OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2016 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "InstanceProcessor.h" |
| 9 |
| 10 #include "GrContext.h" |
| 11 #include "GrRenderTargetPriv.h" |
| 12 #include "GrResourceCache.h" |
| 13 #include "GrResourceProvider.h" |
| 14 #include "glsl/GrGLSLGeometryProcessor.h" |
| 15 #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| 16 #include "glsl/GrGLSLProgramBuilder.h" |
| 17 #include "glsl/GrGLSLVarying.h" |
| 18 |
| 19 namespace gr_instanced { |
| 20 |
| 21 bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& ca
ps, |
| 22 AntialiasMode* lastSupportedAAMode) { |
| 23 if (!glslCaps.canUseAnyFunctionInShader() || |
| 24 !glslCaps.flatInterpolationSupport() || |
| 25 !glslCaps.integerSupport() || |
| 26 0 == glslCaps.maxVertexSamplers() || |
| 27 !caps.shaderCaps()->texelBufferSupport() || |
| 28 caps.maxVertexAttributes() < kNumVertexAttribs) { |
| 29 return false; |
| 30 } |
| 31 if (caps.sampleLocationsSupport() && |
| 32 glslCaps.sampleVariablesSupport() && |
| 33 glslCaps.shaderDerivativeSupport()) { |
| 34 if (0 != caps.maxRasterSamples() && |
| 35 glslCaps.sampleMaskOverrideCoverageSupport()) { |
| 36 *lastSupportedAAMode = AntialiasMode::kMixedSamples; |
| 37 } else { |
| 38 *lastSupportedAAMode = AntialiasMode::kMSAA; |
| 39 } |
| 40 } else { |
| 41 *lastSupportedAAMode = AntialiasMode::kCoverage; |
| 42 } |
| 43 return true; |
| 44 } |
| 45 |
| 46 InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer
) |
| 47 : fBatchInfo(batchInfo) { |
| 48 this->initClassID<InstanceProcessor>(); |
| 49 |
| 50 this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kH
igh_GrSLPrecision)); |
| 51 this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType)); |
| 52 this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType)); |
| 53 this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType, |
| 54 kHigh_GrSLPrecision)); |
| 55 this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType, |
| 56 kHigh_GrSLPrecision)); |
| 57 this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrS
LPrecision)); |
| 58 this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHig
h_GrSLPrecision)); |
| 59 |
| 60 GR_STATIC_ASSERT(0 == kShapeCoords_AttribIdx); |
| 61 GR_STATIC_ASSERT(1 == kVertexAttrs_AttribIdx); |
| 62 GR_STATIC_ASSERT(2 == kInstanceInfo_AttribIdx); |
| 63 GR_STATIC_ASSERT(3 == kShapeMatrixX_AttribIdx); |
| 64 GR_STATIC_ASSERT(4 == kShapeMatrixY_AttribIdx); |
| 65 GR_STATIC_ASSERT(5 == kColor_AttribIdx); |
| 66 GR_STATIC_ASSERT(6 == kLocalRect_AttribIdx); |
| 67 GR_STATIC_ASSERT(7 == kNumVertexAttribs); |
| 68 |
| 69 if (fBatchInfo.fHasParams) { |
| 70 SkASSERT(paramsBuffer); |
| 71 fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrS
haderFlag); |
| 72 this->addBufferAccess(&fParamsAccess); |
| 73 } |
| 74 |
| 75 if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) { |
| 76 if (!fBatchInfo.isSimpleRects() || |
| 77 AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) { |
| 78 this->setWillUseSampleLocations(); |
| 79 } |
| 80 } |
| 81 } |
| 82 |
| 83 class GLSLInstanceProcessor : public GrGLSLGeometryProcessor { |
| 84 public: |
| 85 void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; |
| 86 |
| 87 private: |
| 88 void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) o
verride {} |
| 89 |
| 90 class VertexInputs; |
| 91 class Backend; |
| 92 class BackendNonAA; |
| 93 class BackendCoverage; |
| 94 class BackendMultisample; |
| 95 |
| 96 typedef GrGLSLGeometryProcessor INHERITED; |
| 97 }; |
| 98 |
| 99 GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps
&) const { |
| 100 return new GLSLInstanceProcessor(); |
| 101 } |
| 102 |
| 103 class GLSLInstanceProcessor::VertexInputs { |
| 104 public: |
| 105 VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexB
uilder) |
| 106 : fInstProc(instProc), |
| 107 fVertexBuilder(vertexBuilder) { |
| 108 } |
| 109 |
| 110 void initParams(const SamplerHandle paramsBuffer) { |
| 111 fParamsBuffer = paramsBuffer; |
| 112 fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask)
; |
| 113 fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 114 fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);"
, |
| 115 this->attr(kInstanceInfo_AttribIdx)); |
| 116 } |
| 117 |
| 118 const char* attr(AttribIdx idx) const { return fInstProc.getAttrib(idx).fNam
e; } |
| 119 |
| 120 void fetchNextParam(GrSLType type = kVec4f_GrSLType) const { |
| 121 SkASSERT(fParamsBuffer.isValid()); |
| 122 if (type != kVec4f_GrSLType) { |
| 123 fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type)); |
| 124 } |
| 125 fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++"); |
| 126 if (type != kVec4f_GrSLType) { |
| 127 fVertexBuilder->codeAppend(")"); |
| 128 } |
| 129 } |
| 130 |
| 131 void skipParams(unsigned n) const { |
| 132 SkASSERT(fParamsBuffer.isValid()); |
| 133 fVertexBuilder->codeAppendf("paramsIdx += %u;", n); |
| 134 } |
| 135 |
| 136 private: |
| 137 const InstanceProcessor& fInstProc; |
| 138 GrGLSLVertexBuilder* fVertexBuilder; |
| 139 SamplerHandle fParamsBuffer; |
| 140 }; |
| 141 |
| 142 class GLSLInstanceProcessor::Backend { |
| 143 public: |
| 144 static Backend* SK_WARN_UNUSED_RESULT Create(const GrGLSLProgramBuilder*, Ba
tchInfo, |
| 145 const VertexInputs&); |
| 146 virtual ~Backend() {} |
| 147 |
| 148 void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
| 149 virtual void setupRect(GrGLSLVertexBuilder*) = 0; |
| 150 virtual void setupOval(GrGLSLVertexBuilder*) = 0; |
| 151 void setupRRect(GrGLSLVertexBuilder*); |
| 152 |
| 153 void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); |
| 154 virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0; |
| 155 virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0; |
| 156 void setupInnerRRect(GrGLSLVertexBuilder*); |
| 157 |
| 158 const char* outShapeCoords() { |
| 159 return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(kShape
Coords_AttribIdx); |
| 160 } |
| 161 |
| 162 void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* ou
tCoverage, |
| 163 const char* outColor); |
| 164 |
| 165 protected: |
| 166 Backend(BatchInfo batchInfo, const VertexInputs& inputs) |
| 167 : fBatchInfo(batchInfo), |
| 168 fInputs(inputs), |
| 169 fModifiesCoverage(false), |
| 170 fModifiesColor(false), |
| 171 fNeedsNeighborRadii(false), |
| 172 fColor(kVec4f_GrSLType), |
| 173 fTriangleIsArc(kInt_GrSLType), |
| 174 fArcCoords(kVec2f_GrSLType), |
| 175 fInnerShapeCoords(kVec2f_GrSLType), |
| 176 fInnerRRect(kVec4f_GrSLType), |
| 177 fModifiedShapeCoords(nullptr) { |
| 178 if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { |
| 179 fModifiedShapeCoords = "adjustedShapeCoords"; |
| 180 } |
| 181 } |
| 182 |
| 183 virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; |
| 184 virtual void adjustRRectVertices(GrGLSLVertexBuilder*); |
| 185 virtual void onSetupRRect(GrGLSLVertexBuilder*) {} |
| 186 |
| 187 virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) =
0; |
| 188 virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0; |
| 189 |
| 190 virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, |
| 191 const char* outCoverage, const char* outColor) = 0; |
| 192 |
| 193 void setupSimpleRadii(GrGLSLVertexBuilder*); |
| 194 void setupNinePatchRadii(GrGLSLVertexBuilder*); |
| 195 void setupComplexRadii(GrGLSLVertexBuilder*); |
| 196 |
| 197 const BatchInfo fBatchInfo; |
| 198 const VertexInputs& fInputs; |
| 199 bool fModifiesCoverage; |
| 200 bool fModifiesColor; |
| 201 bool fNeedsNeighborRadii; |
| 202 GrGLSLVertToFrag fColor; |
| 203 GrGLSLVertToFrag fTriangleIsArc; |
| 204 GrGLSLVertToFrag fArcCoords; |
| 205 GrGLSLVertToFrag fInnerShapeCoords; |
| 206 GrGLSLVertToFrag fInnerRRect; |
| 207 const char* fModifiedShapeCoords; |
| 208 }; |
| 209 |
| 210 void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { |
| 211 const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>(); |
| 212 GrGLSLUniformHandler* uniHandler = args.fUniformHandler; |
| 213 GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| 214 GrGLSLVertexBuilder* v = args.fVertBuilder; |
| 215 GrGLSLPPFragmentBuilder* f = args.fFragBuilder; |
| 216 |
| 217 varyingHandler->emitAttributes(ip); |
| 218 |
| 219 VertexInputs inputs(ip, v); |
| 220 if (ip.batchInfo().fHasParams) { |
| 221 SkASSERT(1 == ip.numBuffers()); |
| 222 inputs.initParams(args.fBufferSamplers[0]); |
| 223 } |
| 224 |
| 225 if (!ip.batchInfo().fHasPerspective) { |
| 226 v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);", |
| 227 inputs.attr(kShapeMatrixX_AttribIdx), inputs.attr(kShapeM
atrixY_AttribIdx)); |
| 228 } else { |
| 229 v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag); |
| 230 v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));", |
| 231 inputs.attr(kShapeMatrixX_AttribIdx), inputs.attr(kShapeM
atrixY_AttribIdx)); |
| 232 v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {", |
| 233 inputs.attr(kInstanceInfo_AttribIdx)); |
| 234 v->codeAppend ( "shapeMatrix[2] = "); |
| 235 inputs.fetchNextParam(kVec3f_GrSLType); |
| 236 v->codeAppend ( ";"); |
| 237 v->codeAppend ("}"); |
| 238 } |
| 239 |
| 240 int usedShapeTypes = 0; |
| 241 |
| 242 bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes); |
| 243 if (!hasSingleShapeType) { |
| 244 usedShapeTypes |= ip.batchInfo().fShapeTypes; |
| 245 v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit); |
| 246 v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;", |
| 247 inputs.attr(kInstanceInfo_AttribIdx)); |
| 248 } |
| 249 |
| 250 SkAutoTDelete<Backend> backend(Backend::Create(v->getProgramBuilder(), ip.ba
tchInfo(), inputs)); |
| 251 backend->init(varyingHandler, v); |
| 252 |
| 253 if (hasSingleShapeType) { |
| 254 if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) { |
| 255 backend->setupRect(v); |
| 256 } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) { |
| 257 backend->setupOval(v); |
| 258 } else { |
| 259 backend->setupRRect(v); |
| 260 } |
| 261 } else { |
| 262 v->codeAppend ("switch (shapeType) {"); |
| 263 if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) { |
| 264 v->codeAppend ("case RECT_SHAPE_TYPE: {"); |
| 265 backend->setupRect(v); |
| 266 v->codeAppend ("} break;"); |
| 267 } |
| 268 if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) { |
| 269 v->codeAppend ("case OVAL_SHAPE_TYPE: {"); |
| 270 backend->setupOval(v); |
| 271 v->codeAppend ("} break;"); |
| 272 } |
| 273 if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) { |
| 274 v->codeAppend ("default: {"); |
| 275 backend->setupRRect(v); |
| 276 v->codeAppend ("} break;"); |
| 277 } |
| 278 v->codeAppend ("}"); |
| 279 } |
| 280 |
| 281 if (ip.batchInfo().fInnerShapeTypes) { |
| 282 bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes)
; |
| 283 if (!hasSingleInnerShapeType) { |
| 284 usedShapeTypes |= ip.batchInfo().fInnerShapeTypes; |
| 285 v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMas
k); |
| 286 v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit); |
| 287 v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK)
>> " |
| 288 "INNER_SHAPE_TYPE_BIT);", |
