|
| + fInnerShapeCoords.fsIn(), dropFragment);
|
| + } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
|
| + f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;",
|
| + fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), dropFragment);
|
| + } else {
|
| + f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShapeCoords.fsIn());
|
| + f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;",
|
| + fInnerShapeCoords.fsIn(), fInnerRRect.fsIn());
|
| + f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {");
|
| + f->codeAppendf( "%s;", dropFragment);
|
| + f->codeAppend ( "} else {");
|
| + f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw;",
|
| + fInnerRRect.fsIn());
|
| + f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {");
|
| + f->codeAppendf( "%s;", dropFragment);
|
| + f->codeAppend ( "}");
|
| + f->codeAppend ( "}");
|
| + f->codeAppend ("}");
|
| + }
|
| + }
|
| + if (fModifiesCoverage) {
|
| + f->codeAppendf("%s = vec4(covered);", outCoverage);
|
| + } else if (fModifiesColor) {
|
| + f->codeAppendf("%s = color;", outColor);
|
| + }
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +class GLSLInstanceProcessor::BackendCoverage : public Backend {
|
| +public:
|
| + BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs)
|
| + : INHERITED(batchInfo, inputs),
|
| + fColorTimesCoverage(kVec4f_GrSLType),
|
| + fDistanceToEdge(kFloat_GrSLType),
|
| + fEllipseCoords(kVec2f_GrSLType),
|
| + fEllipseName(kVec2f_GrSLType),
|
| + fBloatedRadius(kFloat_GrSLType),
|
| + fDistanceToInnerEdge(kVec2f_GrSLType),
|
| + fInnerShapeBloatedHalfSize(kVec2f_GrSLType),
|
| + fInnerEllipseCoords(kVec2f_GrSLType),
|
| + fInnerEllipseName(kVec2f_GrSLType) {
|
| + fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kRRect_ShapesMask);
|
| + fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage &&
|
| + !fBatchInfo.fInnerShapeTypes;
|
| + fModifiesCoverage = !fTweakAlphaForCoverage;
|
| + fModifiesColor = fTweakAlphaForCoverage;
|
| + fModifiedShapeCoords = "bloatedShapeCoords";
|
| + }
|
| +
|
| +private:
|
| + void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
|
| + void setupRect(GrGLSLVertexBuilder*) override;
|
| + void setupOval(GrGLSLVertexBuilder*) override;
|
| + void adjustRRectVertices(GrGLSLVertexBuilder*) override;
|
| + void onSetupRRect(GrGLSLVertexBuilder*) override;
|
| +
|
| + void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
|
| + void setupInnerRect(GrGLSLVertexBuilder*) override;
|
| + void setupInnerOval(GrGLSLVertexBuilder*) override;
|
| + void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
|
| +
|
| + void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage,
|
| + const char* outColor) override;
|
| +
|
| + void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char* outColor);
|
| + void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage);
|
| + void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const char* ellipseName,
|
| + bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative,
|
| + const char* outCoverage);
|
| + void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage);
|
| +
|
| + GrGLSLVertToFrag fColorTimesCoverage;
|
| + GrGLSLVertToFrag fDistanceToEdge;
|
| + GrGLSLVertToFrag fEllipseCoords;
|
| + GrGLSLVertToFrag fEllipseName;
|
| + GrGLSLVertToFrag fBloatedRadius;
|
| + GrGLSLVertToFrag fDistanceToInnerEdge;
|
| + GrGLSLVertToFrag fInnerShapeBloatedHalfSize;
|
| + GrGLSLVertToFrag fInnerEllipseCoords;
|
| + GrGLSLVertToFrag fInnerEllipseName;
|
| + bool fShapeIsCircle;
|
| + bool fTweakAlphaForCoverage;
|
| +
|
| + typedef Backend INHERITED;
|
| +};
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder* v) {
|
| + v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));");
|
| + v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), "
|
| + "length(shapeTransposeMatrix[1]));");
|
| + v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;");
|
| + v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);",
|
| + fInputs.attr(kShapeCoords_AttribIdx));
|
| +
|
| + if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) {
|
| + if (fTweakAlphaForCoverage) {
|
| + varyingHandler->addVarying("colorTimesCoverage", &fColorTimesCoverage,
|
| + kLow_GrSLPrecision);
|
| + if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) {
|
| + fColor = fColorTimesCoverage;
|
| + }
|
| + } else {
|
| + varyingHandler->addVarying("distanceToEdge", &fDistanceToEdge, kLow_GrSLPrecision);
|
| + }
|
| + v->codeAppend("float distanceToEdge = 0.0;");
|
| + }
|
| + if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
|
| + varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision);
|
| + if (!fShapeIsCircle) {
|
| + varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_GrSLPrecision);
|
| + } else {
|
| + varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMedium_GrSLPrecision);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) {
|
| + // Offset the inner and outer rects by one pixel. Inner vs outer is indicated by coordAttrs.
|
| + v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;",
|
| + fInputs.attr(kVertexAttrs_AttribIdx));
|
| + v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + rectBloat), vec2(0));",
|
| + fInputs.attr(kShapeCoords_AttribIdx));
|
| +
|
| + // The geometry is laid out in such a way that distanceToEdge will be 0 and 1 on the vertices,
|
| + // but we still need to recompute this value because when the rect gets thinner than one pixel,
|
| + // the interior edge of the border will necessarily clamp.
|
| + v->codeAppend ("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;");
|
| + v->codeAppend ("distanceToEdge = min(d.x, d.y);");
|
| +
|
| + if (fTriangleIsArc.vsOut()) {
|
| + v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) {
|
| + // Offset the inner and outer octagons by one pixel. Inner vs outer is indicated by coordAttrs.
|
| + v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;",
|
| + fInputs.attr(kVertexAttrs_AttribIdx));
|
| + v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0));",
|
| + fInputs.attr(kShapeCoords_AttribIdx));
|
| + v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vsOut());
|
| + if (fEllipseName.vsOut()) {
|
| + v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseName.vsOut());
|
| + }
|
| + if (fBloatedRadius.vsOut()) {
|
| + SkASSERT(fShapeIsCircle);
|
| + v->codeAppendf("%s = shapeHalfSize.x + bloat.x;", fBloatedRadius.vsOut());
|
| + }
|
| + if (fTriangleIsArc.vsOut()) {
|
| + v->codeAppendf("%s = int(%s != 0);",
|
| + fTriangleIsArc.vsOut(), fInputs.attr(kVertexAttrs_AttribIdx));
|
| + }
|
| + if (fColorTimesCoverage.vsOut() || fDistanceToEdge.vsOut()) {
|
| + v->codeAppendf("distanceToEdge = 1.0;");
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBuilder* v) {
|
| + // We try to let the AA borders line up with the arc edges on their particular side, but we
|
| + // can't allow them to get closer than one half pixel to the edge or they might overlap with
|
| + // their neighboring border.
|
| + v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));");
|
| + v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge, innerEdge);");
|
| + // 0.5 is a special value that indicates this vertex is an arc edge.
|
| + v->codeAppendf("if (abs(%s.x) == 0.5)"
|
| + "%s.x = borderEdge.x;",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| + v->codeAppendf("if (abs(%s.y) == 0.5)"
|
| + "%s.y = borderEdge.y;",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| +
|
| + // Adjust the interior border vertices to make the border one pixel wide. 0.75 is a special
|
| + // value to indicate these points.
