| Index: src/opts/SkOpts_sse41.cpp
|
| diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp
|
| index be31b56c817190b0d431e1d8c6d287f4c944e4f4..f0561a69c641b059975a7af1224a8ae965a37e35 100644
|
| --- a/src/opts/SkOpts_sse41.cpp
|
| +++ b/src/opts/SkOpts_sse41.cpp
|
| @@ -12,12 +12,221 @@
|
| #include "SkBlitRow_opts.h"
|
| #include "SkBlend_opts.h"
|
|
|
| +#ifndef SK_SUPPORT_LEGACY_X86_BLITS
|
| +
|
| +namespace sk_sse41_new {
|
| +
|
| +// An SSE register holding at most 64 bits of useful data in the low lanes.
|
| +struct m64i {
|
| + __m128i v;
|
| + /*implicit*/ m64i(__m128i v) : v(v) {}
|
| + operator __m128i() const { return v; }
|
| +};
|
| +
|
| +// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
|
| +static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
|
| +static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
|
| +static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
|
| +
|
| +static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
|
| +static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
|
| +static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
|
| +
|
| +// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
|
| +// incrementing the pointer past what we read.
|
| +static __m128i next4(const uint32_t*& ptr) {
|
| + auto r = _mm_loadu_si128((const __m128i*)ptr);
|
| + ptr += 4;
|
| + return r;
|
| +}
|
| +static m64i next2(const uint32_t*& ptr) {
|
| + auto r = _mm_loadl_epi64((const __m128i*)ptr);
|
| + ptr += 2;
|
| + return r;
|
| +}
|
| +static m64i next1(const uint32_t*& ptr) {
|
| + auto r = _mm_cvtsi32_si128(*ptr);
|
| + ptr += 1;
|
| + return r;
|
| +}
|
| +
|
| +// xyzw -> xxxx yyyy zzzz wwww
|
| +static __m128i replicate_coverage(__m128i xyzw) {
|
| + return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3));
|
| +}
|
| +
|
| +static __m128i next4(const uint8_t*& ptr) {
|
| + auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
|
| + ptr += 4;
|
| + return r;
|
| +}
|
| +static m64i next2(const uint8_t*& ptr) {
|
| + auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
|
| + ptr += 2;
|
| + return r;
|
| +}
|
| +static m64i next1(const uint8_t*& ptr) {
|
| + auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
|
| + ptr += 1;
|
| + return r;
|
| +}
|
| +
|
| +// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
|
| +template <typename Dst, typename Src, typename Cov, typename Fn>
|
| +static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
|
| + // We don't want to muck with the callers' pointers, so we make them const and copy here.
|
| + Dst d = dst;
|
| + Src s = src;
|
| + Cov c = cov;
|
| +
|
| + // Writing this as a single while-loop helps hoist loop invariants from fn.
|
| + while (n) {
|
| + if (n >= 4) {
|
| + _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
|
| + t += 4;
|
| + n -= 4;
|
| + continue;
|
| + }
|
| + if (n & 2) {
|
| + _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
|
| + t += 2;
|
| + }
|
| + if (n & 1) {
|
| + *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
|
| + }
|
| + return;
|
| + }
|
| +}
|
| +
|
| +// packed
|
| +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
| +// unpacked
|
| +
|
| +// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
|
| +// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
|
| +//
|
| +// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
|
| +// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
|
| +// where _ is a zero byte.
|
| +//
|
| +// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
|
| +// by unpacking arguments, calling fn, then packing the results.
|
| +//
|
| +// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
|
| +// and all the packing and unpacking is handled automatically.