| 289 inputs.attr(kInstanceInfo_AttribIdx)); |
| 290 } |
| 291 // Here we take advantage of the fact that outerRect == localRect in rec
ordDRRect. |
| 292 v->codeAppendf("vec4 outer = %s;", inputs.attr(kLocalRect_AttribIdx)); |
| 293 v->codeAppend ("vec4 inner = "); |
| 294 inputs.fetchNextParam(); |
| 295 v->codeAppend (";"); |
| 296 // innerCoords is a transform from shape coords to inner shape coords: |
| 297 // e.g. innerShapeCoords = shapeCoords * innerCoords.xy + innerCoords.zw |
| 298 v->codeAppend ("vec4 innerCoords = vec4(outer.zw - outer.xy, " |
| 299 "outer.xy + outer.zw - inner.xy -
inner.zw) / " |
| 300 "(inner.zw - inner.xy).xyxy;"); |
| 301 v->codeAppendf("vec2 innerShapeCoords = %s * innerCoords.xy + innerCoord
s.zw;", |
| 302 backend->outShapeCoords()); |
| 303 |
| 304 backend->initInnerShape(varyingHandler, v); |
| 305 |
| 306 if (hasSingleInnerShapeType) { |
| 307 if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { |
| 308 backend->setupInnerRect(v); |
| 309 } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { |
| 310 backend->setupInnerOval(v); |
| 311 } else { |
| 312 backend->setupInnerRRect(v); |
| 313 } |
| 314 } else { |
| 315 v->codeAppend("switch (innerShapeType) {"); |
| 316 if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) { |
| 317 v->codeAppend("case RECT_SHAPE_TYPE: {"); |
| 318 backend->setupInnerRect(v); |
| 319 v->codeAppend("} break;"); |
| 320 } |
| 321 if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) { |
| 322 v->codeAppend("case OVAL_SHAPE_TYPE: {"); |
| 323 backend->setupInnerOval(v); |
| 324 v->codeAppend("} break;"); |
| 325 } |
| 326 if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) { |
| 327 v->codeAppend("default: {"); |
| 328 backend->setupInnerRRect(v); |
| 329 v->codeAppend("} break;"); |
| 330 } |
| 331 v->codeAppend("}"); |
| 332 } |
| 333 } |
| 334 |
| 335 if (usedShapeTypes & kRect_ShapeFlag) { |
| 336 v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect); |
| 337 } |
| 338 if (usedShapeTypes & kOval_ShapeFlag) { |
| 339 v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval); |
| 340 } |
| 341 |
| 342 backend->emitCode(v, f, args.fOutputCoverage, args.fOutputColor); |
| 343 |
| 344 const char* localCoords = nullptr; |
| 345 if (ip.batchInfo().fUsesLocalCoords) { |
| 346 localCoords = "localCoords"; |
| 347 v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords
()); |
| 348 v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;", |
| 349 inputs.attr(kLocalRect_AttribIdx), inputs.attr(kLocalRect
_AttribIdx)); |
| 350 } |
| 351 if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) { |
| 352 v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag); |
| 353 v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {", |
| 354 inputs.attr(kInstanceInfo_AttribIdx)); |
| 355 if (!ip.batchInfo().fUsesLocalCoords) { |
| 356 inputs.skipParams(2); |
| 357 } else { |
| 358 v->codeAppendf( "mat2x3 localMatrix;"); |
| 359 v->codeAppend ( "localMatrix[0] = "); |
| 360 inputs.fetchNextParam(kVec3f_GrSLType); |
| 361 v->codeAppend ( ";"); |
| 362 v->codeAppend ( "localMatrix[1] = "); |
| 363 inputs.fetchNextParam(kVec3f_GrSLType); |
| 364 v->codeAppend ( ";"); |
| 365 v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatri
x).xy;"); |
| 366 } |
| 367 v->codeAppend("}"); |
| 368 } |
| 369 |
| 370 GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : k
Vec2f_GrSLType; |
| 371 v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;", |
| 372 GrGLSLTypeString(positionType), backend->outShapeCoords()); |
| 373 gpArgs->fPositionVar.set(positionType, "deviceCoords"); |
| 374 |
| 375 this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, lo
calCoords, |
| 376 args.fTransformsIn, args.fTransformsOut); |
| 377 } |
| 378 |
| 379 ////////////////////////////////////////////////////////////////////////////////
//////////////////// |
| 380 |
| 381 void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler, |
| 382 GrGLSLVertexBuilder* v) { |
| 383 if (fModifiedShapeCoords) { |
| 384 v->codeAppendf("vec2 %s = %s;", |
| 385 fModifiedShapeCoords, fInputs.attr(kShapeCoords_AttribIdx
)); |
| 386 } |
| 387 |
| 388 this->onInit(varyingHandler, v); |
| 389 |
| 390 if (!fColor.vsOut()) { |
| 391 varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision); |
| 392 v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(kColor_AttribIdx
)); |
| 393 } |
| 394 } |
| 395 |
| 396 void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) { |
| 397 v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);", |
| 398 fInputs.attr(kVertexAttrs_AttribIdx), fInputs.attr(kVertexAtt
rs_AttribIdx)); |
| 399 v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;"); |
| 400 v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : ""
); |
| 401 v->codeAppend ("mat2 p = "); |
| 402 fInputs.fetchNextParam(kMat22f_GrSLType); |
| 403 v->codeAppend (";"); |
| 404 uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask; |
| 405 if (0 == (types & (types - 1))) { |
| 406 if (kSimpleRRect_ShapeFlag == types) { |
| 407 this->setupSimpleRadii(v); |
| 408 } else if (kNinePatch_ShapeFlag == types) { |
| 409 this->setupNinePatchRadii(v); |
| 410 } else if (kComplexRRect_ShapeFlag == types) { |
| 411 this->setupComplexRadii(v); |
| 412 } |
| 413 } else { |
| 414 v->codeAppend("switch (shapeType) {"); |
| 415 if (types & kSimpleRRect_ShapeFlag) { |
| 416 v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpl
eRRect); |
| 417 v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {"); |
| 418 this->setupSimpleRadii(v); |
| 419 v->codeAppend ("} break;"); |
| 420 } |
| 421 if (types & kNinePatch_ShapeFlag) { |
| 422 v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatc
h); |
| 423 v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {"); |
| 424 this->setupNinePatchRadii(v); |
| 425 v->codeAppend ("} break;"); |
| 426 } |
| 427 if (types & kComplexRRect_ShapeFlag) { |
| 428 v->codeAppend ("default: {"); |
| 429 this->setupComplexRadii(v); |
| 430 v->codeAppend ("} break;"); |
| 431 } |
| 432 v->codeAppend("}"); |
| 433 } |
| 434 |
| 435 this->adjustRRectVertices(v); |
| 436 |
| 437 if (fArcCoords.vsOut()) { |
| 438 v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;", |
| 439 fArcCoords.vsOut(), fModifiedShapeCoords); |
| 440 } |
| 441 if (fTriangleIsArc.vsOut()) { |
| 442 v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));", |
| 443 fTriangleIsArc.vsOut(), fInputs.attr(kShapeCoords_AttribI
dx)); |
| 444 } |
| 445 |
| 446 this->onSetupRRect(v); |
| 447 } |
| 448 |
| 449 void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) { |
| 450 if (fNeedsNeighborRadii) { |
| 451 v->codeAppend ("neighborRadii = "); |
| 452 } |
| 453 v->codeAppend("radii = p[0] * 2.0 / p[1];"); |
| 454 } |
| 455 |
| 456 void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v)
{ |
| 457 v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);"); |
| 458 if (fNeedsNeighborRadii) { |
| 459 v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corne
r.y]);"); |
| 460 } |
| 461 } |
| 462 |
| 463 void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) { |
| 464 /** |
| 465 * The x and y radii of each arc are stored in separate vectors, |
| 466 * in the following order: |
| 467 * |
| 468 * __x1 _ _ _ x3__ |
| 469 * |
| 470 * y1 | | y2 |
| 471 * |
| 472 * | | |
| 473 * |
| 474 * y3 |__ _ _ _ __| y4 |
| 475 * x2 x4 |
| 476 * |
| 477 */ |
| 478 v->codeAppend("mat2 p2 = "); |
| 479 fInputs.fetchNextParam(kMat22f_GrSLType); |
| 480 v->codeAppend(";"); |
| 481 v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);"
); |
| 482 if (fNeedsNeighborRadii) { |
| 483 v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], " |
| 484 "p2[1u - corner.y][corner.x]);"); |
| 485 } |
| 486 } |
| 487 |
| 488 void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v)
{ |
| 489 // Resize the 4 triangles that arcs are drawn into so they match their corre
sponding radii. |
| 490 // 0.5 is a special value that indicates the edge of an arc triangle. |
| 491 v->codeAppendf("if (abs(%s.x) == 0.5)" |
| 492 "%s.x = cornerSign.x * (1.0 - radii.x);", |
| 493 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 494 v->codeAppendf("if (abs(%s.y) == 0.5) " |
| 495 "%s.y = cornerSign.y * (1.0 - radii.y);", |
| 496 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 497 } |
| 498 |
| 499 void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyin
gHandler, |
| 500 GrGLSLVertexBuilder* v) { |
| 501 SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRe
ct_ShapeFlag))); |
| 502 |
| 503 this->onInitInnerShape(varyingHandler, v); |
| 504 |
| 505 if (fInnerShapeCoords.vsOut()) { |
| 506 v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut()); |
| 507 } |
| 508 } |
| 509 |
| 510 void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) { |
| 511 v->codeAppend("mat2 innerP = "); |
| 512 fInputs.fetchNextParam(kMat22f_GrSLType); |
| 513 v->codeAppend(";"); |
| 514 v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];"); |
| 515 this->onSetupInnerRRect(v); |
| 516 } |
| 517 |
| 518 void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFr
agmentBuilder* f, |
| 519 const char* outCoverage, const cha
r* outColor) { |
| 520 this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr, |
| 521 fModifiesColor ? outColor : nullptr); |
| 522 if (!fModifiesCoverage) { |
| 523 // Even though the subclass doesn't use coverage, we are expected to ass
ign some value. |
| 524 f->codeAppendf("%s = vec4(1);", outCoverage); |
| 525 } |
| 526 if (!fModifiesColor) { |
| 527 // The subclass didn't assign a value to the output color. |
| 528 f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
| 529 } |
| 530 } |
| 531 |
| 532 ////////////////////////////////////////////////////////////////////////////////
//////////////////// |
| 533 |
| 534 class GLSLInstanceProcessor::BackendNonAA : public Backend { |
| 535 public: |
| 536 BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs) |
| 537 : INHERITED(batchInfo, inputs) { |
| 538 if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) { |
| 539 fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage; |
| 540 fModifiesCoverage = !fModifiesColor; |
| 541 } |
| 542 } |
| 543 |
| 544 private: |
| 545 void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 546 void setupRect(GrGLSLVertexBuilder*) override; |
| 547 void setupOval(GrGLSLVertexBuilder*) override; |
| 548 |
| 549 void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 550 void setupInnerRect(GrGLSLVertexBuilder*) override; |
| 551 void setupInnerOval(GrGLSLVertexBuilder*) override; |
| 552 void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
| 553 |
| 554 void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
| 555 const char*) override; |
| 556 |
| 557 typedef Backend INHERITED; |
| 558 }; |
| 559 |
| 560 void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHa
ndler, |
| 561 GrGLSLVertexBuilder*) { |
| 562 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 563 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_G
rSLPrecision); |
| 564 varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecisi
on); |
| 565 } |
| 566 } |
| 567 |