|
| + v->codeAppendf("if (abs(%s.x) == 0.75) "
|
| + "%s.x = cornerSign.x * innerEdge.x;",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| + v->codeAppendf("if (abs(%s.y) == 0.75) "
|
| + "%s.y = cornerSign.y * innerEdge.y;",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v) {
|
| + // The geometry is laid out in such a way that distanceToEdge will be 0 and 1 on the vertices,
|
| + // but we still need to recompute this value because when the rrect gets thinner than one pixel,
|
| + // the interior edge of the border will necessarily clamp.
|
| + v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;");
|
| + v->codeAppend("distanceToEdge = min(d.x, d.y);");
|
| +
|
| + SkASSERT(!fShapeIsCircle);
|
| + // The AA border does not get closer than one half pixel to the edge of the rect, so to get a
|
| + // smooth transition from flat edge to arc, we don't allow the radii to be smaller than one half
|
| + // pixel. (We don't worry about the transition on the opposite side when a radius is so large
|
| + // that the border clamped on that side.)
|
| + v->codeAppendf("vec2 clampedRadii = max(radii, bloat);");
|
| + v->codeAppendf("%s = (cornerSign * %s + clampedRadii - vec2(1)) * shapeHalfSize;",
|
| + fEllipseCoords.vsOut(), fModifiedShapeCoords);
|
| + v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * shapeHalfSize);",
|
| + fEllipseName.vsOut());
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder* v) {
|
| + v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / innerCoords.xy;");
|
| +
|
| + if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
|
| + varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords,
|
| + kMedium_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName,
|
| + kMedium_GrSLPrecision);
|
| + } else {
|
| + varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge,
|
| + kMedium_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShapeBloatedHalfSize,
|
| + kMedium_GrSLPrecision);
|
| + if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
|
| + varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName,
|
| + kMedium_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder* v) {
|
| + if (fInnerRRect.vsOut()) {
|
| + // The fragment shader will generalize every inner shape as a round rect. Since this one
|
| + // is a rect, we simply emit bogus parameters for the round rect (negative radii) that
|
| + // ensure the fragment shader always takes the "emitRect" codepath.
|
| + v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));",
|
| + fInnerRRect.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder* v) {
|
| + v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);",
|
| + fInnerEllipseName.vsOut());
|
| + if (fInnerEllipseCoords.vsOut()) {
|
| + v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerEllipseCoords.vsOut());
|
| + }
|
| + if (fInnerRRect.vsOut()) {
|
| + v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
|
| + // The distance to ellipse formula doesn't work well when the radii are less than half a pixel.
|
| + v->codeAppend ("innerRadii = max(innerRadii, bloat);");
|
| + v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * "
|
| + "innerShapeHalfSize);",
|
| + fInnerEllipseName.vsOut());
|
| + v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRect.vsOut());
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v,
|
| + GrGLSLPPFragmentBuilder* f,
|
| + const char* outCoverage,
|
| + const char* outColor) {
|
| + if (fColorTimesCoverage.vsOut()) {
|
| + v->codeAppendf("%s = %s * distanceToEdge;",
|
| + fColorTimesCoverage.vsOut(), fInputs.attr(kColor_AttribIdx));
|
| + }
|
| + if (fDistanceToEdge.vsOut()) {
|
| + v->codeAppendf("%s = distanceToEdge;", fDistanceToEdge.vsOut());
|
| + }
|
| +
|
| + SkString coverage("float coverage");
|
| + if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) {
|
| + coverage.prependf("lowp ");
|
| + }
|
| + if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsArc.fsIn())) {
|
| + f->codeAppendf("%s;", coverage.c_str());
|
| + coverage = "coverage";
|
| + }
|
| + if (fTriangleIsArc.fsIn()) {
|
| + f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn());
|
| + this->emitRect(f, coverage.c_str(), outColor);
|
| + f->codeAppend ("} else {");
|
| + if (fShapeIsCircle) {
|
| + this->emitCircle(f, coverage.c_str());
|
| + } else {
|
| + bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes & kOval_ShapeFlag);
|
| + this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(),
|
| + true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNegative,
|
| + coverage.c_str());
|
| + }
|
| + if (fTweakAlphaForCoverage) {
|
| + f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn());
|
| + }
|
| + f->codeAppend ("}");
|
| + } else {
|
| + this->emitRect(f, coverage.c_str(), outColor);
|
| + }
|
| +
|
| + if (fBatchInfo.fInnerShapeTypes) {
|
| + f->codeAppendf("// Inner shape.\n");
|
| + SkString innerCoverage("float innerCoverage");
|
| + if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) {
|
| + innerCoverage.prependf("lowp ");
|
| + }
|
| + if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
|
| + this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(),
|
| + true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsMayBeNegative*/,
|
| + innerCoverage.c_str());
|
| + } else {
|
| + v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;",
|
| + fDistanceToInnerEdge.vsOut());
|
| + v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedHalfSize.vsOut());
|
| +
|
| + if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
|
| + this->emitInnerRect(f, innerCoverage.c_str());
|
| + } else {
|
| + f->appendPrecisionModifier(kLow_GrSLPrecision);
|
| + f->codeAppend ("float innerCoverage = 0.0;");
|
| + f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;",
|
| + fInnerShapeCoords.fsIn(), fInnerRRect.fsIn());
|
| + f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))) {");
|
| + this->emitInnerRect(f, "innerCoverage");
|
| + f->codeAppend ("} else {");
|
| + f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.zw;",
|
| + fInnerRRect.fsIn());
|
| + this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(),
|
| + false /*ellipseCoordsNeedClamp*/,
|
| + false /*ellipseCoordsMayBeNegative*/, "innerCoverage");
|
| + f->codeAppend ("}");
|
| + }
|
| + }
|
| + f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0));", outCoverage);
|
| + } else if (!fTweakAlphaForCoverage) {
|
| + f->codeAppendf("%s = vec4(coverage);", outCoverage);
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f,
|
| + const char* outCoverage,
|
| + const char* outColor) {
|
| + if (fColorTimesCoverage.fsIn()) {
|
| + f->codeAppendf("%s = %s;", outColor, fColorTimesCoverage.fsIn());
|
| + } else if (fTweakAlphaForCoverage) {
|
| + // We are drawing just ovals. The interior rect always has 100% coverage.
|
| + f->codeAppendf("%s = %s;", outColor, fColor.fsIn());
|
| + } else if (fDistanceToEdge.fsIn()) {
|
| + f->codeAppendf("%s = %s;", outCoverage, fDistanceToEdge.fsIn());
|
| + } else {
|
| + f->codeAppendf("%s = 1.0;", outCoverage);
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder* f,
|
| + const char* outCoverage) {
|
| + // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimization on rrects.
|
| + SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes));
|
| + f->codeAppendf("float distanceToEdge = %s - length(%s);",
|
| + fBloatedRadius.fsIn(), fEllipseCoords.fsIn());
|
| + f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage);
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f,
|
| + const char* ellipseCoords,
|
| + const char* ellipseName,
|
| + bool ellipseCoordsNeedClamp,
|
| + bool ellipseCoordsMayBeNegative,
|
| + const char* outCoverage) {
|
| + SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp);
|
| + if (ellipseCoordsNeedClamp) {
|
| + // This serves two purposes:
|
| + // - To restrict the arcs of rounded rects to their positive quadrants.
