Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(367)

Side by Side Diff: src/opts/SkOpts_sse41.cpp

Issue 2062853002: Clean up two unlaunched SSE 4.1 8888 blits. (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « no previous file | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2015 Google Inc. 2 * Copyright 2015 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkOpts.h" 8 #include "SkOpts.h"
9 9
10 #define SK_OPTS_NS sk_sse41 10 #define SK_OPTS_NS sk_sse41
11 #include "SkBlurImageFilter_opts.h" 11 #include "SkBlurImageFilter_opts.h"
12 #include "SkBlitRow_opts.h" 12 #include "SkBlitRow_opts.h"
13 #include "SkBlend_opts.h" 13 #include "SkBlend_opts.h"
14 14
15 #ifndef SK_SUPPORT_LEGACY_X86_BLITS
16
17 namespace sk_sse41_new {
18
19 // An SSE register holding at most 64 bits of useful data in the low lanes.
20 struct m64i {
21 __m128i v;
22 /*implicit*/ m64i(__m128i v) : v(v) {}
23 operator __m128i() const { return v; }
24 };
25
26 // Load 4, 2, or 1 constant pixels or coverages (4x replicated).
27 static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
28 static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
29 static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
30
31 static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
32 static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
33 static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
34
35 // Load 4, 2, or 1 variable pixels or coverages (4x replicated),
36 // incrementing the pointer past what we read.
37 static __m128i next4(const uint32_t*& ptr) {
38 auto r = _mm_loadu_si128((const __m128i*)ptr);
39 ptr += 4;
40 return r;
41 }
42 static m64i next2(const uint32_t*& ptr) {
43 auto r = _mm_loadl_epi64((const __m128i*)ptr);
44 ptr += 2;
45 return r;
46 }
47 static m64i next1(const uint32_t*& ptr) {
48 auto r = _mm_cvtsi32_si128(*ptr);
49 ptr += 1;
50 return r;
51 }
52
53 // xyzw -> xxxx yyyy zzzz wwww
54 static __m128i replicate_coverage(__m128i xyzw) {
55 return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3));
56 }
57
58 static __m128i next4(const uint8_t*& ptr) {
59 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
60 ptr += 4;
61 return r;
62 }
63 static m64i next2(const uint8_t*& ptr) {
64 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
65 ptr += 2;
66 return r;
67 }
68 static m64i next1(const uint8_t*& ptr) {
69 auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
70 ptr += 1;
71 return r;
72 }
73
74 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
75 template <typename Dst, typename Src, typename Cov, typename Fn>
76 static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov , Fn&& fn) {
77 // We don't want to muck with the callers' pointers, so we make them const a nd copy here.
78 Dst d = dst;
79 Src s = src;
80 Cov c = cov;
81
82 // Writing this as a single while-loop helps hoist loop invariants from fn.
83 while (n) {
84 if (n >= 4) {
85 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
86 t += 4;
87 n -= 4;
88 continue;
89 }
90 if (n & 2) {
91 _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
92 t += 2;
93 }
94 if (n & 1) {
95 *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
96 }
97 return;
98 }
99 }
100
101 // packed
102 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ //
103 // unpacked
104
105 // Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
106 // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
107 //
108 // Everything on the unpacked side of the squiggly line deals with unpacked 8-bi t data,
109 // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for cov erage,
110 // where _ is a zero byte.
111 //
112 // Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
113 // by unpacking arguments, calling fn, then packing the results.
114 //
115 // This lets us write most of our code in terms of unpacked inputs (considerably simpler)
116 // and all the packing and unpacking is handled automatically.
117
118 template <typename Fn>
119 struct Adapt {
120 Fn fn;
121
122 __m128i operator()(__m128i d, __m128i s, __m128i c) {
123 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128( )); };
124 auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128( )); };
125 return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
126 fn(hi(d), hi(s), hi(c)));
127 }
128
129 m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
130 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128( )); };
131 auto r = fn(lo(d), lo(s), lo(c));
132 return _mm_packus_epi16(r, r);
133 }
134 };
135
136 template <typename Fn>
137 static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
138
139 // These helpers all work exclusively with unpacked 8-bit values,
140 // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the r everse.
141
142 // Divide by 255 with rounding.
143 // (x+127)/255 == ((x+128)*257)>>16.
144 // Sometimes we can be more efficient by breaking this into two parts.
145 static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16( 128)); }
146 static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi1 6(257)); }
147 static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
148
149 // (x*y+127)/255, a byte multiply.
150 static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y) ); }
151
152 // (255 * x).
153 static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x) ; }
154
155 // (255 - x).
156 static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
157
158 // ARGB argb -> AAAA aaaa
159 static __m128i alphas(__m128i px) {
160 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi s is typically 6.
161 const int _ = ~0;
162 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8 ,_,a+8,_,a+8,_));
163 }
164
165 // SrcOver, with a constant source and full coverage.
166 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo lor src) {
167 // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
168 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16 .
169
170 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)> >16.
171 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
172 __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
173 s_255_128 = div255_part1(mul255(s)),
174 A = inv(alphas(s));
175
176 const uint8_t cov = 0xff;
177 loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
178 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
179 }));
180 }
181
182 // SrcOver, with a constant source and variable coverage.
183 // If the source is opaque, SrcOver becomes Src.
184 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
185 const SkAlpha* cov, size_t covRB,
186 SkColor color, int w, int h) {
187 if (SkColorGetA(color) == 0xFF) {
188 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
189 while (h --> 0) {
190 loop(w, dst, (const SkPMColor*)dst, src, cov,
191 adapt([](__m128i d, __m128i s, __m128i c) {
192 // Src blend mode: a simple lerp from d to s by c.
193 // TODO: try a pmaddubsw version?
194 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
195 _mm_mullo_epi16( c ,s)));
196 }));
197 dst += dstRB / sizeof(*dst);
198 cov += covRB / sizeof(*cov);
199 }
200 } else {
201 const SkPMColor src = SkPreMultiplyColor(color);
202 while (h --> 0) {
203 loop(w, dst, (const SkPMColor*)dst, src, cov,
204 adapt([](__m128i d, __m128i s, __m128i c) {
205 // SrcOver blend mode, with coverage folded into source alpha.
206 __m128i sc = scale(s,c),
207 AC = inv(alphas(sc));
208 return _mm_add_epi16(sc, scale(d,AC));
209 }));
210 dst += dstRB / sizeof(*dst);
211 cov += covRB / sizeof(*cov);
212 }
213 }
214 }
215 } // namespace sk_sse41_new
216
217 #endif
218
219 namespace SkOpts { 15 namespace SkOpts {
220 void Init_sse41() { 16 void Init_sse41() {
221 box_blur_xx = sk_sse41::box_blur_xx; 17 box_blur_xx = sk_sse41::box_blur_xx;
222 box_blur_xy = sk_sse41::box_blur_xy; 18 box_blur_xy = sk_sse41::box_blur_xy;
223 box_blur_yx = sk_sse41::box_blur_yx; 19 box_blur_yx = sk_sse41::box_blur_yx;
224 srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb; 20 srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb;
225
226 #ifndef SK_SUPPORT_LEGACY_X86_BLITS
227 blit_row_color32 = sk_sse41_new::blit_row_color32;
228 blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8;
229 #endif
230 blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque; 21 blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque;
231 } 22 }
232 } 23 }
OLDNEW
« no previous file with comments | « no previous file | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698