| 568 void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) { |
| 569 if (fTriangleIsArc.vsOut()) { |
| 570 v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| 571 } |
| 572 } |
| 573 |
| 574 void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) { |
| 575 SkASSERT(fArcCoords.vsOut()); |
| 576 SkASSERT(fTriangleIsArc.vsOut()); |
| 577 v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords()); |
| 578 v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(kVertexA
ttrs_AttribIdx)); |
| 579 } |
| 580 |
| 581 void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler*
varyingHandler, |
| 582 GrGLSLVertexBuilder*)
{ |
| 583 varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_G
rSLPrecision); |
| 584 if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes && |
| 585 kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
| 586 varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLP
recision); |
| 587 } |
| 588 } |
| 589 |
| 590 void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v)
{ |
| 591 if (fInnerRRect.vsOut()) { |
| 592 v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut()); |
| 593 } |
| 594 } |
| 595 |
| 596 void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v)
{ |
| 597 if (fInnerRRect.vsOut()) { |
| 598 v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
| 599 } |
| 600 } |
| 601 |
| 602 void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder*
v) { |
| 603 v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect
.vsOut()); |
| 604 } |
| 605 |
| 606 void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*, |
| 607 GrGLSLPPFragmentBuilder* f, |
| 608 const char* outCoverage, |
| 609 const char* outColor) { |
| 610 const char* dropFragment = nullptr; |
| 611 if (!fBatchInfo.fCannotDiscard) { |
| 612 dropFragment = "discard"; |
| 613 } else if (fModifiesCoverage) { |
| 614 f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 615 f->codeAppend ("float covered = 1.0;"); |
| 616 dropFragment = "covered = 0.0"; |
| 617 } else if (fModifiesColor) { |
| 618 f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 619 f->codeAppendf("vec4 color = %s;", fColor.fsIn()); |
| 620 dropFragment = "color = vec4(0)"; |
| 621 } |
| 622 if (fTriangleIsArc.fsIn()) { |
| 623 SkASSERT(dropFragment); |
| 624 f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 625 f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;", |
| 626 fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn
(), dropFragment); |
| 627 } |
| 628 if (fBatchInfo.fInnerShapeTypes) { |
| 629 SkASSERT(dropFragment); |
| 630 f->codeAppendf("// Inner shape.\n"); |
| 631 if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 632 f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;", |
| 633 fInnerShapeCoords.fsIn(), dropFragment); |
| 634 } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 635 f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;", |
| 636 fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), d
ropFragment); |
| 637 } else { |
| 638 f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShape
Coords.fsIn()); |
| 639 f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
| 640 fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
| 641 f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {
"); |
| 642 f->codeAppendf( "%s;", dropFragment); |
| 643 f->codeAppend ( "} else {"); |
| 644 f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw
;", |
| 645 fInnerRRect.fsIn()); |
| 646 f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {"
); |
| 647 f->codeAppendf( "%s;", dropFragment); |
| 648 f->codeAppend ( "}"); |
| 649 f->codeAppend ( "}"); |
| 650 f->codeAppend ("}"); |
| 651 } |
| 652 } |
| 653 if (fModifiesCoverage) { |
| 654 f->codeAppendf("%s = vec4(covered);", outCoverage); |
| 655 } else if (fModifiesColor) { |
| 656 f->codeAppendf("%s = color;", outColor); |
| 657 } |
| 658 } |
| 659 |
| 660 ////////////////////////////////////////////////////////////////////////////////
//////////////////// |
| 661 |
| 662 class GLSLInstanceProcessor::BackendCoverage : public Backend { |
| 663 public: |
| 664 BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs) |
| 665 : INHERITED(batchInfo, inputs), |
| 666 fColorTimesCoverage(kVec4f_GrSLType), |
| 667 fDistanceToEdge(kFloat_GrSLType), |
| 668 fEllipseCoords(kVec2f_GrSLType), |
| 669 fEllipseName(kVec2f_GrSLType), |
| 670 fBloatedRadius(kFloat_GrSLType), |
| 671 fDistanceToInnerEdge(kVec2f_GrSLType), |
| 672 fInnerShapeBloatedHalfSize(kVec2f_GrSLType), |
| 673 fInnerEllipseCoords(kVec2f_GrSLType), |
| 674 fInnerEllipseName(kVec2f_GrSLType) { |
| 675 fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kR
Rect_ShapesMask); |
| 676 fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage && |
| 677 !fBatchInfo.fInnerShapeTypes; |
| 678 fModifiesCoverage = !fTweakAlphaForCoverage; |
| 679 fModifiesColor = fTweakAlphaForCoverage; |
| 680 fModifiedShapeCoords = "bloatedShapeCoords"; |
| 681 } |
| 682 |
| 683 private: |
| 684 void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 685 void setupRect(GrGLSLVertexBuilder*) override; |
| 686 void setupOval(GrGLSLVertexBuilder*) override; |
| 687 void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
| 688 void onSetupRRect(GrGLSLVertexBuilder*) override; |
| 689 |
| 690 void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 691 void setupInnerRect(GrGLSLVertexBuilder*) override; |
| 692 void setupInnerOval(GrGLSLVertexBuilder*) override; |
| 693 void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
| 694 |
| 695 void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*
outCoverage, |
| 696 const char* outColor) override; |
| 697 |
| 698 void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char*
outColor); |
| 699 void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
| 700 void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const ch
ar* ellipseName, |
| 701 bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative, |
| 702 const char* outCoverage); |
| 703 void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage); |
| 704 |
| 705 GrGLSLVertToFrag fColorTimesCoverage; |
| 706 GrGLSLVertToFrag fDistanceToEdge; |
| 707 GrGLSLVertToFrag fEllipseCoords; |
| 708 GrGLSLVertToFrag fEllipseName; |
| 709 GrGLSLVertToFrag fBloatedRadius; |
| 710 GrGLSLVertToFrag fDistanceToInnerEdge; |
| 711 GrGLSLVertToFrag fInnerShapeBloatedHalfSize; |
| 712 GrGLSLVertToFrag fInnerEllipseCoords; |
| 713 GrGLSLVertToFrag fInnerEllipseName; |
| 714 bool fShapeIsCircle; |
| 715 bool fTweakAlphaForCoverage; |
| 716 |
| 717 typedef Backend INHERITED; |
| 718 }; |
| 719 |
| 720 void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyin
gHandler, |
| 721 GrGLSLVertexBuilder* v) { |
| 722 v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));"); |
| 723 v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), " |
| 724 "length(shapeTransposeMatrix[1]));"
); |
| 725 v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;"); |
| 726 v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", |
| 727 fInputs.attr(kShapeCoords_AttribIdx)); |
| 728 |
| 729 if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 730 if (fTweakAlphaForCoverage) { |
| 731 varyingHandler->addVarying("colorTimesCoverage", &fColorTimesCoverag
e, |
| 732 kLow_GrSLPrecision); |
| 733 if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) { |
| 734 fColor = fColorTimesCoverage; |
| 735 } |
| 736 } else { |
| 737 varyingHandler->addVarying("distanceToEdge", &fDistanceToEdge, kLow_
GrSLPrecision); |
| 738 } |
| 739 v->codeAppend("float distanceToEdge = 0.0;"); |
| 740 } |
| 741 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 742 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_G
rSLPrecision); |
| 743 if (!fShapeIsCircle) { |
| 744 varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_G
rSLPrecision); |
| 745 varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_G
rSLPrecision); |
| 746 } else { |
| 747 varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_
GrSLPrecision); |
| 748 varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMe
dium_GrSLPrecision); |
| 749 } |
| 750 } |
| 751 } |
| 752 |
| 753 void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) { |
| 754 // Offset the inner and outer rects by one pixel. Inner vs outer is indicate
d by coordAttrs. |
| 755 v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;", |
| 756 fInputs.attr(kVertexAttrs_AttribIdx)); |
| 757 v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + rectBloat), vec2(0)
);", |
| 758 fInputs.attr(kShapeCoords_AttribIdx)); |
| 759 |
| 760 // The geometry is laid out in such a way that distanceToEdge will be 0 and
1 on the vertices, |
| 761 // but we still need to recompute this value because when the rect gets thin
ner than one pixel, |
| 762 // the interior edge of the border will necessarily clamp. |
| 763 v->codeAppend ("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * sha
peHalfSize;"); |
| 764 v->codeAppend ("distanceToEdge = min(d.x, d.y);"); |
| 765 |
| 766 if (fTriangleIsArc.vsOut()) { |
| 767 v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| 768 } |
| 769 } |
| 770 |
| 771 void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) { |
| 772 // Offset the inner and outer octagons by one pixel. Inner vs outer is indic
ated by coordAttrs. |
| 773 v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;", |
| 774 fInputs.attr(kVertexAttrs_AttribIdx)); |
| 775 v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0)
);", |
| 776 fInputs.attr(kShapeCoords_AttribIdx)); |
| 777 v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vs
Out()); |
| 778 if (fEllipseName.vsOut()) { |
| 779 v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseNa
me.vsOut()); |
| 780 } |
| 781 if (fBloatedRadius.vsOut()) { |
| 782 SkASSERT(fShapeIsCircle); |
| 783 v->codeAppendf("%s = shapeHalfSize.x + bloat.x;", fBloatedRadius.vsOut()
); |
| 784 } |
| 785 if (fTriangleIsArc.vsOut()) { |
| 786 v->codeAppendf("%s = int(%s != 0);", |
| 787 fTriangleIsArc.vsOut(), fInputs.attr(kVertexAttrs_AttribI
dx)); |
| 788 } |
| 789 if (fColorTimesCoverage.vsOut() || fDistanceToEdge.vsOut()) { |
| 790 v->codeAppendf("distanceToEdge = 1.0;"); |
| 791 } |
| 792 } |
| 793 |
| 794 void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBui
lder* v) { |
| 795 // We try to let the AA borders line up with the arc edges on their particul
ar side, but we |
| 796 // can't allow them to get closer than one half pixel to the edge or they mi
ght overlap with |
| 797 // their neighboring border. |
| 798 v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));"); |
| 799 v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge
, innerEdge);"); |
| 800 // 0.5 is a special value that indicates this vertex is an arc edge. |
| 801 v->codeAppendf("if (abs(%s.x) == 0.5)" |
| 802 "%s.x = borderEdge.x;", |
| 803 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 804 v->codeAppendf("if (abs(%s.y) == 0.5)" |
| 805 "%s.y = borderEdge.y;", |
| 806 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 807 |
| 808 // Adjust the interior border vertices to make the border one pixel wide. 0.