|
| + // - To avoid inversesqrt(0) in the ellipse formula.
|
| + if (ellipseCoordsMayBeNegative) {
|
| + f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4));", ellipseCoords);
|
| + } else {
|
| + f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", ellipseCoords);
|
| + }
|
| + ellipseCoords = "ellipseClampedCoords";
|
| + }
|
| + // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2.
|
| + f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName);
|
| + // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
|
| + f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords);
|
| + // gradDot is the squared length of the gradient of the implicit.
|
| + f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);");
|
| + f->appendPrecisionModifier(kLow_GrSLPrecision);
|
| + f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);");
|
| + f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage);
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuilder* f,
|
| + const char* outCoverage) {
|
| + f->appendPrecisionModifier(kLow_GrSLPrecision);
|
| + f->codeAppendf("vec2 c = %s - abs(%s);",
|
| + fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn());
|
| + f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage);
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +class GLSLInstanceProcessor::BackendMultisample : public Backend {
|
| +public:
|
| + BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effectiveSampleCnt)
|
| + : INHERITED(batchInfo, inputs),
|
| + fEffectiveSampleCnt(effectiveSampleCnt),
|
| + fShapeCoords(kVec2f_GrSLType),
|
| + fShapeInverseMatrix(kMat22f_GrSLType),
|
| + fFragShapeHalfSpan(kVec2f_GrSLType),
|
| + fArcTest(kVec2f_GrSLType),
|
| + fArcInverseMatrix(kMat22f_GrSLType),
|
| + fFragArcHalfSpan(kVec2f_GrSLType),
|
| + fEarlyAccept(kInt_GrSLType),
|
| + fInnerShapeInverseMatrix(kMat22f_GrSLType),
|
| + fFragInnerShapeHalfSpan(kVec2f_GrSLType) {
|
| + fRectTrianglesMaySplit = fBatchInfo.fHasPerspective;
|
| + fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspective;
|
| + }
|
| +
|
| +private:
|
| + bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode; }
|
| +
|
| + void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
|
| + void setupRect(GrGLSLVertexBuilder*) override;
|
| + void setupOval(GrGLSLVertexBuilder*) override;
|
| + void adjustRRectVertices(GrGLSLVertexBuilder*) override;
|
| + void onSetupRRect(GrGLSLVertexBuilder*) override;
|
| +
|
| + void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
|
| + void setupInnerRect(GrGLSLVertexBuilder*) override;
|
| + void setupInnerOval(GrGLSLVertexBuilder*) override;
|
| + void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
|
| +
|
| + void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*,
|
| + const char*) override;
|
| +
|
| + struct EmitShapeCoords {
|
| + const GrGLSLVarying* fVarying;
|
| + const char* fInverseMatrix;
|
| + const char* fFragHalfSpan;
|
| + };
|
| +
|
| + struct EmitShapeOpts {
|
| + bool fIsTightGeometry;
|
| + bool fResolveMixedSamples;
|
| + bool fInvertCoverage;
|
| + };
|
| +
|
| + void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitShapeOpts&);
|
| + void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMayBeNegative,
|
| + bool clampCoords, const EmitShapeOpts&);
|
| + void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const char* rrect,
|
| + const EmitShapeOpts&);
|
| + void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, const char* sampleIdx,
|
| + const char* interpolationMatrix);
|
| + void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, const EmitShapeOpts&);
|
| + void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, const EmitShapeOpts&,
|
| + bool maybeSharedEdge = true);
|
| +
|
| + int fEffectiveSampleCnt;
|
| + bool fRectTrianglesMaySplit;
|
| + GrGLSLVertToFrag fShapeCoords;
|
| + GrGLSLVertToFrag fShapeInverseMatrix;
|
| + GrGLSLVertToFrag fFragShapeHalfSpan;
|
| + GrGLSLVertToFrag fArcTest;
|
| + GrGLSLVertToFrag fArcInverseMatrix;
|
| + GrGLSLVertToFrag fFragArcHalfSpan;
|
| + GrGLSLVertToFrag fEarlyAccept;
|
| + GrGLSLVertToFrag fInnerShapeInverseMatrix;
|
| + GrGLSLVertToFrag fFragInnerShapeHalfSpan;
|
| + SkString fSquareFun;
|
| +
|
| + typedef Backend INHERITED;
|
| +};
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder* v) {
|
| + if (!this->isMixedSampled()) {
|
| + if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
|
| + varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc,
|
| + kHigh_GrSLPrecision);
|
| + varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision);
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix,
|
| + kHigh_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan,
|
| + kHigh_GrSLPrecision);
|
| + }
|
| + } else if (!fBatchInfo.fInnerShapeTypes) {
|
| + return;
|
| + }
|
| + } else {
|
| + varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPrecision);
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseMatrix,
|
| + kHigh_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfSpan,
|
| + kHigh_GrSLPrecision);
|
| + }
|
| + if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) {
|
| + varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision);
|
| + varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision);
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix,
|
| + kHigh_GrSLPrecision);
|
| + varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan,
|
| + kHigh_GrSLPrecision);
|
| + }
|
| + } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) {
|
| + fArcCoords = fShapeCoords;
|
| + fArcInverseMatrix = fShapeInverseMatrix;
|
| + fFragArcHalfSpan = fFragShapeHalfSpan;
|
| + if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) {
|
| + varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc,
|
| + kHigh_GrSLPrecision);
|
| + }
|
| + }
|
| + if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
|
| + v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1);
|
| + varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_GrSLPrecision);
|
| + }
|
| + }
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));");
|
| + v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + "
|
| + "abs(vec4(shapeInverseMatrix).yw);");
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v) {
|
| + if (fShapeCoords.vsOut()) {
|
| + v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords());
|
| + }
|
| + if (fShapeInverseMatrix.vsOut()) {
|
| + v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut());
|
| + }
|
| + if (fFragShapeHalfSpan.vsOut()) {
|
| + v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut());
|
| + }
|
| + if (fArcTest.vsOut()) {
|
| + // Pick a value that is not > 0.
|
| + v->codeAppendf("%s = vec2(0);", fArcTest.vsOut());
|
| + }
|
| + if (fTriangleIsArc.vsOut()) {
|
| + v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
|
| + }
|
| + if (fEarlyAccept.vsOut()) {
|
| + v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v) {
|
| + v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords());
|
| + if (fArcInverseMatrix.vsOut()) {
|
| + v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords());
|
| + v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);",
|
| + fArcInverseMatrix.vsOut());
|
| + }
|
| + if (fFragArcHalfSpan.vsOut()) {
|
| + v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut());
|
| + }
|
| + if (fArcTest.vsOut()) {
|
| + // Pick a value that is > 0.
