Index: src/base/ieee754.cc |
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
index cd074ee2c9ee1914f2ac10ad079f02457c90e4c4..2c20ce035206fb9a7395585c1375d76ea6eb8102 100644 |
--- a/src/base/ieee754.cc |
+++ b/src/base/ieee754.cc |
@@ -15,6 +15,7 @@ |
#include "src/base/ieee754.h" |
+#include <cmath> |
#include <limits> |
#include "src/base/build_config.h" |
@@ -169,6 +170,228 @@ typedef union { |
} // namespace |
+/* atan(x) |
+ * Method |
+ * 1. Reduce x to positive by atan(x) = -atan(-x). |
+ * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
+ * is further reduced to one of the following intervals and the |
+ * arctangent of t is evaluated by the corresponding formula: |
+ * |
+ * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
+ * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
+ * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
+ * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
+ * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ */ |
+double atan(double x) { |
+ static const double atanhi[] = { |
+ 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
+ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
+ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
+ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
+ }; |
+ |
+ static const double atanlo[] = { |
+ 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
+ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
+ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
+ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
+ }; |
+ |
+ static const double aT[] = { |
+ 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
+ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
+ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
+ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
+ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
+ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
+ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
+ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
+ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
+ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
+ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
+ }; |
+ |
+ static const double one = 1.0, huge = 1.0e300; |
+ |
+ double w, s1, s2, z; |
+ int32_t ix, hx, id; |
+ |
+ GET_HIGH_WORD(hx, x); |
+ ix = hx & 0x7fffffff; |
+ if (ix >= 0x44100000) { /* if |x| >= 2^66 */ |
+ u_int32_t low; |
+ GET_LOW_WORD(low, x); |
+ if (ix > 0x7ff00000 || (ix == 0x7ff00000 && (low != 0))) |
+ return x + x; /* NaN */ |
+ if (hx > 0) |
+ return atanhi[3] + *(volatile double *)&atanlo[3]; |
+ else |
+ return -atanhi[3] - *(volatile double *)&atanlo[3]; |
+ } |
+ if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ |
+ if (ix < 0x3e400000) { /* |x| < 2^-27 */ |
+ if (huge + x > one) return x; /* raise inexact */ |
+ } |
+ id = -1; |
+ } else { |
+ x = fabs(x); |
+ if (ix < 0x3ff30000) { /* |x| < 1.1875 */ |
+ if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ |
+ id = 0; |
+ x = (2.0 * x - one) / (2.0 + x); |
+ } else { /* 11/16<=|x|< 19/16 */ |
+ id = 1; |
+ x = (x - one) / (x + one); |
+ } |
+ } else { |
+ if (ix < 0x40038000) { /* |x| < 2.4375 */ |
+ id = 2; |
+ x = (x - 1.5) / (one + 1.5 * x); |
+ } else { /* 2.4375 <= |x| < 2^66 */ |
+ id = 3; |
+ x = -1.0 / x; |
+ } |
+ } |
+ } |
+ /* end of argument reduction */ |
+ z = x * x; |
+ w = z * z; |
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
+ s1 = z * (aT[0] + |
+ w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); |
