OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkOpts.h" | 8 #include "SkOpts.h" |
9 | 9 |
10 #define SK_OPTS_NS sk_sse41 | 10 #define SK_OPTS_NS sk_sse41 |
11 #include "SkBlurImageFilter_opts.h" | 11 #include "SkBlurImageFilter_opts.h" |
12 #include "SkBlitRow_opts.h" | 12 #include "SkBlitRow_opts.h" |
13 #include "SkBlend_opts.h" | 13 #include "SkBlend_opts.h" |
14 | 14 |
15 #ifndef SK_SUPPORT_LEGACY_X86_BLITS | |
16 | |
17 namespace sk_sse41_new { | |
18 | |
19 // An SSE register holding at most 64 bits of useful data in the low lanes. | |
20 struct m64i { | |
21 __m128i v; | |
22 /*implicit*/ m64i(__m128i v) : v(v) {} | |
23 operator __m128i() const { return v; } | |
24 }; | |
25 | |
26 // Load 4, 2, or 1 constant pixels or coverages (4x replicated). | |
27 static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } | |
28 static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } | |
29 static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } | |
30 | |
31 static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } | |
32 static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } | |
33 static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } | |
34 | |
35 // Load 4, 2, or 1 variable pixels or coverages (4x replicated), | |
36 // incrementing the pointer past what we read. | |
37 static __m128i next4(const uint32_t*& ptr) { | |
38 auto r = _mm_loadu_si128((const __m128i*)ptr); | |
39 ptr += 4; | |
40 return r; | |
41 } | |
42 static m64i next2(const uint32_t*& ptr) { | |
43 auto r = _mm_loadl_epi64((const __m128i*)ptr); | |
44 ptr += 2; | |
45 return r; | |
46 } | |
47 static m64i next1(const uint32_t*& ptr) { | |
48 auto r = _mm_cvtsi32_si128(*ptr); | |
49 ptr += 1; | |
50 return r; | |
51 } | |
52 | |
53 // xyzw -> xxxx yyyy zzzz wwww | |
54 static __m128i replicate_coverage(__m128i xyzw) { | |
55 return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
2, 3, 3, 3, 3)); | |
56 } | |
57 | |
58 static __m128i next4(const uint8_t*& ptr) { | |
59 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); | |
60 ptr += 4; | |
61 return r; | |
62 } | |
63 static m64i next2(const uint8_t*& ptr) { | |
64 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); | |
65 ptr += 2; | |
66 return r; | |
67 } | |
68 static m64i next1(const uint8_t*& ptr) { | |
69 auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); | |
70 ptr += 1; | |
71 return r; | |
72 } | |
73 | |
74 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants
or arrays. | |
75 template <typename Dst, typename Src, typename Cov, typename Fn> | |
76 static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov
, Fn&& fn) { | |
77 // We don't want to muck with the callers' pointers, so we make them const a
nd copy here. | |
78 Dst d = dst; | |
79 Src s = src; | |
80 Cov c = cov; | |
81 | |
82 // Writing this as a single while-loop helps hoist loop invariants from fn. | |
83 while (n) { | |
84 if (n >= 4) { | |
85 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); | |
86 t += 4; | |
87 n -= 4; | |
88 continue; | |
89 } | |
90 if (n & 2) { | |
91 _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); | |
92 t += 2; | |
93 } | |
94 if (n & 1) { | |
95 *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); | |
96 } | |
97 return; | |
98 } | |
99 } | |
100 | |
101 // packed | |
102 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~ // | |
103 // unpacked | |
104 | |
105 // Everything on the packed side of the squiggly line deals with densely packed
8-bit data, | |
106 // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. | |
107 // | |
108 // Everything on the unpacked side of the squiggly line deals with unpacked 8-bi
t data, | |
109 // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for cov
erage, | |
110 // where _ is a zero byte. | |
111 // | |
112 // Adapt<Fn> / adapt(fn) allow the two sides to interoperate, | |
113 // by unpacking arguments, calling fn, then packing the results. | |
114 // | |
115 // This lets us write most of our code in terms of unpacked inputs (considerably
simpler) | |
116 // and all the packing and unpacking is handled automatically. | |
117 | |
118 template <typename Fn> | |
119 struct Adapt { | |
120 Fn fn; | |
121 | |
122 __m128i operator()(__m128i d, __m128i s, __m128i c) { | |
123 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128(
)); }; | |
124 auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128(
)); }; | |
125 return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), | |
126 fn(hi(d), hi(s), hi(c))); | |