|
| + v->codeAppendf("%s = vec2(1);", fArcTest.vsOut());
|
| + }
|
| + if (fTriangleIsArc.vsOut()) {
|
| + if (!this->isMixedSampled()) {
|
| + v->codeAppendf("%s = %s & 1;",
|
| + fTriangleIsArc.vsOut(), fInputs.attr(kVertexAttrs_AttribIdx));
|
| + } else {
|
| + v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut());
|
| + }
|
| + }
|
| + if (fEarlyAccept.vsOut()) {
|
| + v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;",
|
| + fEarlyAccept.vsOut(), fInputs.attr(kVertexAttrs_AttribIdx));
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertexBuilder* v) {
|
| + if (!this->isMixedSampled()) {
|
| + INHERITED::adjustRRectVertices(v);
|
| + return;
|
| + }
|
| +
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + // For the mixed samples algorithm it's best to bloat the corner triangles a bit so that
|
| + // more of the pixels that cross into the arc region are completely inside the shared edges.
|
| + // We also snap to a regular rect if the radii shrink smaller than a pixel.
|
| + v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);");
|
| + v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ? "
|
| + "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - midpt);");
|
| + } else {
|
| + // TODO: We could still bloat the corner triangle in the perspective case; we would just
|
| + // need to find the screen-space derivative of shape coords at this particular point.
|
| + v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec2(0) : radii;");
|
| + }
|
| +
|
| + v->codeAppendf("if (abs(%s.x) == 0.5)"
|
| + "%s.x = cornerSign.x * (1.0 - cornerSize.x);",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| + v->codeAppendf("if (abs(%s.y) == 0.5)"
|
| + "%s.y = cornerSign.y * (1.0 - cornerSize.y);",
|
| + fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoords);
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder* v) {
|
| + if (fShapeCoords.vsOut()) {
|
| + v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords());
|
| + }
|
| + if (fShapeInverseMatrix.vsOut()) {
|
| + v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut());
|
| + }
|
| + if (fFragShapeHalfSpan.vsOut()) {
|
| + v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut());
|
| + }
|
| + if (fArcInverseMatrix.vsOut()) {
|
| + v->codeAppend ("vec2 s = cornerSign / radii;");
|
| + v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);",
|
| + fArcInverseMatrix.vsOut());
|
| + }
|
| + if (fFragArcHalfSpan.vsOut()) {
|
| + v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));",
|
| + fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(),
|
| + fArcInverseMatrix.vsOut());
|
| + }
|
| + if (fArcTest.vsOut()) {
|
| + // The interior triangles are laid out as a fan. fArcTest is both distances from shared
|
| + // edges of a fan triangle to a point within that triangle. fArcTest is used to check if a
|
| + // fragment is too close to either shared edge, in which case we point sample the shape as a
|
| + // rect at that point in order to guarantee the mixed samples discard logic works correctly.
|
| + v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : "
|
| + "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize.y - 1.0, 1);",
|
| + fArcTest.vsOut(), fModifiedShapeCoords);
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + // Shift the point at which distances to edges are measured from the center of the pixel
|
| + // to the corner. This way the sign of fArcTest will quickly tell us whether a pixel
|
| + // is completely inside the shared edge. Perspective mode will accomplish this same task
|
| + // by finding the derivatives in the fragment shader.
|
| + v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + fragShapeSpan);",
|
| + fArcTest.vsOut());
|
| + }
|
| + }
|
| + if (fEarlyAccept.vsOut()) {
|
| + SkASSERT(this->isMixedSampled());
|
| + v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;",
|
| + fEarlyAccept.vsOut(), fInputs.attr(kShapeCoords_AttribIdx));
|
| + }
|
| +}
|
| +
|
| +void
|
| +GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
|
| + GrGLSLVertexBuilder* v) {
|
| + varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision);
|
| + if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes &&
|
| + kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
|
| + varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision);
|
| + }
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeInverseMatrix,
|
| + kHigh_GrSLPrecision);
|
| + v->codeAppendf("%s = shapeInverseMatrix * mat2(innerCoords.x, 0, 0, innerCoords.y);",
|
| + fInnerShapeInverseMatrix.vsOut());
|
| + varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShapeHalfSpan,
|
| + kHigh_GrSLPrecision);
|
| + v->codeAppendf("%s = 0.5 * fragShapeSpan * innerCoords.xy;",
|
| + fFragInnerShapeHalfSpan.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuilder* v) {
|
| + if (fInnerRRect.vsOut()) {
|
| + // The fragment shader will generalize every inner shape as a round rect. Since this one
|
| + // is a rect, we simply emit bogus parameters for the round rect (negative radii) that
|
| + // ensure the fragment shader always takes the "sample as rect" codepath.
|
| + v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));",
|
| + fInnerRRect.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuilder* v) {
|
| + if (fInnerRRect.vsOut()) {
|
| + v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut());
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
|
| + // Avoid numeric instability by not allowing the inner radii to get smaller than 1/10th pixel.
|
| + if (fFragInnerShapeHalfSpan.vsOut()) {
|
| + v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerShapeHalfSpan.vsOut());
|
| + } else {
|
| + v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));");
|
| + }
|
| + v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut());
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*,
|
| + GrGLSLPPFragmentBuilder* f,
|
| + const char*, const char*) {
|
| + f->define("SAMPLE_COUNT", fEffectiveSampleCnt);
|
| + if (this->isMixedSampled()) {
|
| + f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1);
|
| + f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1));
|
| + }
|
| +
|
| + if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes)) {
|
| + GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHigh_GrSLPrecision);
|
| + f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &fSquareFun);
|
| + }
|
| +
|
| + EmitShapeCoords shapeCoords;
|
| + shapeCoords.fVarying = &fShapeCoords;
|
| + shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn();
|
| + shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn();
|
| +
|
| + EmitShapeCoords arcCoords;
|
| + arcCoords.fVarying = &fArcCoords;
|
| + arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn();
|
| + arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn();
|
| + bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kRRect_ShapesMask);
|
| +
|
| + EmitShapeOpts opts;
|
| + opts.fIsTightGeometry = true;
|
| + opts.fResolveMixedSamples = this->isMixedSampled();
|
| + opts.fInvertCoverage = false;
|
| +
|
| + if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) {
|
| + // This determines if the fragment should consider the inner shape in its sample mask.
|
| + // We take the derivative early in case discards may occur before we get to the inner shape.
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);",
|
| + fInnerShapeCoords.fsIn());
|
| + }
|
| +
|
| + if (!this->isMixedSampled()) {
|
| + SkASSERT(!fArcTest.fsIn());
|
| + if (fTriangleIsArc.fsIn()) {
|
| + f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn());
|
| + this->emitArc(f, arcCoords, false, clampArcCoords, opts);
|
| +
|
| + f->codeAppend ("}");
|
| + }
|
| + } else {
|
| + const char* arcTest = fArcTest.fsIn();
|
| + if (fBatchInfo.fHasPerspective && arcTest) {
|
| + // The non-perspective version accounts for fwith() in the vertex shader.
|
| + // We make sure to take the derivative here, before a neighbor pixel may early accept.
|
| + f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLFeature);
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);",
|
| + fArcTest.fsIn(), fArcTest.fsIn());
|
| + arcTest = "arcTest";
|
| + }
|
| + const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "SAMPLE_MASK_ALL";
|
| + f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept);
|
| + f->overrideSampleCoverage(earlyAccept);
|
| + f->codeAppend ("} else {");
|
| + if (arcTest) {
|
| + // At this point, if the sample mask is all set it means we are inside an arc triangle.