+ s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); |
+ if (id < 0) { |
+ return x - x * (s1 + s2); |
+ } else { |
+ z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); |
+ return (hx < 0) ? -z : z; |
+ } |
+} |
+ |
+/* atan2(y,x) |
+ * Method : |
+ * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). |
+ * 2. Reduce x to positive by (if x and y are unexceptional): |
+ * ARG (x+iy) = arctan(y/x) ... if x > 0, |
+ * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, |
+ * |
+ * Special cases: |
+ * |
+ * ATAN2((anything), NaN ) is NaN; |
+ * ATAN2(NAN , (anything) ) is NaN; |
+ * ATAN2(+-0, +(anything but NaN)) is +-0 ; |
+ * ATAN2(+-0, -(anything but NaN)) is +-pi ; |
+ * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; |
+ * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; |
+ * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; |
+ * ATAN2(+-INF,+INF ) is +-pi/4 ; |
+ * ATAN2(+-INF,-INF ) is +-3pi/4; |
+ * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ */ |
+double atan2(double y, double x) { |
+ static volatile double tiny = 1.0e-300; |
+ static const double |
+ zero = 0.0, |
+ pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ |
+ pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ |
+ pi = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */ |
+ static volatile double pi_lo = |
+ 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ |
+ |
+ double z; |
+ int32_t k, m, hx, hy, ix, iy; |
+ u_int32_t lx, ly; |
+ |
+ EXTRACT_WORDS(hx, lx, x); |
+ ix = hx & 0x7fffffff; |
+ EXTRACT_WORDS(hy, ly, y); |
+ iy = hy & 0x7fffffff; |
+ if (((ix | ((lx | -static_cast<int32_t>(lx)) >> 31)) > 0x7ff00000) || |
+ ((iy | ((ly | -static_cast<int32_t>(ly)) >> 31)) > 0x7ff00000)) { |
+ return x + y; /* x or y is NaN */ |
+ } |
+ if (((hx - 0x3ff00000) | lx) == 0) return atan(y); /* x=1.0 */ |
+ m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */ |
+ |
+ /* when y = 0 */ |
+ if ((iy | ly) == 0) { |
+ switch (m) { |
+ case 0: |
+ case 1: |
+ return y; /* atan(+-0,+anything)=+-0 */ |
+ case 2: |
+ return pi + tiny; /* atan(+0,-anything) = pi */ |
+ case 3: |
+ return -pi - tiny; /* atan(-0,-anything) =-pi */ |
+ } |
+ } |
+ /* when x = 0 */ |
+ if ((ix | lx) == 0) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; |
+ |
+ /* when x is INF */ |
+ if (ix == 0x7ff00000) { |
+ if (iy == 0x7ff00000) { |
+ switch (m) { |
+ case 0: |
+ return pi_o_4 + tiny; /* atan(+INF,+INF) */ |
+ case 1: |
+ return -pi_o_4 - tiny; /* atan(-INF,+INF) */ |
+ case 2: |
+ return 3.0 * pi_o_4 + tiny; /*atan(+INF,-INF)*/ |
+ case 3: |
+ return -3.0 * pi_o_4 - tiny; /*atan(-INF,-INF)*/ |
+ } |
+ } else { |
+ switch (m) { |
+ case 0: |
+ return zero; /* atan(+...,+INF) */ |
+ case 1: |
+ return -zero; /* atan(-...,+INF) */ |
+ case 2: |
+ return pi + tiny; /* atan(+...,-INF) */ |
+ case 3: |
+ return -pi - tiny; /* atan(-...,-INF) */ |
+ } |
+ } |
+ } |
+ /* when y is INF */ |
+ if (iy == 0x7ff00000) return (hy < 0) ? -pi_o_2 - tiny : pi_o_2 + tiny; |
+ |
+ /* compute y/x */ |
+ k = (iy - ix) >> 20; |
+ if (k > 60) { /* |y/x| > 2**60 */ |
+ z = pi_o_2 + 0.5 * pi_lo; |
+ m &= 1; |
+ } else if (hx < 0 && k < -60) { |
+ z = 0.0; /* 0 > |y|/x > -2**-60 */ |
+ } else { |
+ z = atan(fabs(y / x)); /* safe to do y/x */ |
+ } |
+ switch (m) { |
+ case 0: |
+ return z; /* atan(+,+) */ |
+ case 1: |
+ return -z; /* atan(-,+) */ |
+ case 2: |
+ return pi - (z - pi_lo); /* atan(+,-) */ |
+ default: /* case 3 */ |
+ return (z - pi_lo) - pi; /* atan(-,-) */ |
+ } |
+} |
+ |
/* log(x) |
* Return the logrithm of x |
* |