75 is a special |
| 809 // value to indicate these points. |
| 810 v->codeAppendf("if (abs(%s.x) == 0.75) " |
| 811 "%s.x = cornerSign.x * innerEdge.x;", |
| 812 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 813 v->codeAppendf("if (abs(%s.y) == 0.75) " |
| 814 "%s.y = cornerSign.y * innerEdge.y;", |
| 815 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 816 } |
| 817 |
| 818 void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v
) { |
| 819 // The geometry is laid out in such a way that distanceToEdge will be 0 and
1 on the vertices, |
| 820 // but we still need to recompute this value because when the rrect gets thi
nner than one pixel, |
| 821 // the interior edge of the border will necessarily clamp. |
| 822 v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shap
eHalfSize;"); |
| 823 v->codeAppend("distanceToEdge = min(d.x, d.y);"); |
| 824 |
| 825 SkASSERT(!fShapeIsCircle); |
| 826 // The AA border does not get closer than one half pixel to the edge of the
rect, so to get a |
| 827 // smooth transition from flat edge to arc, we don't allow the radii to be s
maller than one half |
| 828 // pixel. (We don't worry about the transition on the opposite side when a r
adius is so large |
| 829 // that the border clamped on that side.) |
| 830 v->codeAppendf("vec2 clampedRadii = max(radii, bloat);"); |
| 831 v->codeAppendf("%s = (cornerSign * %s + clampedRadii - vec2(1)) * shapeHalfS
ize;", |
| 832 fEllipseCoords.vsOut(), fModifiedShapeCoords); |
| 833 v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * sh
apeHalfSize);", |
| 834 fEllipseName.vsOut()); |
| 835 } |
| 836 |
| 837 void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandl
er* varyingHandler, |
| 838 GrGLSLVertexBuilde
r* v) { |
| 839 v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / innerCoords.xy;"); |
| 840 |
| 841 if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 842 varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords, |
| 843 kMedium_GrSLPrecision); |
| 844 varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, |
| 845 kMedium_GrSLPrecision); |
| 846 } else { |
| 847 varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge, |
| 848 kMedium_GrSLPrecision); |
| 849 varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShape
BloatedHalfSize, |
| 850 kMedium_GrSLPrecision); |
| 851 if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
| 852 varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, k
High_GrSLPrecision); |
| 853 varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseNam
e, |
| 854 kMedium_GrSLPrecision); |
| 855 varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrS
LPrecision); |
| 856 } |
| 857 } |
| 858 } |
| 859 |
| 860 void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder*
v) { |
| 861 if (fInnerRRect.vsOut()) { |
| 862 // The fragment shader will generalize every inner shape as a round rect
. Since this one |
| 863 // is a rect, we simply emit bogus parameters for the round rect (negati
ve radii) that |
| 864 // ensure the fragment shader always takes the "emitRect" codepath. |
| 865 v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - oute
r.xy), vec2(0));", |
| 866 fInnerRRect.vsOut()); |
| 867 } |
| 868 } |
| 869 |
| 870 void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder*
v) { |
| 871 v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);", |
| 872 fInnerEllipseName.vsOut()); |
| 873 if (fInnerEllipseCoords.vsOut()) { |
| 874 v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerElli
pseCoords.vsOut()); |
| 875 } |
| 876 if (fInnerRRect.vsOut()) { |
| 877 v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut
()); |
| 878 } |
| 879 } |
| 880 |
| 881 void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuild
er* v) { |
| 882 // The distance to ellipse formula doesn't work well when the radii are less
than half a pixel. |
| 883 v->codeAppend ("innerRadii = max(innerRadii, bloat);"); |
| 884 v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * " |
| 885 "innerShapeHalfSize);", |
| 886 fInnerEllipseName.vsOut()); |
| 887 v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRe
ct.vsOut()); |
| 888 } |
| 889 |
| 890 void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v, |
| 891 GrGLSLPPFragmentBuilder*
f, |
| 892 const char* outCoverage, |
| 893 const char* outColor) { |
| 894 if (fColorTimesCoverage.vsOut()) { |
| 895 v->codeAppendf("%s = %s * distanceToEdge;", |
| 896 fColorTimesCoverage.vsOut(), fInputs.attr(kColor_AttribId
x)); |
| 897 } |
| 898 if (fDistanceToEdge.vsOut()) { |
| 899 v->codeAppendf("%s = distanceToEdge;", fDistanceToEdge.vsOut()); |
| 900 } |
| 901 |
| 902 SkString coverage("float coverage"); |
| 903 if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { |
| 904 coverage.prependf("lowp "); |
| 905 } |
| 906 if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsAr
c.fsIn())) { |
| 907 f->codeAppendf("%s;", coverage.c_str()); |
| 908 coverage = "coverage"; |
| 909 } |
| 910 if (fTriangleIsArc.fsIn()) { |
| 911 f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
| 912 this->emitRect(f, coverage.c_str(), outColor); |
| 913 f->codeAppend ("} else {"); |
| 914 if (fShapeIsCircle) { |
| 915 this->emitCircle(f, coverage.c_str()); |
| 916 } else { |
| 917 bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes &
kOval_ShapeFlag); |
| 918 this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(), |
| 919 true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNeg
ative, |
| 920 coverage.c_str()); |
| 921 } |
| 922 if (fTweakAlphaForCoverage) { |
| 923 f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn()); |
| 924 } |
| 925 f->codeAppend ("}"); |
| 926 } else { |
| 927 this->emitRect(f, coverage.c_str(), outColor); |
| 928 } |
| 929 |
| 930 if (fBatchInfo.fInnerShapeTypes) { |
| 931 f->codeAppendf("// Inner shape.\n"); |
| 932 SkString innerCoverage("float innerCoverage"); |
| 933 if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { |
| 934 innerCoverage.prependf("lowp "); |
| 935 } |
| 936 if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 937 this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(
), |
| 938 true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsM
ayBeNegative*/, |
| 939 innerCoverage.c_str()); |
| 940 } else { |
| 941 v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", |
| 942 fDistanceToInnerEdge.vsOut()); |
| 943 v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedH
alfSize.vsOut()); |
| 944 |
| 945 if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 946 this->emitInnerRect(f, innerCoverage.c_str()); |
| 947 } else { |
| 948 f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 949 f->codeAppend ("float innerCoverage = 0.0;"); |
| 950 f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", |
| 951 fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); |
| 952 f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))
) {"); |
| 953 this->emitInnerRect(f, "innerCoverage"); |
| 954 f->codeAppend ("} else {"); |
| 955 f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.
zw;", |
| 956 fInnerRRect.fsIn()); |
| 957 this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(), |
| 958 false /*ellipseCoordsNeedClamp*/, |
| 959 false /*ellipseCoordsMayBeNegative*/, "innerCovera
ge"); |
| 960 f->codeAppend ("}"); |
| 961 } |
| 962 } |
| 963 f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0));", outCovera
ge); |
| 964 } else if (!fTweakAlphaForCoverage) { |
| 965 f->codeAppendf("%s = vec4(coverage);", outCoverage); |
| 966 } |
| 967 } |
| 968 |
| 969 void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f
, |
| 970 const char* outCoverage, |
| 971 const char* outColor) { |
| 972 if (fColorTimesCoverage.fsIn()) { |
| 973 f->codeAppendf("%s = %s;", outColor, fColorTimesCoverage.fsIn()); |
| 974 } else if (fTweakAlphaForCoverage) { |
| 975 // We are drawing just ovals. The interior rect always has 100% coverage
. |
| 976 f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); |
| 977 } else if (fDistanceToEdge.fsIn()) { |
| 978 f->codeAppendf("%s = %s;", outCoverage, fDistanceToEdge.fsIn()); |
| 979 } else { |
| 980 f->codeAppendf("%s = 1.0;", outCoverage); |
| 981 } |
| 982 } |
| 983 |
| 984 void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder*
f, |
| 985 const char* outCoverage)
{ |
| 986 // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimiz
ation on rrects. |
| 987 SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes)); |
| 988 f->codeAppendf("float distanceToEdge = %s - length(%s);", |
| 989 fBloatedRadius.fsIn(), fEllipseCoords.fsIn()); |
| 990 f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage); |
| 991 } |
| 992 |
| 993 void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f, |
| 994 const char* ellipseCoords, |
| 995 const char* ellipseName, |
| 996 bool ellipseCoordsNeedClamp
, |
| 997 bool ellipseCoordsMayBeNega
tive, |
| 998 const char* outCoverage) { |
| 999 SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp); |
| 1000 if (ellipseCoordsNeedClamp) { |
| 1001 // This serves two purposes: |
| 1002 // - To restrict the arcs of rounded rects to their positive quadrants. |
| 1003 // - To avoid inversesqrt(0) in the ellipse formula. |
| 1004 if (ellipseCoordsMayBeNegative) { |
| 1005 f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4))
;", ellipseCoords); |
| 1006 } else { |
| 1007 f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", e
llipseCoords); |
| 1008 } |
| 1009 ellipseCoords = "ellipseClampedCoords"; |
| 1010 } |
| 1011 // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2. |
| 1012 f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName); |
| 1013 // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. |
| 1014 f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords); |
| 1015 // gradDot is the squared length of the gradient of the implicit. |
| 1016 f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);"); |
| 1017 f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 1018 f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);"); |
| 1019 f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage); |
| 1020 } |
| 1021 |
| 1022 void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuild
er* f, |
| 1023 const char* outCovera
ge) { |
| 1024 f->appendPrecisionModifier(kLow_GrSLPrecision); |
| 1025 f->codeAppendf("vec2 c = %s - abs(%s);", |
| 1026 fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn(
)); |
| 1027 f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage); |
| 1028 } |
| 1029 |
| 1030 ////////////////////////////////////////////////////////////////////////////////
//////////////////// |
| 1031 |
| 1032 class GLSLInstanceProcessor::BackendMultisample : public Backend { |
| 1033 public: |
| 1034 BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effe
ctiveSampleCnt) |
| 1035 : INHERITED(batchInfo, inputs), |
| 1036 fEffectiveSampleCnt(effectiveSampleCnt), |
| 1037 fShapeCoords(kVec2f_GrSLType), |