|
| + f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || "
|
| + "all(greaterThan(%s, vec2(0)))) {", arcTest);
|
| + this->emitArc(f, arcCoords, false, clampArcCoords, opts);
|
| + f->codeAppend ("} else {");
|
| + this->emitRect(f, shapeCoords, opts);
|
| + f->codeAppend ("}");
|
| + } else if (fTriangleIsArc.fsIn()) {
|
| + f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn());
|
| + this->emitRect(f, shapeCoords, opts);
|
| + f->codeAppend ("} else {");
|
| + this->emitArc(f, arcCoords, false, clampArcCoords, opts);
|
| + f->codeAppend ("}");
|
| + } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) {
|
| + this->emitArc(f, arcCoords, false, clampArcCoords, opts);
|
| + } else {
|
| + SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag);
|
| + this->emitRect(f, shapeCoords, opts);
|
| + }
|
| + f->codeAppend ("}");
|
| + }
|
| +
|
| + if (fBatchInfo.fInnerShapeTypes) {
|
| + f->codeAppendf("// Inner shape.\n");
|
| +
|
| + EmitShapeCoords innerShapeCoords;
|
| + innerShapeCoords.fVarying = &fInnerShapeCoords;
|
| + if (!fBatchInfo.fHasPerspective) {
|
| + innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn();
|
| + innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn();
|
| + }
|
| +
|
| + EmitShapeOpts innerOpts;
|
| + innerOpts.fIsTightGeometry = false;
|
| + innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in the outer shape.
|
| + innerOpts.fInvertCoverage = true;
|
| +
|
| + if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
|
| + this->emitArc(f, innerShapeCoords, true, false, innerOpts);
|
| + } else {
|
| + f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShapeCoords.fsIn(),
|
| + !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragHalfSpan
|
| + : "fragInnerShapeApproxHalfSpan"); // Above.
|
| + if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
|
| + this->emitRect(f, innerShapeCoords, innerOpts);
|
| + } else {
|
| + this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), innerOpts);
|
| + }
|
| + f->codeAppend ("}");
|
| + }
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder* f,
|
| + const EmitShapeCoords& coords,
|
| + const EmitShapeOpts& opts) {
|
| + // Full MSAA doesn't need to do anything to draw a rect.
|
| + SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples);
|
| + if (coords.fFragHalfSpan) {
|
| + f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {",
|
| + coords.fVarying->fsIn(), coords.fFragHalfSpan);
|
| + // The entire pixel is inside the rect.
|
| + this->acceptOrRejectWholeFragment(f, true, opts);
|
| + f->codeAppend ("} else ");
|
| + if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) {
|
| + f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {",
|
| + coords.fVarying->fsIn(), coords.fFragHalfSpan);
|
| + // The pixel falls on an edge of the rectangle and is known to not be on a shared edge.
|
| + this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false);
|
| + f->codeAppend ("} else");
|
| + }
|
| + f->codeAppend ("{");
|
| + }
|
| + f->codeAppend ("int rectMask = 0;");
|
| + f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {");
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppend ( "vec2 pt = ");
|
| + this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix);
|
| + f->codeAppend ( ";");
|
| + f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i);");
|
| + f->codeAppend ("}");
|
| + this->acceptCoverageMask(f, "rectMask", opts);
|
| + if (coords.fFragHalfSpan) {
|
| + f->codeAppend ("}");
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder* f,
|
| + const EmitShapeCoords& coords,
|
| + bool coordsMayBeNegative, bool clampCoords,
|
| + const EmitShapeOpts& opts) {
|
| + if (coords.fFragHalfSpan) {
|
| + SkString absArcCoords;
|
| + absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVarying->fsIn());
|
| + if (clampCoords) {
|
| + f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {",
|
| + fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
|
| + } else {
|
| + f->codeAppendf("if (%s(%s + %s) < 1.0) {",
|
| + fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
|
| + }
|
| + // The entire pixel is inside the arc.
|
| + this->acceptOrRejectWholeFragment(f, true, opts);
|
| + f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {",
|
| + fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
|
| + // The entire pixel is outside the arc.
|
| + this->acceptOrRejectWholeFragment(f, false, opts);
|
| + f->codeAppend ("} else {");
|
| + }
|
| + f->codeAppend ( "int arcMask = 0;");
|
| + f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {");
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppend ( "vec2 pt = ");
|
| + this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix);
|
| + f->codeAppend ( ";");
|
| + if (clampCoords) {
|
| + SkASSERT(!coordsMayBeNegative);
|
| + f->codeAppend ( "pt = max(pt, vec2(0));");
|
| + }
|
| + f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.c_str());
|
| + f->codeAppend ( "}");
|
| + this->acceptCoverageMask(f, "arcMask", opts);
|
| + if (coords.fFragHalfSpan) {
|
| + f->codeAppend ("}");
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragmentBuilder* f,
|
| + const EmitShapeCoords& coords,
|
| + const char* rrect,
|
| + const EmitShapeOpts& opts) {
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying->fsIn(), rrect);
|
| + f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {");
|
| + this->emitRect(f, coords, opts);
|
| + f->codeAppend ("} else {");
|
| + if (coords.fInverseMatrix && coords.fFragHalfSpan) {
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect);
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfSpan, rrect);
|
| + f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSquareFun.c_str());
|
| + // The entire pixel is inside the round rect.
|
| + this->acceptOrRejectWholeFragment(f, true, opts);
|
| + f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(0))) >= 1.0) {",
|
| + fSquareFun.c_str());
|
| + // The entire pixel is outside the round rect.
|
| + this->acceptOrRejectWholeFragment(f, false, opts);
|
| + f->codeAppend ("} else {");
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying->fsIn());
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0, s.y);",
|
| + coords.fInverseMatrix);
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppend ( "int rrectMask = 0;");
|
| + f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {");
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppend ( "vec2 pt = rrectCoords + ");
|
| + f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates);
|
| + f->codeAppend ( "* innerRRectInverseMatrix;");
|
| + f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1 << i);",
|
| + fSquareFun.c_str());
|
| + f->codeAppend ( "}");
|
| + this->acceptCoverageMask(f, "rrectMask", opts);
|
| + f->codeAppend ("}");
|
| + } else {
|
| + f->codeAppend ("int rrectMask = 0;");
|
| + f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {");
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppend ( "vec2 shapePt = ");
|
| + this->interpolateAtSample(f, *coords.fVarying, "i", nullptr);
|
| + f->codeAppend ( ";");
|
| + f->appendPrecisionModifier(kHigh_GrSLPrecision);
|
| + f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) * %s.zw;",
|
| + rrect, rrect);
|
| + f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSquareFun.c_str());
|
| + f->codeAppend ("}");
|
| + this->acceptCoverageMask(f, "rrectMask", opts);
|
| + }
|
| + f->codeAppend ("}");
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFragmentBuilder* f,
|
| + const GrGLSLVarying& varying,
|
| + const char* sampleIdx,
|
| + const char* interpolationMatrix) {
|
| + if (interpolationMatrix) {
|
| + f->codeAppendf("(%s + ", varying.fsIn());
|
| + f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates);
|
| + f->codeAppendf(" * %s)", interpolationMatrix);
|
| + } else {
|
| + SkAssertResult(
|
| + f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GLSLFeature));
|
| + f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn());
|
| + f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates);
|
| + f->codeAppend(")");
|
| + }
|
| +}
|
| +
|
| +void
|
| +GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder* f,
|
| + bool inside,
|
| + const EmitShapeOpts& opts) {
|
| + if (inside != opts.fInvertCoverage) { // Accept the entire fragment.