|
| +
|
| +template <typename Fn>
|
| +struct Adapt {
|
| + Fn fn;
|
| +
|
| + __m128i operator()(__m128i d, __m128i s, __m128i c) {
|
| + auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
|
| + auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
|
| + return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
|
| + fn(hi(d), hi(s), hi(c)));
|
| + }
|
| +
|
| + m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
|
| + auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
|
| + auto r = fn(lo(d), lo(s), lo(c));
|
| + return _mm_packus_epi16(r, r);
|
| + }
|
| +};
|
| +
|
| +template <typename Fn>
|
| +static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
|
| +
|
| +// These helpers all work exclusively with unpacked 8-bit values,
|
| +// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
|
| +
|
| +// Divide by 255 with rounding.
|
| +// (x+127)/255 == ((x+128)*257)>>16.
|
| +// Sometimes we can be more efficient by breaking this into two parts.
|
| +static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
|
| +static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
|
| +static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
|
| +
|
| +// (x*y+127)/255, a byte multiply.
|
| +static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
|
| +
|
| +// (255 * x).
|
| +static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
|
| +
|
| +// (255 - x).
|
| +static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
|
| +
|
| +// ARGB argb -> AAAA aaaa
|
| +static __m128i alphas(__m128i px) {
|
| + const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
|
| + const int _ = ~0;
|
| + return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
|
| +}
|
| +
|
| +// SrcOver, with a constant source and full coverage.
|
| +static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
|
| + // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
|
| + // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
|
| +
|
| + // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
|
| + // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
|
| + __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
|
| + s_255_128 = div255_part1(mul255(s)),
|
| + A = inv(alphas(s));
|
| +
|
| + const uint8_t cov = 0xff;
|
| + loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
|
| + return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
|
| + }));
|
| +}
|
| +
|
| +// SrcOver, with a constant source and variable coverage.
|
| +// If the source is opaque, SrcOver becomes Src.
|
| +static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
|
| + const SkAlpha* cov, size_t covRB,
|
| + SkColor color, int w, int h) {
|
| + if (SkColorGetA(color) == 0xFF) {
|
| + const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
|
| + while (h --> 0) {
|
| + loop(w, dst, (const SkPMColor*)dst, src, cov,
|
| + adapt([](__m128i d, __m128i s, __m128i c) {
|
| + // Src blend mode: a simple lerp from d to s by c.
|
| + // TODO: try a pmaddubsw version?
|
| + return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
|
| + _mm_mullo_epi16( c ,s)));
|
| + }));
|
| + dst += dstRB / sizeof(*dst);
|
| + cov += covRB / sizeof(*cov);
|
| + }
|
| + } else {
|
| + const SkPMColor src = SkPreMultiplyColor(color);
|
| + while (h --> 0) {
|
| + loop(w, dst, (const SkPMColor*)dst, src, cov,
|
| + adapt([](__m128i d, __m128i s, __m128i c) {
|
| + // SrcOver blend mode, with coverage folded into source alpha.
|
| + __m128i sc = scale(s,c),
|
| + AC = inv(alphas(sc));
|
| + return _mm_add_epi16(sc, scale(d,AC));
|
| + }));
|
| + dst += dstRB / sizeof(*dst);
|
| + cov += covRB / sizeof(*cov);
|
| + }
|
| + }
|
| +}
|
| +} // namespace sk_sse41_new
|
| +
|
| +#endif
|
| +
|
| namespace SkOpts {
|
| void Init_sse41() {
|
| - box_blur_xx = sk_sse41::box_blur_xx;
|
| - box_blur_xy = sk_sse41::box_blur_xy;
|
| - box_blur_yx = sk_sse41::box_blur_yx;
|
| - srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb;
|
| + box_blur_xx = sk_sse41::box_blur_xx;
|
| + box_blur_xy = sk_sse41::box_blur_xy;
|
| + box_blur_yx = sk_sse41::box_blur_yx;
|
| + srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb;
|
| +
|
| + #ifndef SK_SUPPORT_LEGACY_X86_BLITS
|
| + blit_row_color32 = sk_sse41_new::blit_row_color32;
|
| + blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8;
|
| + #endif
|
| blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque;
|
| }
|
| }
|
|
|