127 } | |
128 | |
129 m64i operator()(const m64i& d, const m64i& s, const m64i& c) { | |
130 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128(
)); }; | |
131 auto r = fn(lo(d), lo(s), lo(c)); | |
132 return _mm_packus_epi16(r, r); | |
133 } | |
134 }; | |
135 | |
136 template <typename Fn> | |
137 static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } | |
138 | |
139 // These helpers all work exclusively with unpacked 8-bit values, | |
140 // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the r
everse. | |
141 | |
142 // Divide by 255 with rounding. | |
143 // (x+127)/255 == ((x+128)*257)>>16. | |
144 // Sometimes we can be more efficient by breaking this into two parts. | |
145 static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(
128)); } | |
146 static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi1
6(257)); } | |
147 static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } | |
148 | |
149 // (x*y+127)/255, a byte multiply. | |
150 static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)
); } | |
151 | |
152 // (255 * x). | |
153 static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x)
; } | |
154 | |
155 // (255 - x). | |
156 static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x);
} | |
157 | |
158 // ARGB argb -> AAAA aaaa | |
159 static __m128i alphas(__m128i px) { | |
160 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi
s is typically 6. | |
161 const int _ = ~0; | |
162 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8
,_,a+8,_,a+8,_)); | |
163 } | |
164 | |
165 // SrcOver, with a constant source and full coverage. | |
166 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
lor src) { | |
167 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. | |
168 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16
. | |
169 | |
170 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>
>16. | |
171 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. | |
172 __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), | |
173 s_255_128 = div255_part1(mul255(s)), | |
174 A = inv(alphas(s)); | |
175 | |
176 const uint8_t cov = 0xff; | |
177 loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { | |
178 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); | |
179 })); | |
180 } | |
181 | |
182 // SrcOver, with a constant source and variable coverage. | |
183 // If the source is opaque, SrcOver becomes Src. | |
184 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, | |
185 const SkAlpha* cov, size_t covRB, | |
186 SkColor color, int w, int h) { | |
187 if (SkColorGetA(color) == 0xFF) { | |
188 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); | |
189 while (h --> 0) { | |
190 loop(w, dst, (const SkPMColor*)dst, src, cov, | |
191 adapt([](__m128i d, __m128i s, __m128i c) { | |
192 // Src blend mode: a simple lerp from d to s by c. | |
193 // TODO: try a pmaddubsw version? | |
194 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), | |
195 _mm_mullo_epi16( c ,s))); | |
196 })); | |
197 dst += dstRB / sizeof(*dst); | |
198 cov += covRB / sizeof(*cov); | |
199 } | |
200 } else { | |
201 const SkPMColor src = SkPreMultiplyColor(color); | |
202 while (h --> 0) { | |
203 loop(w, dst, (const SkPMColor*)dst, src, cov, | |
204 adapt([](__m128i d, __m128i s, __m128i c) { | |
205 // SrcOver blend mode, with coverage folded into source alpha. | |
206 __m128i sc = scale(s,c), | |
207 AC = inv(alphas(sc)); | |
208 return _mm_add_epi16(sc, scale(d,AC)); | |
209 })); | |
210 dst += dstRB / sizeof(*dst); | |
211 cov += covRB / sizeof(*cov); | |
212 } | |
213 } | |
214 } | |
215 } // namespace sk_sse41_new | |
216 | |
217 #endif | |
218 | |
219 namespace SkOpts { | 15 namespace SkOpts { |
220 void Init_sse41() { | 16 void Init_sse41() { |
221 box_blur_xx = sk_sse41::box_blur_xx; | 17 box_blur_xx = sk_sse41::box_blur_xx; |
222 box_blur_xy = sk_sse41::box_blur_xy; | 18 box_blur_xy = sk_sse41::box_blur_xy; |
223 box_blur_yx = sk_sse41::box_blur_yx; | 19 box_blur_yx = sk_sse41::box_blur_yx; |
224 srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb; | 20 srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb; |
225 | |
226 #ifndef SK_SUPPORT_LEGACY_X86_BLITS | |
227 blit_row_color32 = sk_sse41_new::blit_row_color32; | |
228 blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8; | |
229 #endif | |
230 blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque; | 21 blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque; |
231 } | 22 } |
232 } | 23 } |
OLD | NEW |