|
| + if (opts.fResolveMixedSamples) {
|
| + // This is a mixed sampled fragment in the interior of the shape. Reassign 100% coverage
|
| + // to one fragment, and drop all other fragments that may fall on this same pixel. Since
|
| + // our geometry is water tight and non-overlapping, we can take advantage of the
|
| + // properties that (1) the incoming sample masks will be disjoint across fragments that
|
| + // fall on a common pixel, and (2) since the entire fragment is inside the shape, each
|
| + // sample's corresponding bit will be set in the incoming sample mask of exactly one
|
| + // fragment.
|
| + f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {");
|
| + // Drop this fragment.
|
| + if (!fBatchInfo.fCannotDiscard) {
|
| + f->codeAppend("discard;");
|
| + } else {
|
| + f->overrideSampleCoverage("0");
|
| + }
|
| + f->codeAppend("} else {");
|
| + // Override the lone surviving fragment to full coverage.
|
| + f->overrideSampleCoverage("-1");
|
| + f->codeAppend("}");
|
| + }
|
| + } else { // Reject the entire fragment.
|
| + if (!fBatchInfo.fCannotDiscard) {
|
| + f->codeAppend("discard;");
|
| + } else if (opts.fResolveMixedSamples) {
|
| + f->overrideSampleCoverage("0");
|
| + } else {
|
| + f->maskSampleCoverage("0");
|
| + }
|
| + }
|
| +}
|
| +
|
| +void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragmentBuilder* f,
|
| + const char* shapeMask,
|
| + const EmitShapeOpts& opts,
|
| + bool maybeSharedEdge) {
|
| + if (opts.fResolveMixedSamples) {
|
| + if (maybeSharedEdge) {
|
| + // This is a mixed sampled fragment, potentially on the outer edge of the shape, with
|
| + // only partial shape coverage. Override the coverage of one fragment to "shapeMask",
|
| + // and drop all other fragments that may fall on this same pixel. Since our geometry is
|
| + // water tight, non-overlapping, and completely contains the shape, this means that each
|
| + // "on" bit from shapeMask is guaranteed to be set in the incoming sample mask of one,
|
| + // and only one, fragment that falls on this same pixel.
|
| + SkASSERT(!opts.fInvertCoverage);
|
| + f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0) {", shapeMask);
|
| + // Drop this fragment.
|
| + if (!fBatchInfo.fCannotDiscard) {
|
| + f->codeAppend ("discard;");
|
| + } else {
|
| + f->overrideSampleCoverage("0");
|
| + }
|
| + f->codeAppend ("} else {");
|
| + // Override the coverage of the lone surviving fragment to "shapeMask".
|
| + f->overrideSampleCoverage(shapeMask);
|
| + f->codeAppend ("}");
|
| + } else {
|
| + f->overrideSampleCoverage(shapeMask);
|
| + }
|
| + } else {
|
| + f->maskSampleCoverage(shapeMask, opts.fInvertCoverage);
|
| + }
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +GLSLInstanceProcessor::Backend*
|
| +GLSLInstanceProcessor::Backend::Create(const GrGLSLProgramBuilder* p, BatchInfo batchInfo,
|
| + const VertexInputs& inputs) {
|
| + switch (batchInfo.fAntialiasMode) {
|
| + default:
|
| + SkFAIL("Unexpected antialias mode.");
|
| + case AntialiasMode::kNone:
|
| + return new BackendNonAA(batchInfo, inputs);
|
| + case AntialiasMode::kCoverage:
|
| + return new BackendCoverage(batchInfo, inputs);
|
| + case AntialiasMode::kMSAA:
|
| + case AntialiasMode::kMixedSamples: {
|
| + const GrPipeline& pipeline = p->pipeline();
|
| + const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv();
|
| + const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline.getStencil());
|
| + return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSampleCnt);
|
| + }
|
| + }
|
| +}
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////////////////////////
|
| +
|
| +const ShapeVertex kVertexData[] = {
|
| + // Rectangle.
|
| + {+1, +1, ~0}, /*0*/
|
| + {-1, +1, ~0}, /*1*/
|
| + {-1, -1, ~0}, /*2*/
|
| + {+1, -1, ~0}, /*3*/
|
| + // The next 4 are for the bordered version.
|
| + {+1, +1, 0}, /*4*/
|
| + {-1, +1, 0}, /*5*/
|
| + {-1, -1, 0}, /*6*/
|
| + {+1, -1, 0}, /*7*/
|
| +
|
| + // Octagon that inscribes the unit circle, cut by an interior unit octagon.
|
| + {+1.000000f, 0.000000f, 0}, /* 8*/
|
| + {+1.000000f, +0.414214f, ~0}, /* 9*/
|
| + {+0.707106f, +0.707106f, 0}, /*10*/
|
| + {+0.414214f, +1.000000f, ~0}, /*11*/
|
| + { 0.000000f, +1.000000f, 0}, /*12*/
|
| + {-0.414214f, +1.000000f, ~0}, /*13*/
|
| + {-0.707106f, +0.707106f, 0}, /*14*/
|
| + {-1.000000f, +0.414214f, ~0}, /*15*/
|
| + {-1.000000f, 0.000000f, 0}, /*16*/
|
| + {-1.000000f, -0.414214f, ~0}, /*17*/
|
| + {-0.707106f, -0.707106f, 0}, /*18*/
|
| + {-0.414214f, -1.000000f, ~0}, /*19*/
|
| + { 0.000000f, -1.000000f, 0}, /*20*/
|
| + {+0.414214f, -1.000000f, ~0}, /*21*/
|
| + {+0.707106f, -0.707106f, 0}, /*22*/
|
| + {+1.000000f, -0.414214f, ~0}, /*23*/
|
| + // This vertex is for the fanned versions.
|
| + { 0.000000f, 0.000000f, ~0}, /*24*/
|
| +
|
| + // Rectangle with disjoint corner segments.
|
| + {+1.0, +0.5, 0x3}, /*25*/
|
| + {+1.0, +1.0, 0x3}, /*26*/
|
| + {+0.5, +1.0, 0x3}, /*27*/
|
| + {-0.5, +1.0, 0x2}, /*28*/
|
| + {-1.0, +1.0, 0x2}, /*29*/
|
| + {-1.0, +0.5, 0x2}, /*30*/
|
| + {-1.0, -0.5, 0x0}, /*31*/
|
| + {-1.0, -1.0, 0x0}, /*32*/
|
| + {-0.5, -1.0, 0x0}, /*33*/
|
| + {+0.5, -1.0, 0x1}, /*34*/
|
| + {+1.0, -1.0, 0x1}, /*35*/
|
| + {+1.0, -0.5, 0x1}, /*36*/
|
| + // The next 4 are for the fanned version.
