| Index: src/third_party/fdlibm/fdlibm.js
|
| diff --git a/src/third_party/fdlibm/fdlibm.js b/src/third_party/fdlibm/fdlibm.js
|
| index afcd3d18d4e0d9feeb1a12d983fb18df488d23b7..022d1d6f182d11c1fb9d17347497790aab8d5d12 100644
|
| --- a/src/third_party/fdlibm/fdlibm.js
|
| +++ b/src/third_party/fdlibm/fdlibm.js
|
| @@ -397,170 +397,12 @@ function MathTan(x) {
|
| return KernelTan(y0, y1, (n & 1) ? -1 : 1);
|
| }
|
|
|
| -// ES6 draft 09-27-13, section 20.2.2.20.
|
| -// Math.log1p
|
| -//
|
| -// Method :
|
| -// 1. Argument Reduction: find k and f such that
|
| -// 1+x = 2^k * (1+f),
|
| -// where sqrt(2)/2 < 1+f < sqrt(2) .
|
| -//
|
| -// Note. If k=0, then f=x is exact. However, if k!=0, then f
|
| -// may not be representable exactly. In that case, a correction
|
| -// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
| -// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
| -// and add back the correction term c/u.
|
| -// (Note: when x > 2**53, one can simply return log(x))
|
| -//
|
| -// 2. Approximation of log1p(f).
|
| -// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
| -// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
| -// = 2s + s*R
|
| -// We use a special Reme algorithm on [0,0.1716] to generate
|
| -// a polynomial of degree 14 to approximate R The maximum error
|
| -// of this polynomial approximation is bounded by 2**-58.45. In
|
| -// other words,
|
| -// 2 4 6 8 10 12 14
|
| -// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
| -// (the values of Lp1 to Lp7 are listed in the program)
|
| -// and
|
| -// | 2 14 | -58.45
|
| -// | Lp1*s +...+Lp7*s - R(z) | <= 2
|
| -// | |
|
| -// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
| -// In order to guarantee error in log below 1ulp, we compute log
|
| -// by
|
| -// log1p(f) = f - (hfsq - s*(hfsq+R)).
|
| -//
|
| -// 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
| -// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
| -// Here ln2 is split into two floating point number:
|
| -// ln2_hi + ln2_lo,
|
| -// where n*ln2_hi is always exact for |n| < 2000.
|
| -//
|
| -// Special cases:
|
| -// log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
| -// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
| -// log1p(NaN) is that NaN with no signal.
|
| -//
|
| -// Accuracy:
|
| -// according to an error analysis, the error is always less than
|
| -// 1 ulp (unit in the last place).
|
| -//
|
| -// Constants:
|
| -// Constants are found in fdlibm.cc. We assume the C++ compiler to convert
|
| -// from decimal to binary accurately enough to produce the intended values.
|
| -//
|
| -// Note: Assuming log() return accurate answer, the following
|
| -// algorithm can be used to compute log1p(x) to within a few ULP:
|
| -//
|
| -// u = 1+x;
|
| -// if (u==1.0) return x ; else
|
| -// return log(u)*(x/(u-1.0));
|
| -//
|
| -// See HP-15C Advanced Functions Handbook, p.193.
|
| -//
|
| define LN2_HI = 6.93147180369123816490e-01;
|
| define LN2_LO = 1.90821492927058770002e-10;
|
| -define TWO_THIRD = 6.666666666666666666e-01;
|
| -define LP1 = 6.666666666666735130e-01;
|
| -define LP2 = 3.999999999940941908e-01;
|
| -define LP3 = 2.857142874366239149e-01;
|
| -define LP4 = 2.222219843214978396e-01;
|
| -define LP5 = 1.818357216161805012e-01;
|
| -define LP6 = 1.531383769920937332e-01;
|
| -define LP7 = 1.479819860511658591e-01;
|
|
|
| // 2^54
|
| define TWO54 = 18014398509481984;
|
|
|
| -function MathLog1p(x) {
|
| - x = x * 1; // Convert to number.
|
| - var hx = %_DoubleHi(x);
|
| - var ax = hx & 0x7fffffff;
|
| - var k = 1;
|
| - var f = x;
|
| - var hu = 1;
|
| - var c = 0;
|
| - var u = x;
|
| -
|
| - if (hx < 0x3fda827a) {
|
| - // x < 0.41422
|
| - if (ax >= 0x3ff00000) { // |x| >= 1
|
| - if (x === -1) {
|
| - return -INFINITY; // log1p(-1) = -inf
|
| - } else {
|
| - return NaN; // log1p(x<-1) = NaN
|
| - }
|
| - } else if (ax < 0x3c900000) {
|
| - // For |x| < 2^-54 we can return x.
|
| - return x;
|
| - } else if (ax < 0x3e200000) {
|
| - // For |x| < 2^-29 we can use a simple two-term Taylor series.
|
| - return x - x * x * 0.5;
|
| - }
|
| -
|
| - if ((hx > 0) || (hx <= -0x402D413D)) { // (int) 0xbfd2bec3 = -0x402d413d
|
| - // -.2929 < x < 0.41422
|
| - k = 0;
|
| - }
|
| - }
|
| -
|
| - // Handle Infinity and NaN
|
| - if (hx >= 0x7ff00000) return x;
|
| -
|
| - if (k !== 0) {
|
| - if (hx < 0x43400000) {
|
| - // x < 2^53
|
| - u = 1 + x;
|
| - hu = %_DoubleHi(u);
|
| - k = (hu >> 20) - 1023;
|
| - c = (k > 0) ? 1 - (u - x) : x - (u - 1);
|
| - c = c / u;
|
| - } else {
|
| - hu = %_DoubleHi(u);
|
| - k = (hu >> 20) - 1023;
|
| - }
|
| - hu = hu & 0xfffff;
|
| - if (hu < 0x6a09e) {
|
| - u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u)); // Normalize u.
|
| - } else {
|
| - ++k;
|
| - u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u)); // Normalize u/2.
|
| - hu = (0x00100000 - hu) >> 2;
|
| - }
|
| - f = u - 1;
|
| - }
|
| -
|
| - var hfsq = 0.5 * f * f;
|
| - if (hu === 0) {
|
| - // |f| < 2^-20;
|
| - if (f === 0) {
|
| - if (k === 0) {
|
| - return 0.0;
|
| - } else {
|
| - return k * LN2_HI + (c + k * LN2_LO);
|
| - }
|
| - }
|
| - var R = hfsq * (1 - TWO_THIRD * f);
|
| - if (k === 0) {
|
| - return f - R;
|
| - } else {
|
| - return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
|
| - }
|
| - }
|
| -
|
| - var s = f / (2 + f);
|
| - var z = s * s;
|
| - var R = z * (LP1 + z * (LP2 + z * (LP3 + z * (LP4 +
|
| - z * (LP5 + z * (LP6 + z * LP7))))));
|
| - if (k === 0) {
|
| - return f - (hfsq - s * (hfsq + R));
|
| - } else {
|
| - return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
|
| - }
|
| -}
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.14.
|
| // Math.expm1
|
| // Returns exp(x)-1, the exponential of x minus 1.
|
| @@ -1107,7 +949,6 @@ utils.InstallFunctions(GlobalMath, DONT_ENUM, [
|
| "tanh", MathTanh,
|
| "log10", MathLog10,
|
| "log2", MathLog2,
|
| - "log1p", MathLog1p,
|
| "expm1", MathExpm1
|
| ]);
|
|
|
|
|