| 1038 fShapeInverseMatrix(kMat22f_GrSLType), |
| 1039 fFragShapeHalfSpan(kVec2f_GrSLType), |
| 1040 fArcTest(kVec2f_GrSLType), |
| 1041 fArcInverseMatrix(kMat22f_GrSLType), |
| 1042 fFragArcHalfSpan(kVec2f_GrSLType), |
| 1043 fEarlyAccept(kInt_GrSLType), |
| 1044 fInnerShapeInverseMatrix(kMat22f_GrSLType), |
| 1045 fFragInnerShapeHalfSpan(kVec2f_GrSLType) { |
| 1046 fRectTrianglesMaySplit = fBatchInfo.fHasPerspective; |
| 1047 fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspect
ive; |
| 1048 } |
| 1049 |
| 1050 private: |
| 1051 bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchI
nfo.fAntialiasMode; } |
| 1052 |
| 1053 void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 1054 void setupRect(GrGLSLVertexBuilder*) override; |
| 1055 void setupOval(GrGLSLVertexBuilder*) override; |
| 1056 void adjustRRectVertices(GrGLSLVertexBuilder*) override; |
| 1057 void onSetupRRect(GrGLSLVertexBuilder*) override; |
| 1058 |
| 1059 void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; |
| 1060 void setupInnerRect(GrGLSLVertexBuilder*) override; |
| 1061 void setupInnerOval(GrGLSLVertexBuilder*) override; |
| 1062 void onSetupInnerRRect(GrGLSLVertexBuilder*) override; |
| 1063 |
| 1064 void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, |
| 1065 const char*) override; |
| 1066 |
| 1067 struct EmitShapeCoords { |
| 1068 const GrGLSLVarying* fVarying; |
| 1069 const char* fInverseMatrix; |
| 1070 const char* fFragHalfSpan; |
| 1071 }; |
| 1072 |
| 1073 struct EmitShapeOpts { |
| 1074 bool fIsTightGeometry; |
| 1075 bool fResolveMixedSamples; |
| 1076 bool fInvertCoverage; |
| 1077 }; |
| 1078 |
| 1079 void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitSh
apeOpts&); |
| 1080 void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMa
yBeNegative, |
| 1081 bool clampCoords, const EmitShapeOpts&); |
| 1082 void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const
char* rrect, |
| 1083 const EmitShapeOpts&); |
| 1084 void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, con
st char* sampleIdx, |
| 1085 const char* interpolationMatrix); |
| 1086 void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, cons
t EmitShapeOpts&); |
| 1087 void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, con
st EmitShapeOpts&, |
| 1088 bool maybeSharedEdge = true); |
| 1089 |
| 1090 int fEffectiveSampleCnt; |
| 1091 bool fRectTrianglesMaySplit; |
| 1092 GrGLSLVertToFrag fShapeCoords; |
| 1093 GrGLSLVertToFrag fShapeInverseMatrix; |
| 1094 GrGLSLVertToFrag fFragShapeHalfSpan; |
| 1095 GrGLSLVertToFrag fArcTest; |
| 1096 GrGLSLVertToFrag fArcInverseMatrix; |
| 1097 GrGLSLVertToFrag fFragArcHalfSpan; |
| 1098 GrGLSLVertToFrag fEarlyAccept; |
| 1099 GrGLSLVertToFrag fInnerShapeInverseMatrix; |
| 1100 GrGLSLVertToFrag fFragInnerShapeHalfSpan; |
| 1101 SkString fSquareFun; |
| 1102 |
| 1103 typedef Backend INHERITED; |
| 1104 }; |
| 1105 |
| 1106 void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* var
yingHandler, |
| 1107 GrGLSLVertexBuilder* v) { |
| 1108 if (!this->isMixedSampled()) { |
| 1109 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 1110 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, |
| 1111 kHigh_GrSLPrecision); |
| 1112 varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPreci
sion); |
| 1113 if (!fBatchInfo.fHasPerspective) { |
| 1114 varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseM
atrix, |
| 1115 kHigh_GrSLPrecision); |
| 1116 varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfS
pan, |
| 1117 kHigh_GrSLPrecision); |
| 1118 } |
| 1119 } else if (!fBatchInfo.fInnerShapeTypes) { |
| 1120 return; |
| 1121 } |
| 1122 } else { |
| 1123 varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPreci
sion); |
| 1124 if (!fBatchInfo.fHasPerspective) { |
| 1125 varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseM
atrix, |
| 1126 kHigh_GrSLPrecision); |
| 1127 varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfS
pan, |
| 1128 kHigh_GrSLPrecision); |
| 1129 } |
| 1130 if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { |
| 1131 varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPreci
sion); |
| 1132 varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision
); |
| 1133 if (!fBatchInfo.fHasPerspective) { |
| 1134 varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseM
atrix, |
| 1135 kHigh_GrSLPrecision); |
| 1136 varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfS
pan, |
| 1137 kHigh_GrSLPrecision); |
| 1138 } |
| 1139 } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) { |
| 1140 fArcCoords = fShapeCoords; |
| 1141 fArcInverseMatrix = fShapeInverseMatrix; |
| 1142 fFragArcHalfSpan = fFragShapeHalfSpan; |
| 1143 if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) { |
| 1144 varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, |
| 1145 kHigh_GrSLPrecision); |
| 1146 } |
| 1147 } |
| 1148 if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { |
| 1149 v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1)
; |
| 1150 varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_Gr
SLPrecision); |
| 1151 } |
| 1152 } |
| 1153 if (!fBatchInfo.fHasPerspective) { |
| 1154 v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));"); |
| 1155 v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + " |
| 1156 "abs(vec4(shapeInverseMatrix).yw);"); |
| 1157 } |
| 1158 } |
| 1159 |
| 1160 void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v
) { |
| 1161 if (fShapeCoords.vsOut()) { |
| 1162 v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords())
; |
| 1163 } |
| 1164 if (fShapeInverseMatrix.vsOut()) { |
| 1165 v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
| 1166 } |
| 1167 if (fFragShapeHalfSpan.vsOut()) { |
| 1168 v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
| 1169 } |
| 1170 if (fArcTest.vsOut()) { |
| 1171 // Pick a value that is not > 0. |
| 1172 v->codeAppendf("%s = vec2(0);", fArcTest.vsOut()); |
| 1173 } |
| 1174 if (fTriangleIsArc.vsOut()) { |
| 1175 v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); |
| 1176 } |
| 1177 if (fEarlyAccept.vsOut()) { |
| 1178 v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut()); |
| 1179 } |
| 1180 } |
| 1181 |
| 1182 void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v
) { |
| 1183 v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords()); |
| 1184 if (fArcInverseMatrix.vsOut()) { |
| 1185 v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords()); |
| 1186 v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);", |
| 1187 fArcInverseMatrix.vsOut()); |
| 1188 } |
| 1189 if (fFragArcHalfSpan.vsOut()) { |
| 1190 v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut()); |
| 1191 } |
| 1192 if (fArcTest.vsOut()) { |
| 1193 // Pick a value that is > 0. |
| 1194 v->codeAppendf("%s = vec2(1);", fArcTest.vsOut()); |
| 1195 } |
| 1196 if (fTriangleIsArc.vsOut()) { |
| 1197 if (!this->isMixedSampled()) { |
| 1198 v->codeAppendf("%s = %s & 1;", |
| 1199 fTriangleIsArc.vsOut(), fInputs.attr(kVertexAttrs_Att
ribIdx)); |
| 1200 } else { |
| 1201 v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut()); |
| 1202 } |
| 1203 } |
| 1204 if (fEarlyAccept.vsOut()) { |
| 1205 v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;", |
| 1206 fEarlyAccept.vsOut(), fInputs.attr(kVertexAttrs_AttribIdx
)); |
| 1207 } |
| 1208 } |
| 1209 |
| 1210 void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertex
Builder* v) { |
| 1211 if (!this->isMixedSampled()) { |
| 1212 INHERITED::adjustRRectVertices(v); |
| 1213 return; |
| 1214 } |
| 1215 |
| 1216 if (!fBatchInfo.fHasPerspective) { |
| 1217 // For the mixed samples algorithm it's best to bloat the corner triangl
es a bit so that |
| 1218 // more of the pixels that cross into the arc region are completely insi
de the shared edges. |
| 1219 // We also snap to a regular rect if the radii shrink smaller than a pix
el. |
| 1220 v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);"); |
| 1221 v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ?
" |
| 1222 "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - mid
pt);"); |
| 1223 } else { |
| 1224 // TODO: We could still bloat the corner triangle in the perspective cas
e; we would just |
| 1225 // need to find the screen-space derivative of shape coords at this part
icular point. |
| 1226 v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec
2(0) : radii;"); |
| 1227 } |
| 1228 |
| 1229 v->codeAppendf("if (abs(%s.x) == 0.5)" |
| 1230 "%s.x = cornerSign.x * (1.0 - cornerSize.x);", |
| 1231 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 1232 v->codeAppendf("if (abs(%s.y) == 0.5)" |
| 1233 "%s.y = cornerSign.y * (1.0 - cornerSize.y);", |
| 1234 fInputs.attr(kShapeCoords_AttribIdx), fModifiedShapeCoord
s); |
| 1235 } |
| 1236 |
| 1237 void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder
* v) { |
| 1238 if (fShapeCoords.vsOut()) { |
| 1239 v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords())
; |
| 1240 } |
| 1241 if (fShapeInverseMatrix.vsOut()) { |
| 1242 v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); |
| 1243 } |
| 1244 if (fFragShapeHalfSpan.vsOut()) { |
| 1245 v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); |
| 1246 } |
| 1247 if (fArcInverseMatrix.vsOut()) { |
| 1248 v->codeAppend ("vec2 s = cornerSign / radii;"); |
| 1249 v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);", |
| 1250 fArcInverseMatrix.vsOut()); |
| 1251 } |
| 1252 if (fFragArcHalfSpan.vsOut()) { |
| 1253 v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));", |
| 1254 fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(), |
| 1255 fArcInverseMatrix.vsOut()); |
| 1256 } |
| 1257 if (fArcTest.vsOut()) { |
| 1258 // The interior triangles are laid out as a fan. fArcTest is both distan
ces from shared |
| 1259 // edges of a fan triangle to a point within that triangle. fArcTest is
used to check if a |
| 1260 // fragment is too close to either shared edge, in which case we point s
ample the shape as a |
| 1261 // rect at that point in order to guarantee the mixed samples discard lo
gic works correctly. |
| 1262 v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : " |
| 1263 "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize
.y - 1.0, 1);", |
| 1264 fArcTest.vsOut(), fModifiedShapeCoords); |
| 1265 if (!fBatchInfo.fHasPerspective) { |
| 1266 // Shift the point at which distances to edges are measured from the
center of the pixel |
| 1267 // to the corner. This way the sign of fArcTest will quickly tell us
whether a pixel |
| 1268 // is completely inside the shared edge. Perspective mode will accom
plish this same task |
| 1269 // by finding the derivatives in the fragment shader. |
| 1270 v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + f
ragShapeSpan);", |
| 1271 fArcTest.vsOut()); |
| 1272 } |
| 1273 } |
| 1274 if (fEarlyAccept.vsOut()) { |
| 1275 SkASSERT(this->isMixedSampled()); |
| 1276 v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;
", |