|
| + { 0.0, 0.0, 0x3}, /*37*/
|
| + { 0.0, 0.0, 0x2}, /*38*/
|
| + { 0.0, 0.0, 0x0}, /*39*/
|
| + { 0.0, 0.0, 0x1}, /*40*/
|
| + // The next 8 are for the bordered version.
|
| + {+0.75, +0.50, 0x3}, /*41*/
|
| + {+0.50, +0.75, 0x3}, /*42*/
|
| + {-0.50, +0.75, 0x2}, /*43*/
|
| + {-0.75, +0.50, 0x2}, /*44*/
|
| + {-0.75, -0.50, 0x0}, /*45*/
|
| + {-0.50, -0.75, 0x0}, /*46*/
|
| + {+0.50, -0.75, 0x1}, /*47*/
|
| + {+0.75, -0.50, 0x1}, /*48*/
|
| +
|
| + // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon.
|
| + {+1.000000f, +0.000000f, 0}, /*49*/
|
| + {+1.000000f, +0.198913f, ~0}, /*50*/
|
| + {+0.923879f, +0.382683f, 0}, /*51*/
|
| + {+0.847760f, +0.566455f, ~0}, /*52*/
|
| + {+0.707106f, +0.707106f, 0}, /*53*/
|
| + {+0.566455f, +0.847760f, ~0}, /*54*/
|
| + {+0.382683f, +0.923879f, 0}, /*55*/
|
| + {+0.198913f, +1.000000f, ~0}, /*56*/
|
| + {+0.000000f, +1.000000f, 0}, /*57*/
|
| + {-0.198913f, +1.000000f, ~0}, /*58*/
|
| + {-0.382683f, +0.923879f, 0}, /*59*/
|
| + {-0.566455f, +0.847760f, ~0}, /*60*/
|
| + {-0.707106f, +0.707106f, 0}, /*61*/
|
| + {-0.847760f, +0.566455f, ~0}, /*62*/
|
| + {-0.923879f, +0.382683f, 0}, /*63*/
|
| + {-1.000000f, +0.198913f, ~0}, /*64*/
|
| + {-1.000000f, +0.000000f, 0}, /*65*/
|
| + {-1.000000f, -0.198913f, ~0}, /*66*/
|
| + {-0.923879f, -0.382683f, 0}, /*67*/
|
| + {-0.847760f, -0.566455f, ~0}, /*68*/
|
| + {-0.707106f, -0.707106f, 0}, /*69*/
|
| + {-0.566455f, -0.847760f, ~0}, /*70*/
|
| + {-0.382683f, -0.923879f, 0}, /*71*/
|
| + {-0.198913f, -1.000000f, ~0}, /*72*/
|
| + {-0.000000f, -1.000000f, 0}, /*73*/
|
| + {+0.198913f, -1.000000f, ~0}, /*74*/
|
| + {+0.382683f, -0.923879f, 0}, /*75*/
|
| + {+0.566455f, -0.847760f, ~0}, /*76*/
|
| + {+0.707106f, -0.707106f, 0}, /*77*/
|
| + {+0.847760f, -0.566455f, ~0}, /*78*/
|
| + {+0.923879f, -0.382683f, 0}, /*79*/
|
| + {+1.000000f, -0.198913f, ~0}, /*80*/
|
| +};
|
| +
|
| +const uint8_t kIndexData[] = {
|
| + // Rectangle.
|
| + 0, 1, 2,
|
| + 0, 2, 3,
|
| +
|
| + // Rectangle with a border.
|
| + 0, 1, 5,
|
| + 5, 4, 0,
|
| + 1, 2, 6,
|
| + 6, 5, 1,
|
| + 2, 3, 7,
|
| + 7, 6, 2,
|
| + 3, 0, 4,
|
| + 4, 7, 3,
|
| + 4, 5, 6,
|
| + 6, 7, 4,
|
| +
|
| + // Octagon that inscribes the unit circle, cut by an interior unit octagon.
|
| + 10, 8, 9,
|
| + 12, 10, 11,
|
| + 14, 12, 13,
|
| + 16, 14, 15,
|
| + 18, 16, 17,
|
| + 20, 18, 19,
|
| + 22, 20, 21,
|
| + 8, 22, 23,
|
| + 8, 10, 12,
|
| + 12, 14, 16,
|
| + 16, 18, 20,
|
| + 20, 22, 8,
|
| + 8, 12, 16,
|
| + 16, 20, 8,
|
| +
|
| + // Same octagons, but with the interior arranged as a fan. Used by mixed samples.
|
| + 10, 8, 9,
|
| + 12, 10, 11,
|
| + 14, 12, 13,
|
| + 16, 14, 15,
|
| + 18, 16, 17,
|
| + 20, 18, 19,
|
| + 22, 20, 21,
|
| + 8, 22, 23,
|
| + 24, 8, 10,
|
| + 12, 24, 10,
|
| + 24, 12, 14,
|
| + 16, 24, 14,
|
| + 24, 16, 18,
|
| + 20, 24, 18,
|
| + 24, 20, 22,
|
| + 8, 24, 22,
|
| +
|
| + // Same octagons, but with the inner and outer disjoint. Used by coverage AA.
|
| + 8, 22, 23,
|
| + 9, 8, 23,
|
| + 10, 8, 9,
|
| + 11, 10, 9,
|
| + 12, 10, 11,
|
| + 13, 12, 11,
|
| + 14, 12, 13,
|
| + 15, 14, 13,
|
| + 16, 14, 15,
|
| + 17, 16, 15,
|
| + 18, 16, 17,
|
| + 19, 18, 17,
|
| + 20, 18, 19,
|
| + 21, 20, 19,
|
| + 22, 20, 21,
|
| + 23, 22, 21,
|
| + 22, 8, 10,
|
| + 10, 12, 14,
|
| + 14, 16, 18,
|
| + 18, 20, 22,
|
| + 22, 10, 14,
|
| + 14, 18, 22,
|
| +
|
| + // Rectangle with disjoint corner segments.
|
| + 27, 25, 26,
|
| + 30, 28, 29,
|
| + 33, 31, 32,
|
| + 36, 34, 35,
|
| + 25, 27, 28,
|
| + 28, 30, 31,
|
| + 31, 33, 34,
|
| + 34, 36, 25,
|
| + 25, 28, 31,
|
| + 31, 34, 25,
|
| +
|
| + // Same rectangle with disjoint corners, but with the interior arranged as a fan. Used by
|
| + // mixed samples.
|
| + 27, 25, 26,
|
| + 30, 28, 29,
|
| + 33, 31, 32,
|
| + 36, 34, 35,
|
| + 27, 37, 25,
|
| + 28, 37, 27,
|
| + 30, 38, 28,
|
| + 31, 38, 30,
|
| + 33, 39, 31,
|
| + 34, 39, 33,
|
| + 36, 40, 34,
|
| + 25, 40, 36,
|
| +
|
| + // Same rectangle with disjoint corners, with a border as well. Used by coverage AA.
|
| + 41, 25, 26,
|
| + 42, 41, 26,
|
| + 27, 42, 26,
|
| + 43, 28, 29,
|
| + 44, 43, 29,
|
| + 30, 44, 29,
|
| + 45, 31, 32,
|
| + 46, 45, 32,
|
| + 33, 46, 32,
|
| + 47, 34, 35,
|
| + 48, 47, 35,
|
| + 36, 48, 35,
|
| + 27, 28, 42,
|
| + 42, 28, 43,
|
| + 30, 31, 44,
|
| + 44, 31, 45,
|
| + 33, 34, 46,
|
| + 46, 34, 47,
|
| + 36, 25, 48,
|
| + 48, 25, 41,
|
| + 41, 42, 43,
|
| + 43, 44, 45,
|
| + 45, 46, 47,
|
| + 47, 48, 41,
|
| + 41, 43, 45,
|
| + 45, 47, 41,
|
| +
|
| + // Same as the disjoint octagons, but with 16-gons instead. Used by coverage AA when the oval is
|
| + // sufficiently large.
|
| + 49, 79, 80,
|
| + 50, 49, 80,
|
| + 51, 49, 50,
|
| + 52, 51, 50,
|
| + 53, 51, 52,
|
| + 54, 53, 52,
|
| + 55, 53, 54,
|
| + 56, 55, 54,
|
| + 57, 55, 56,
|
| + 58, 57, 56,
|
| + 59, 57, 58,
|
| + 60, 59, 58,
|
| + 61, 59, 60,
|
| + 62, 61, 60,
|
| + 63, 61, 62,
|
| + 64, 63, 62,
|
| + 65, 63, 64,
|
| + 66, 65, 64,
|
| + 67, 65, 66,
|
| + 68, 67, 66,
|
| + 69, 67, 68,
|
| + 70, 69, 68,
|
| + 71, 69, 70,
|
| + 72, 71, 70,
|
| + 73, 71, 72,
|
| + 74, 73, 72,
|
| + 75, 73, 74,
|
| + 76, 75, 74,
|
| + 77, 75, 76,
|
| + 78, 77, 76,
|
| + 79, 77, 78,
|
| + 80, 79, 78,
|
| + 49, 51, 53,
|
| + 53, 55, 57,
|
| + 57, 59, 61,
|
| + 61, 63, 65,
|
| + 65, 67, 69,
|
| + 69, 71, 73,
|
| + 73, 75, 77,
|
| + 77, 79, 49,
|
| + 49, 53, 57,
|
| + 57, 61, 65,
|
| + 65, 69, 73,
|
| + 73, 77, 49,
|
| + 49, 57, 65,
|
| + 65, 73, 49,
|
| +};
|
| +
|
| +enum {
|
| + kRect_FirstIndex = 0,
|
| + kRect_TriCount = 2,
|
| +
|
| + kFramedRect_FirstIndex = 6,
|
| + kFramedRect_TriCount = 10,
|
| +
|
| + kOctagons_FirstIndex = 36,
|
| + kOctagons_TriCount = 14,
|
| +
|
| + kOctagonsFanned_FirstIndex = 78,
|
| + kOctagonsFanned_TriCount = 16,
|
| +
|
| + kDisjointOctagons_FirstIndex = 126,
|
| + kDisjointOctagons_TriCount = 22,
|
| +
|
| + kCorneredRect_FirstIndex = 192,
|
| + kCorneredRect_TriCount = 10,
|
| +
|
| + kCorneredRectFanned_FirstIndex = 222,
|
| + kCorneredRectFanned_TriCount = 12,
|
| +
|
| + kCorneredFramedRect_FirstIndex = 258,
|
| + kCorneredFramedRect_TriCount = 26,
|
| +
|
| + kDisjoint16Gons_FirstIndex = 336,
|
| + kDisjoint16Gons_TriCount = 46,
|
| +};
|
| +
|
| +static const GrUniqueKey::Domain kShapeBufferDomain = GrUniqueKey::GenerateDomain();
|
| +
|
| +template<GrBufferType Type> static const GrUniqueKey& get_shape_buffer_key() {
|
| + static GrUniqueKey* kKey;
|
| + if (!kKey) {
|
| + kKey = new GrUniqueKey;
|
| + GrUniqueKey::Builder builder(kKey, kShapeBufferDomain, 1);
|
| + builder[0] = Type;
|
| + }
|
| + return *kKey;
|
| +}
|
| +
|
| +const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) {
|
| + GrResourceCache* cache = gpu->getContext()->getResourceCache();
|
| + const GrUniqueKey& key = get_shape_buffer_key<kVertex_GrBufferType>();
|
| + if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) {
|
| + return static_cast<GrBuffer*>(cached);
|
| + }
|
| + if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBufferType,
|
| + kStatic_GrAccessPattern, kVertexData)) {
|
| + buffer->resourcePriv().setUniqueKey(key);
|
| + return buffer;
|
| + }
|
| + return nullptr;
|
| +}
|
| +
|
| +const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) {
|
| + GrResourceCache* cache = gpu->getContext()->getResourceCache();
|
| + const GrUniqueKey& key = get_shape_buffer_key<kIndex_GrBufferType>();
|
| + if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) {
|
| + return static_cast<GrBuffer*>(cached);
|
| + }
|
| + if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBufferType,
|
| + kStatic_GrAccessPattern, kIndexData)) {
|
| + buffer->resourcePriv().setUniqueKey(key);
|
| + return buffer;
|
| + }
|
| + return nullptr;
|
| +}
|
| +
|
| +IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) {
|
| + static constexpr IndexRange kRectRanges[kNumAntialiasModes] = {
|
| + {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone
|
| + {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage
|
| + {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA
|
| + {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples
|
| + };
|
| +
|
| + SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
|
| + return kRectRanges[(int)aa];
|
| +
|
| + GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
|
| + GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
|
| + GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
|
| + GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
|
| +}
|
| +
|
| +IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRect& devBounds) {
|
| + if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width() >= 256 * 256) {
|
| + // This threshold was chosen quasi-scientifically on Tegra X1.
|
| + return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount};
|
| + }
|
| +
|
| + static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = {
|
| + {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNone
|
| + {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCoverage
|
| + {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMSAA
|
| + {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMixedSamples
|
| + };
|
| +
|
| + SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
|
| + return kOvalRanges[(int)aa];
|
| +
|
| + GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
|
| + GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
|
| + GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
|
| + GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
|
| +}
|
| +
|
| +IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) {
|
| + static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = {
|
| + {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kNone
|
| + {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, // kCoverage
|
| + {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kMSAA
|
| + {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} // kMixedSamples
|
| + };
|
| +
|
| + SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
|
| + return kRRectRanges[(int)aa];
|
| +
|
| + GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
|
| + GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
|
| + GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
|
| + GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
|
| +}
|
| +
|
| +const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) {
|
| + switch (range.fStart) {
|
| + case kRect_FirstIndex: return "basic_rect";
|
| + case kFramedRect_FirstIndex: return "coverage_rect";
|
| +
|
| + case kOctagons_FirstIndex: return "basic_oval";
|
| + case kDisjointOctagons_FirstIndex: return "coverage_oval";
|
| + case kOctagonsFanned_FirstIndex: return "mixed_samples_oval";
|
| +
|
| + case kCorneredRect_FirstIndex: return "basic_round_rect";
|
| + case kCorneredFramedRect_FirstIndex: return "coverage_round_rect";
|
| + case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect";
|
| +
|
| + default: return "unknown";
|
| + }
|
| +}
|
| +
|
| +}
|
|
|