| 1277 fEarlyAccept.vsOut(), fInputs.attr(kShapeCoords_AttribIdx
)); |
| 1278 } |
| 1279 } |
| 1280 |
| 1281 void |
| 1282 GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler
* varyingHandler, |
| 1283 GrGLSLVertexBuilder*
v) { |
| 1284 varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrS
LPrecision); |
| 1285 if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes && |
| 1286 kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { |
| 1287 varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPre
cision); |
| 1288 } |
| 1289 if (!fBatchInfo.fHasPerspective) { |
| 1290 varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeIn
verseMatrix, |
| 1291 kHigh_GrSLPrecision); |
| 1292 v->codeAppendf("%s = shapeInverseMatrix * mat2(innerCoords.x, 0, 0, inne
rCoords.y);", |
| 1293 fInnerShapeInverseMatrix.vsOut()); |
| 1294 varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShap
eHalfSpan, |
| 1295 kHigh_GrSLPrecision); |
| 1296 v->codeAppendf("%s = 0.5 * fragShapeSpan * innerCoords.xy;", |
| 1297 fFragInnerShapeHalfSpan.vsOut()); |
| 1298 } |
| 1299 } |
| 1300 |
| 1301 void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuild
er* v) { |
| 1302 if (fInnerRRect.vsOut()) { |
| 1303 // The fragment shader will generalize every inner shape as a round rect
. Since this one |
| 1304 // is a rect, we simply emit bogus parameters for the round rect (negati
ve radii) that |
| 1305 // ensure the fragment shader always takes the "sample as rect" codepath
. |
| 1306 v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - oute
r.xy), vec2(0));", |
| 1307 fInnerRRect.vsOut()); |
| 1308 } |
| 1309 } |
| 1310 |
| 1311 void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuild
er* v) { |
| 1312 if (fInnerRRect.vsOut()) { |
| 1313 v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); |
| 1314 } |
| 1315 } |
| 1316 |
| 1317 void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBu
ilder* v) { |
| 1318 // Avoid numeric instability by not allowing the inner radii to get smaller
than 1/10th pixel. |
| 1319 if (fFragInnerShapeHalfSpan.vsOut()) { |
| 1320 v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerSha
peHalfSpan.vsOut()); |
| 1321 } else { |
| 1322 v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));"); |
| 1323 } |
| 1324 v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect
.vsOut()); |
| 1325 } |
| 1326 |
| 1327 void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*, |
| 1328 GrGLSLPPFragmentBuild
er* f, |
| 1329 const char*, const ch
ar*) { |
| 1330 f->define("SAMPLE_COUNT", fEffectiveSampleCnt); |
| 1331 if (this->isMixedSampled()) { |
| 1332 f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); |
| 1333 f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1)); |
| 1334 } |
| 1335 |
| 1336 if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes
)) { |
| 1337 GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHig
h_GrSLPrecision); |
| 1338 f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &
fSquareFun); |
| 1339 } |
| 1340 |
| 1341 EmitShapeCoords shapeCoords; |
| 1342 shapeCoords.fVarying = &fShapeCoords; |
| 1343 shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn(); |
| 1344 shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn(); |
| 1345 |
| 1346 EmitShapeCoords arcCoords; |
| 1347 arcCoords.fVarying = &fArcCoords; |
| 1348 arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn(); |
| 1349 arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn(); |
| 1350 bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kR
Rect_ShapesMask); |
| 1351 |
| 1352 EmitShapeOpts opts; |
| 1353 opts.fIsTightGeometry = true; |
| 1354 opts.fResolveMixedSamples = this->isMixedSampled(); |
| 1355 opts.fInvertCoverage = false; |
| 1356 |
| 1357 if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) { |
| 1358 // This determines if the fragment should consider the inner shape in it
s sample mask. |
| 1359 // We take the derivative early in case discards may occur before we get
to the inner shape. |
| 1360 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1361 f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);", |
| 1362 fInnerShapeCoords.fsIn()); |
| 1363 } |
| 1364 |
| 1365 if (!this->isMixedSampled()) { |
| 1366 SkASSERT(!fArcTest.fsIn()); |
| 1367 if (fTriangleIsArc.fsIn()) { |
| 1368 f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn()); |
| 1369 this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1370 |
| 1371 f->codeAppend ("}"); |
| 1372 } |
| 1373 } else { |
| 1374 const char* arcTest = fArcTest.fsIn(); |
| 1375 if (fBatchInfo.fHasPerspective && arcTest) { |
| 1376 // The non-perspective version accounts for fwith() in the vertex sh
ader. |
| 1377 // We make sure to take the derivative here, before a neighbor pixel
may early accept. |
| 1378 f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLF
eature); |
| 1379 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1380 f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);", |
| 1381 fArcTest.fsIn(), fArcTest.fsIn()); |
| 1382 arcTest = "arcTest"; |
| 1383 } |
| 1384 const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "S
AMPLE_MASK_ALL"; |
| 1385 f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept); |
| 1386 f->overrideSampleCoverage(earlyAccept); |
| 1387 f->codeAppend ("} else {"); |
| 1388 if (arcTest) { |
| 1389 // At this point, if the sample mask is all set it means we are insi
de an arc triangle. |
| 1390 f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || " |
| 1391 "all(greaterThan(%s, vec2(0)))) {", arcTest); |
| 1392 this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1393 f->codeAppend ("} else {"); |
| 1394 this->emitRect(f, shapeCoords, opts); |
| 1395 f->codeAppend ("}"); |
| 1396 } else if (fTriangleIsArc.fsIn()) { |
| 1397 f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); |
| 1398 this->emitRect(f, shapeCoords, opts); |
| 1399 f->codeAppend ("} else {"); |
| 1400 this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1401 f->codeAppend ("}"); |
| 1402 } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) { |
| 1403 this->emitArc(f, arcCoords, false, clampArcCoords, opts); |
| 1404 } else { |
| 1405 SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag); |
| 1406 this->emitRect(f, shapeCoords, opts); |
| 1407 } |
| 1408 f->codeAppend ("}"); |
| 1409 } |
| 1410 |
| 1411 if (fBatchInfo.fInnerShapeTypes) { |
| 1412 f->codeAppendf("// Inner shape.\n"); |
| 1413 |
| 1414 EmitShapeCoords innerShapeCoords; |
| 1415 innerShapeCoords.fVarying = &fInnerShapeCoords; |
| 1416 if (!fBatchInfo.fHasPerspective) { |
| 1417 innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn(); |
| 1418 innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn(); |
| 1419 } |
| 1420 |
| 1421 EmitShapeOpts innerOpts; |
| 1422 innerOpts.fIsTightGeometry = false; |
| 1423 innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in
the outer shape. |
| 1424 innerOpts.fInvertCoverage = true; |
| 1425 |
| 1426 if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 1427 this->emitArc(f, innerShapeCoords, true, false, innerOpts); |
| 1428 } else { |
| 1429 f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShap
eCoords.fsIn(), |
| 1430 !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragH
alfSpan |
| 1431 : "fragInnerShapeApproxHa
lfSpan"); // Above. |
| 1432 if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { |
| 1433 this->emitRect(f, innerShapeCoords, innerOpts); |
| 1434 } else { |
| 1435 this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), i
nnerOpts); |
| 1436 } |
| 1437 f->codeAppend ("}"); |
| 1438 } |
| 1439 } |
| 1440 } |
| 1441 |
| 1442 void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder
* f, |
| 1443 const EmitShapeCoords&
coords, |
| 1444 const EmitShapeOpts& op
ts) { |
| 1445 // Full MSAA doesn't need to do anything to draw a rect. |
| 1446 SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples); |
| 1447 if (coords.fFragHalfSpan) { |
| 1448 f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {", |
| 1449 coords.fVarying->fsIn(), coords.fFragHalfSpan); |
| 1450 // The entire pixel is inside the rect. |
| 1451 this->acceptOrRejectWholeFragment(f, true, opts); |
| 1452 f->codeAppend ("} else "); |
| 1453 if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) { |
| 1454 f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {", |
| 1455 coords.fVarying->fsIn(), coords.fFragHalfSpan); |
| 1456 // The pixel falls on an edge of the rectangle and is known to not b
e on a shared edge. |
| 1457 this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false); |
| 1458 f->codeAppend ("} else"); |
| 1459 } |
| 1460 f->codeAppend ("{"); |
| 1461 } |
| 1462 f->codeAppend ("int rectMask = 0;"); |
| 1463 f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1464 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1465 f->codeAppend ( "vec2 pt = "); |
| 1466 this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
| 1467 f->codeAppend ( ";"); |
| 1468 f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i
);"); |
| 1469 f->codeAppend ("}"); |
| 1470 this->acceptCoverageMask(f, "rectMask", opts); |
| 1471 if (coords.fFragHalfSpan) { |
| 1472 f->codeAppend ("}"); |
| 1473 } |
| 1474 } |
| 1475 |
| 1476 void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder*
f, |
| 1477 const EmitShapeCoords& c
oords, |
| 1478 bool coordsMayBeNegative
, bool clampCoords, |
| 1479 const EmitShapeOpts& opt
s) { |
| 1480 if (coords.fFragHalfSpan) { |
| 1481 SkString absArcCoords; |
| 1482 absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVary
ing->fsIn()); |
| 1483 if (clampCoords) { |
| 1484 f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {", |
| 1485 fSquareFun.c_str(), absArcCoords.c_str(), coords.fFra
gHalfSpan); |
| 1486 } else { |
| 1487 f->codeAppendf("if (%s(%s + %s) < 1.0) {", |
| 1488 fSquareFun.c_str(), absArcCoords.c_str(), coords.fFra
gHalfSpan); |
| 1489 } |
| 1490 // The entire pixel is inside the arc. |
| 1491 this->acceptOrRejectWholeFragment(f, true, opts); |
| 1492 f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {", |
| 1493 fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHal
fSpan); |
| 1494 // The entire pixel is outside the arc. |
| 1495 this->acceptOrRejectWholeFragment(f, false, opts); |
| 1496 f->codeAppend ("} else {"); |
| 1497 } |
| 1498 f->codeAppend ( "int arcMask = 0;"); |
| 1499 f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1500 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1501 f->codeAppend ( "vec2 pt = "); |
| 1502 this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); |
| 1503 f->codeAppend ( ";"); |
| 1504 if (clampCoords) { |
| 1505 SkASSERT(!coordsMayBeNegative); |
| 1506 f->codeAppend ( "pt = max(pt, vec2(0));"); |
| 1507 } |
| 1508 f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.
c_str()); |
| 1509 f->codeAppend ( "}"); |
| 1510 this->acceptCoverageMask(f, "arcMask", opts); |
| 1511 if (coords.fFragHalfSpan) { |
| 1512 f->codeAppend ("}"); |
| 1513 } |
| 1514 } |
| 1515 |
| 1516 void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragment
Builder* f, |
| 1517 const EmitShapeC
oords& coords, |
| 1518 const char* rrec
t, |
| 1519 const EmitShapeO
pts& opts) { |
| 1520 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1521 f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying-
>fsIn(), rrect); |
| 1522 f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); |
| 1523 this->emitRect(f, coords, opts); |
| 1524 f->codeAppend ("} else {"); |
| 1525 if (coords.fInverseMatrix && coords.fFragHalfSpan) { |
| 1526 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1527 f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect); |
| 1528 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1529 f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfS
pan, rrect); |
| 1530 f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSqu
areFun.c_str()); |
| 1531 // The entire pixel is inside the round rect. |
| 1532 this->acceptOrRejectWholeFragment(f, true, opts); |
| 1533 f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(
0))) >= 1.0) {", |
| 1534 fSquareFun.c_str()); |
| 1535 // The entire pixel is outside the round rect. |
| 1536 this->acceptOrRejectWholeFragment(f, false, opts); |
| 1537 f->codeAppend ("} else {"); |
| 1538 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1539 f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying-
>fsIn()); |
| 1540 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1541 f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0,
s.y);", |
| 1542 coords.fInverseMatrix); |
| 1543 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1544 f->codeAppend ( "int rrectMask = 0;"); |
| 1545 f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1546 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1547 f->codeAppend ( "vec2 pt = rrectCoords + "); |
| 1548 f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordi
nates); |
| 1549 f->codeAppend ( "* innerRRectInverseMatrix;"); |
| 1550 f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1
<< i);", |
| 1551 fSquareFun.c_str()); |
| 1552 f->codeAppend ( "}"); |
| 1553 this->acceptCoverageMask(f, "rrectMask", opts); |
| 1554 f->codeAppend ("}"); |
| 1555 } else { |
| 1556 f->codeAppend ("int rrectMask = 0;"); |
| 1557 f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); |
| 1558 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1559 f->codeAppend ( "vec2 shapePt = "); |
| 1560 this->interpolateAtSample(f, *coords.fVarying, "i", nullptr); |
| 1561 f->codeAppend ( ";"); |
| 1562 f->appendPrecisionModifier(kHigh_GrSLPrecision); |
| 1563 f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) *
%s.zw;", |
| 1564 rrect, rrect); |
| 1565 f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSqu
areFun.c_str()); |
| 1566 f->codeAppend ("}"); |
| 1567 this->acceptCoverageMask(f, "rrectMask", opts); |
| 1568 } |
| 1569 f->codeAppend ("}"); |
| 1570 } |
| 1571 |
| 1572 void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFrag
mentBuilder* f, |
| 1573 const GrGLSLVa
rying& varying, |
| 1574 const char* sa
mpleIdx, |
| 1575 const char* in
terpolationMatrix) { |
| 1576 if (interpolationMatrix) { |
| 1577 f->codeAppendf("(%s + ", varying.fsIn()); |
| 1578 f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_
Coordinates); |
| 1579 f->codeAppendf(" * %s)", interpolationMatrix); |
| 1580 } else { |
| 1581 SkAssertResult( |
| 1582 f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GL
SLFeature)); |
| 1583 f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn()); |
| 1584 f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_
Coordinates); |
| 1585 f->codeAppend(")"); |
| 1586 } |
| 1587 } |
| 1588 |
| 1589 void |
| 1590 GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPF
ragmentBuilder* f, |
| 1591 bool insi
de, |
| 1592 const Emi
tShapeOpts& opts) { |
| 1593 if (inside != opts.fInvertCoverage) { // Accept the entire fragment. |
| 1594 if (opts.fResolveMixedSamples) { |
| 1595 // This is a mixed sampled fragment in the interior of the shape. Re
assign 100% coverage |
| 1596 // to one fragment, and drop all other fragments that may fall on th
is same pixel. Since |
| 1597 // our geometry is water tight and non-overlapping, we can take adva
ntage of the |
| 1598 // properties that (1) the incoming sample masks will be disjoint ac
ross fragments that |
| 1599 // fall on a common pixel, and (2) since the entire fragment is insi
de the shape, each |
| 1600 // sample's corresponding bit will be set in the incoming sample mas
k of exactly one |
| 1601 // fragment. |
| 1602 f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {"); |
| 1603 // Drop this fragment. |
| 1604 if (!fBatchInfo.fCannotDiscard) { |
| 1605 f->codeAppend("discard;"); |
| 1606 } else { |
| 1607 f->overrideSampleCoverage("0"); |
| 1608 } |
| 1609 f->codeAppend("} else {"); |
| 1610 // Override the lone surviving fragment to full coverage. |
| 1611 f->overrideSampleCoverage("-1"); |
| 1612 f->codeAppend("}"); |
| 1613 } |
| 1614 } else { // Reject the entire fragment. |
| 1615 if (!fBatchInfo.fCannotDiscard) { |
| 1616 f->codeAppend("discard;"); |
| 1617 } else if (opts.fResolveMixedSamples) { |
| 1618 f->overrideSampleCoverage("0"); |
| 1619 } else { |
| 1620 f->maskSampleCoverage("0"); |
| 1621 } |
| 1622 } |
| 1623 } |
| 1624 |
| 1625 void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragm
entBuilder* f, |
| 1626 const char* s
hapeMask, |
| 1627 const EmitSha
peOpts& opts, |
| 1628 bool maybeSha
redEdge) { |
| 1629 if (opts.fResolveMixedSamples) { |
| 1630 if (maybeSharedEdge) { |
| 1631 // This is a mixed sampled fragment, potentially on the outer edge o
f the shape, with |
| 1632 // only partial shape coverage. Override the coverage of one fragmen
t to "shapeMask", |
| 1633 // and drop all other fragments that may fall on this same pixel. Si
nce our geometry is |
| 1634 // water tight, non-overlapping, and completely contains the shape,
this means that each |
| 1635 // "on" bit from shapeMask is guaranteed to be set in the incoming s
ample mask of one, |
| 1636 // and only one, fragment that falls on this same pixel. |
| 1637 SkASSERT(!opts.fInvertCoverage); |
| 1638 f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0)
{", shapeMask); |
| 1639 // Drop this fragment. |
| 1640 if (!fBatchInfo.fCannotDiscard) { |
| 1641 f->codeAppend ("discard;"); |
| 1642 } else { |
| 1643 f->overrideSampleCoverage("0"); |
| 1644 } |
| 1645 f->codeAppend ("} else {"); |
| 1646 // Override the coverage of the lone surviving fragment to "shapeMas
k". |
| 1647 f->overrideSampleCoverage(shapeMask); |
| 1648 f->codeAppend ("}"); |
| 1649 } else { |
| 1650 f->overrideSampleCoverage(shapeMask); |
| 1651 } |
| 1652 } else { |
| 1653 f->maskSampleCoverage(shapeMask, opts.fInvertCoverage); |
| 1654 } |
| 1655 } |
| 1656 |
| 1657 ////////////////////////////////////////////////////////////////////////////////
//////////////////// |
| 1658 |
| 1659 GLSLInstanceProcessor::Backend* |
| 1660 GLSLInstanceProcessor::Backend::Create(const GrGLSLProgramBuilder* p, BatchInfo
batchInfo, |
| 1661 const VertexInputs& inputs) { |
| 1662 switch (batchInfo.fAntialiasMode) { |
| 1663 default: |
| 1664 SkFAIL("Unexpected antialias mode."); |
| 1665 case AntialiasMode::kNone: |
| 1666 return new BackendNonAA(batchInfo, inputs); |
| 1667 case AntialiasMode::kCoverage: |
| 1668 return new BackendCoverage(batchInfo, inputs); |
| 1669 case AntialiasMode::kMSAA: |
| 1670 case AntialiasMode::kMixedSamples: { |
| 1671 const GrPipeline& pipeline = p->pipeline(); |
| 1672 const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTa
rgetPriv(); |
| 1673 const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipel
ine.getStencil()); |
| 1674 return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSam
pleCnt); |
| 1675 } |
| 1676 } |
| 1677 } |
| 1678 |
| 1679 ////////////////////////////////////////////////////////////////////////////////
//////////////////// |
| 1680 |
| 1681 const ShapeVertex kVertexData[] = { |
| 1682 // Rectangle. |
| 1683 {+1, +1, ~0}, /*0*/ |
| 1684 {-1, +1, ~0}, /*1*/ |
| 1685 {-1, -1, ~0}, /*2*/ |
| 1686 {+1, -1, ~0}, /*3*/ |
| 1687 // The next 4 are for the bordered version. |
| 1688 {+1, +1, 0}, /*4*/ |
| 1689 {-1, +1, 0}, /*5*/ |
| 1690 {-1, -1, 0}, /*6*/ |
| 1691 {+1, -1, 0}, /*7*/ |
| 1692 |
| 1693 // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
| 1694 {+1.000000f, 0.000000f, 0}, /* 8*/ |
| 1695 {+1.000000f, +0.414214f, ~0}, /* 9*/ |
| 1696 {+0.707106f, +0.707106f, 0}, /*10*/ |
| 1697 {+0.414214f, +1.000000f, ~0}, /*11*/ |
| 1698 { 0.000000f, +1.000000f, 0}, /*12*/ |
| 1699 {-0.414214f, +1.000000f, ~0}, /*13*/ |
| 1700 {-0.707106f, +0.707106f, 0}, /*14*/ |
| 1701 {-1.000000f, +0.414214f, ~0}, /*15*/ |
| 1702 {-1.000000f, 0.000000f, 0}, /*16*/ |
| 1703 {-1.000000f, -0.414214f, ~0}, /*17*/ |
| 1704 {-0.707106f, -0.707106f, 0}, /*18*/ |
| 1705 {-0.414214f, -1.000000f, ~0}, /*19*/ |
| 1706 { 0.000000f, -1.000000f, 0}, /*20*/ |
| 1707 {+0.414214f, -1.000000f, ~0}, /*21*/ |
| 1708 {+0.707106f, -0.707106f, 0}, /*22*/ |
| 1709 {+1.000000f, -0.414214f, ~0}, /*23*/ |
| 1710 // This vertex is for the fanned versions. |
| 1711 { 0.000000f, 0.000000f, ~0}, /*24*/ |
| 1712 |
| 1713 // Rectangle with disjoint corner segments. |
| 1714 {+1.0, +0.5, 0x3}, /*25*/ |
| 1715 {+1.0, +1.0, 0x3}, /*26*/ |
| 1716 {+0.5, +1.0, 0x3}, /*27*/ |
| 1717 {-0.5, +1.0, 0x2}, /*28*/ |
| 1718 {-1.0, +1.0, 0x2}, /*29*/ |
| 1719 {-1.0, +0.5, 0x2}, /*30*/ |
| 1720 {-1.0, -0.5, 0x0}, /*31*/ |
| 1721 {-1.0, -1.0, 0x0}, /*32*/ |
| 1722 {-0.5, -1.0, 0x0}, /*33*/ |
| 1723 {+0.5, -1.0, 0x1}, /*34*/ |
| 1724 {+1.0, -1.0, 0x1}, /*35*/ |
| 1725 {+1.0, -0.5, 0x1}, /*36*/ |
| 1726 // The next 4 are for the fanned version. |
| 1727 { 0.0, 0.0, 0x3}, /*37*/ |
| 1728 { 0.0, 0.0, 0x2}, /*38*/ |
| 1729 { 0.0, 0.0, 0x0}, /*39*/ |
| 1730 { 0.0, 0.0, 0x1}, /*40*/ |
| 1731 // The next 8 are for the bordered version. |
| 1732 {+0.75, +0.50, 0x3}, /*41*/ |
| 1733 {+0.50, +0.75, 0x3}, /*42*/ |
| 1734 {-0.50, +0.75, 0x2}, /*43*/ |
| 1735 {-0.75, +0.50, 0x2}, /*44*/ |
| 1736 {-0.75, -0.50, 0x0}, /*45*/ |
| 1737 {-0.50, -0.75, 0x0}, /*46*/ |
| 1738 {+0.50, -0.75, 0x1}, /*47*/ |
| 1739 {+0.75, -0.50, 0x1}, /*48*/ |
| 1740 |
| 1741 // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon. |
| 1742 {+1.000000f, +0.000000f, 0}, /*49*/ |
| 1743 {+1.000000f, +0.198913f, ~0}, /*50*/ |
| 1744 {+0.923879f, +0.382683f, 0}, /*51*/ |
| 1745 {+0.847760f, +0.566455f, ~0}, /*52*/ |
| 1746 {+0.707106f, +0.707106f, 0}, /*53*/ |
| 1747 {+0.566455f, +0.847760f, ~0}, /*54*/ |
| 1748 {+0.382683f, +0.923879f, 0}, /*55*/ |
| 1749 {+0.198913f, +1.000000f, ~0}, /*56*/ |
| 1750 {+0.000000f, +1.000000f, 0}, /*57*/ |
| 1751 {-0.198913f, +1.000000f, ~0}, /*58*/ |
| 1752 {-0.382683f, +0.923879f, 0}, /*59*/ |
| 1753 {-0.566455f, +0.847760f, ~0}, /*60*/ |
| 1754 {-0.707106f, +0.707106f, 0}, /*61*/ |
| 1755 {-0.847760f, +0.566455f, ~0}, /*62*/ |
| 1756 {-0.923879f, +0.382683f, 0}, /*63*/ |
| 1757 {-1.000000f, +0.198913f, ~0}, /*64*/ |
| 1758 {-1.000000f, +0.000000f, 0}, /*65*/ |
| 1759 {-1.000000f, -0.198913f, ~0}, /*66*/ |
| 1760 {-0.923879f, -0.382683f, 0}, /*67*/ |
| 1761 {-0.847760f, -0.566455f, ~0}, /*68*/ |
| 1762 {-0.707106f, -0.707106f, 0}, /*69*/ |
| 1763 {-0.566455f, -0.847760f, ~0}, /*70*/ |
| 1764 {-0.382683f, -0.923879f, 0}, /*71*/ |
| 1765 {-0.198913f, -1.000000f, ~0}, /*72*/ |
| 1766 {-0.000000f, -1.000000f, 0}, /*73*/ |
| 1767 {+0.198913f, -1.000000f, ~0}, /*74*/ |
| 1768 {+0.382683f, -0.923879f, 0}, /*75*/ |
| 1769 {+0.566455f, -0.847760f, ~0}, /*76*/ |
| 1770 {+0.707106f, -0.707106f, 0}, /*77*/ |
| 1771 {+0.847760f, -0.566455f, ~0}, /*78*/ |
| 1772 {+0.923879f, -0.382683f, 0}, /*79*/ |
| 1773 {+1.000000f, -0.198913f, ~0}, /*80*/ |
| 1774 }; |
| 1775 |
| 1776 const uint8_t kIndexData[] = { |
| 1777 // Rectangle. |
| 1778 0, 1, 2, |
| 1779 0, 2, 3, |
| 1780 |
| 1781 // Rectangle with a border. |
| 1782 0, 1, 5, |
| 1783 5, 4, 0, |
| 1784 1, 2, 6, |
| 1785 6, 5, 1, |
| 1786 2, 3, 7, |
| 1787 7, 6, 2, |
| 1788 3, 0, 4, |
| 1789 4, 7, 3, |
| 1790 4, 5, 6, |
| 1791 6, 7, 4, |
| 1792 |
| 1793 // Octagon that inscribes the unit circle, cut by an interior unit octagon. |
| 1794 10, 8, 9, |
| 1795 12, 10, 11, |
| 1796 14, 12, 13, |
| 1797 16, 14, 15, |
| 1798 18, 16, 17, |
| 1799 20, 18, 19, |
| 1800 22, 20, 21, |
| 1801 8, 22, 23, |
| 1802 8, 10, 12, |
| 1803 12, 14, 16, |
| 1804 16, 18, 20, |
| 1805 20, 22, 8, |
| 1806 8, 12, 16, |
| 1807 16, 20, 8, |
| 1808 |
| 1809 // Same octagons, but with the interior arranged as a fan. Used by mixed sam
ples. |
| 1810 10, 8, 9, |
| 1811 12, 10, 11, |
| 1812 14, 12, 13, |
| 1813 16, 14, 15, |
| 1814 18, 16, 17, |
| 1815 20, 18, 19, |
| 1816 22, 20, 21, |
| 1817 8, 22, 23, |
| 1818 24, 8, 10, |
| 1819 12, 24, 10, |
| 1820 24, 12, 14, |
| 1821 16, 24, 14, |
| 1822 24, 16, 18, |
| 1823 20, 24, 18, |
| 1824 24, 20, 22, |
| 1825 8, 24, 22, |
| 1826 |
| 1827 // Same octagons, but with the inner and outer disjoint. Used by coverage AA
. |
| 1828 8, 22, 23, |
| 1829 9, 8, 23, |
| 1830 10, 8, 9, |
| 1831 11, 10, 9, |
| 1832 12, 10, 11, |
| 1833 13, 12, 11, |
| 1834 14, 12, 13, |
| 1835 15, 14, 13, |
| 1836 16, 14, 15, |
| 1837 17, 16, 15, |
| 1838 18, 16, 17, |
| 1839 19, 18, 17, |
| 1840 20, 18, 19, |
| 1841 21, 20, 19, |
| 1842 22, 20, 21, |
| 1843 23, 22, 21, |
| 1844 22, 8, 10, |
| 1845 10, 12, 14, |
| 1846 14, 16, 18, |
| 1847 18, 20, 22, |
| 1848 22, 10, 14, |
| 1849 14, 18, 22, |
| 1850 |
| 1851 // Rectangle with disjoint corner segments. |
| 1852 27, 25, 26, |
| 1853 30, 28, 29, |
| 1854 33, 31, 32, |
| 1855 36, 34, 35, |
| 1856 25, 27, 28, |
| 1857 28, 30, 31, |
| 1858 31, 33, 34, |
| 1859 34, 36, 25, |
| 1860 25, 28, 31, |
| 1861 31, 34, 25, |
| 1862 |
| 1863 // Same rectangle with disjoint corners, but with the interior arranged as a
fan. Used by |
| 1864 // mixed samples. |
| 1865 27, 25, 26, |
| 1866 30, 28, 29, |
| 1867 33, 31, 32, |
| 1868 36, 34, 35, |
| 1869 27, 37, 25, |
| 1870 28, 37, 27, |
| 1871 30, 38, 28, |
| 1872 31, 38, 30, |
| 1873 33, 39, 31, |
| 1874 34, 39, 33, |
| 1875 36, 40, 34, |
| 1876 25, 40, 36, |
| 1877 |
| 1878 // Same rectangle with disjoint corners, with a border as well. Used by cove
rage AA. |
| 1879 41, 25, 26, |
| 1880 42, 41, 26, |
| 1881 27, 42, 26, |
| 1882 43, 28, 29, |
| 1883 44, 43, 29, |
| 1884 30, 44, 29, |
| 1885 45, 31, 32, |
| 1886 46, 45, 32, |
| 1887 33, 46, 32, |
| 1888 47, 34, 35, |
| 1889 48, 47, 35, |
| 1890 36, 48, 35, |
| 1891 27, 28, 42, |
| 1892 42, 28, 43, |
| 1893 30, 31, 44, |
| 1894 44, 31, 45, |
| 1895 33, 34, 46, |
| 1896 46, 34, 47, |
| 1897 36, 25, 48, |
| 1898 48, 25, 41, |
| 1899 41, 42, 43, |
| 1900 43, 44, 45, |
| 1901 45, 46, 47, |
| 1902 47, 48, 41, |
| 1903 41, 43, 45, |
| 1904 45, 47, 41, |
| 1905 |
| 1906 // Same as the disjoint octagons, but with 16-gons instead. Used by coverage
AA when the oval is |
| 1907 // sufficiently large. |
| 1908 49, 79, 80, |
| 1909 50, 49, 80, |
| 1910 51, 49, 50, |
| 1911 52, 51, 50, |
| 1912 53, 51, 52, |
| 1913 54, 53, 52, |
| 1914 55, 53, 54, |
| 1915 56, 55, 54, |
| 1916 57, 55, 56, |
| 1917 58, 57, 56, |
| 1918 59, 57, 58, |
| 1919 60, 59, 58, |
| 1920 61, 59, 60, |
| 1921 62, 61, 60, |
| 1922 63, 61, 62, |
| 1923 64, 63, 62, |
| 1924 65, 63, 64, |
| 1925 66, 65, 64, |
| 1926 67, 65, 66, |
| 1927 68, 67, 66, |
| 1928 69, 67, 68, |
| 1929 70, 69, 68, |
| 1930 71, 69, 70, |
| 1931 72, 71, 70, |
| 1932 73, 71, 72, |
| 1933 74, 73, 72, |
| 1934 75, 73, 74, |
| 1935 76, 75, 74, |
| 1936 77, 75, 76, |
| 1937 78, 77, 76, |
| 1938 79, 77, 78, |
| 1939 80, 79, 78, |
| 1940 49, 51, 53, |
| 1941 53, 55, 57, |
| 1942 57, 59, 61, |
| 1943 61, 63, 65, |
| 1944 65, 67, 69, |
| 1945 69, 71, 73, |
| 1946 73, 75, 77, |
| 1947 77, 79, 49, |
| 1948 49, 53, 57, |
| 1949 57, 61, 65, |
| 1950 65, 69, 73, |
| 1951 73, 77, 49, |
| 1952 49, 57, 65, |
| 1953 65, 73, 49, |
| 1954 }; |
| 1955 |
| 1956 enum { |
| 1957 kRect_FirstIndex = 0, |
| 1958 kRect_TriCount = 2, |
| 1959 |
| 1960 kFramedRect_FirstIndex = 6, |
| 1961 kFramedRect_TriCount = 10, |
| 1962 |
| 1963 kOctagons_FirstIndex = 36, |
| 1964 kOctagons_TriCount = 14, |
| 1965 |
| 1966 kOctagonsFanned_FirstIndex = 78, |
| 1967 kOctagonsFanned_TriCount = 16, |
| 1968 |
| 1969 kDisjointOctagons_FirstIndex = 126, |
| 1970 kDisjointOctagons_TriCount = 22, |
| 1971 |
| 1972 kCorneredRect_FirstIndex = 192, |
| 1973 kCorneredRect_TriCount = 10, |
| 1974 |
| 1975 kCorneredRectFanned_FirstIndex = 222, |
| 1976 kCorneredRectFanned_TriCount = 12, |
| 1977 |
| 1978 kCorneredFramedRect_FirstIndex = 258, |
| 1979 kCorneredFramedRect_TriCount = 26, |
| 1980 |
| 1981 kDisjoint16Gons_FirstIndex = 336, |
| 1982 kDisjoint16Gons_TriCount = 46, |
| 1983 }; |
| 1984 |
| 1985 static const GrUniqueKey::Domain kShapeBufferDomain = GrUniqueKey::GenerateDomai
n(); |
| 1986 |
| 1987 template<GrBufferType Type> static const GrUniqueKey& get_shape_buffer_key() { |
| 1988 static GrUniqueKey* kKey; |
| 1989 if (!kKey) { |
| 1990 kKey = new GrUniqueKey; |
| 1991 GrUniqueKey::Builder builder(kKey, kShapeBufferDomain, 1); |
| 1992 builder[0] = Type; |
| 1993 } |
| 1994 return *kKey; |
| 1995 } |
| 1996 |
| 1997 const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) { |
| 1998 GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
| 1999 const GrUniqueKey& key = get_shape_buffer_key<kVertex_GrBufferType>(); |
| 2000 if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { |
| 2001 return static_cast<GrBuffer*>(cached); |
| 2002 } |
| 2003 if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBuff
erType, |
| 2004 kStatic_GrAccessPattern, kVertexDat
a)) { |
| 2005 buffer->resourcePriv().setUniqueKey(key); |
| 2006 return buffer; |
| 2007 } |
| 2008 return nullptr; |
| 2009 } |
| 2010 |
| 2011 const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) { |
| 2012 GrResourceCache* cache = gpu->getContext()->getResourceCache(); |
| 2013 const GrUniqueKey& key = get_shape_buffer_key<kIndex_GrBufferType>(); |
| 2014 if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { |
| 2015 return static_cast<GrBuffer*>(cached); |
| 2016 } |
| 2017 if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBuffer
Type, |
| 2018 kStatic_GrAccessPattern, kIndexData
)) { |
| 2019 buffer->resourcePriv().setUniqueKey(key); |
| 2020 return buffer; |
| 2021 } |
| 2022 return nullptr; |
| 2023 } |
| 2024 |
| 2025 IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) { |
| 2026 static constexpr IndexRange kRectRanges[kNumAntialiasModes] = { |
| 2027 {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone |
| 2028 {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage |
| 2029 {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA |
| 2030 {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples |
| 2031 }; |
| 2032 |
| 2033 SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
| 2034 return kRectRanges[(int)aa]; |
| 2035 |
| 2036 GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
| 2037 GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
| 2038 GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
| 2039 GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
| 2040 } |
| 2041 |
| 2042 IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRec
t& devBounds) { |
| 2043 if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width()
>= 256 * 256) { |
| 2044 // This threshold was chosen quasi-scientifically on Tegra X1. |
| 2045 return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount}; |
| 2046 } |
| 2047 |
| 2048 static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = { |
| 2049 {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNo
ne |
| 2050 {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCo
verage |
| 2051 {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMS
AA |
| 2052 {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMi
xedSamples |
| 2053 }; |
| 2054 |
| 2055 SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
| 2056 return kOvalRanges[(int)aa]; |
| 2057 |
| 2058 GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
| 2059 GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
| 2060 GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
| 2061 GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
| 2062 } |
| 2063 |
| 2064 IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) { |
| 2065 static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = { |
| 2066 {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, //
kNone |
| 2067 {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, //
kCoverage |
| 2068 {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, //
kMSAA |
| 2069 {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} //
kMixedSamples |
| 2070 }; |
| 2071 |
| 2072 SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); |
| 2073 return kRRectRanges[(int)aa]; |
| 2074 |
| 2075 GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); |
| 2076 GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); |
| 2077 GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); |
| 2078 GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); |
| 2079 } |
| 2080 |
| 2081 const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) { |
| 2082 switch (range.fStart) { |
| 2083 case kRect_FirstIndex: return "basic_rect"; |
| 2084 case kFramedRect_FirstIndex: return "coverage_rect"; |
| 2085 |
| 2086 case kOctagons_FirstIndex: return "basic_oval"; |
| 2087 case kDisjointOctagons_FirstIndex: return "coverage_oval"; |
| 2088 case kOctagonsFanned_FirstIndex: return "mixed_samples_oval"; |
| 2089 |
| 2090 case kCorneredRect_FirstIndex: return "basic_round_rect"; |
| 2091 case kCorneredFramedRect_FirstIndex: return "coverage_round_rect"; |
| 2092 case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect"; |
| 2093 |
| 2094 default: return "unknown"; |
| 2095 } |
| 2096 } |
| 2097 |
| 2098 } |
OLD | NEW |