| Index: src/base/ieee754.cc
|
| diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc
|
| index 2453b627cdd9345ee85f07bb73e205af53d0543c..cd074ee2c9ee1914f2ac10ad079f02457c90e4c4 100644
|
| --- a/src/base/ieee754.cc
|
| +++ b/src/base/ieee754.cc
|
| @@ -163,6 +163,10 @@ typedef union {
|
| (d) = sl_u.value; \
|
| } while (0)
|
|
|
| +/* Support macro. */
|
| +
|
| +#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
| +
|
| } // namespace
|
|
|
| /* log(x)
|
| @@ -294,6 +298,170 @@ double log(double x) {
|
| }
|
| }
|
|
|
| +/* double log1p(double x)
|
| + *
|
| + * Method :
|
| + * 1. Argument Reduction: find k and f such that
|
| + * 1+x = 2^k * (1+f),
|
| + * where sqrt(2)/2 < 1+f < sqrt(2) .
|
| + *
|
| + * Note. If k=0, then f=x is exact. However, if k!=0, then f
|
| + * may not be representable exactly. In that case, a correction
|
| + * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
| + * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
| + * and add back the correction term c/u.
|
| + * (Note: when x > 2**53, one can simply return log(x))
|
| + *
|
| + * 2. Approximation of log1p(f).
|
| + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
| + * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
| + * = 2s + s*R
|
| + * We use a special Reme algorithm on [0,0.1716] to generate
|
| + * a polynomial of degree 14 to approximate R The maximum error
|
| + * of this polynomial approximation is bounded by 2**-58.45. In
|
| + * other words,
|
| + * 2 4 6 8 10 12 14
|
| + * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
| + * (the values of Lp1 to Lp7 are listed in the program)
|
| + * and
|
| + * | 2 14 | -58.45
|
| + * | Lp1*s +...+Lp7*s - R(z) | <= 2
|
| + * | |
|
| + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
| + * In order to guarantee error in log below 1ulp, we compute log
|
| + * by
|
| + * log1p(f) = f - (hfsq - s*(hfsq+R)).
|
| + *
|
| + * 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
| + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
| + * Here ln2 is split into two floating point number:
|
| + * ln2_hi + ln2_lo,
|
| + * where n*ln2_hi is always exact for |n| < 2000.
|
| + *
|
| + * Special cases:
|
| + * log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
| + * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
| + * log1p(NaN) is that NaN with no signal.
|
| + *
|
| + * Accuracy:
|
| + * according to an error analysis, the error is always less than
|
| + * 1 ulp (unit in the last place).
|
| + *
|
| + * Constants:
|
| + * The hexadecimal values are the intended ones for the following
|
| + * constants. The decimal values may be used, provided that the
|
| + * compiler will convert from decimal to binary accurately enough
|
| + * to produce the hexadecimal values shown.
|
| + *
|
| + * Note: Assuming log() return accurate answer, the following
|
| + * algorithm can be used to compute log1p(x) to within a few ULP:
|
| + *
|
| + * u = 1+x;
|
| + * if(u==1.0) return x ; else
|
| + * return log(u)*(x/(u-1.0));
|
| + *
|
| + * See HP-15C Advanced Functions Handbook, p.193.
|
| + */
|
| +double log1p(double x) {
|
| + static const double /* -- */
|
| + ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
| + ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
| + two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
| + Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
| + Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
| + Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
| + Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
| + Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
| + Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
| + Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
| +
|
| + static const double zero = 0.0;
|
| + static volatile double vzero = 0.0;
|
| +
|
| + double hfsq, f, c, s, z, R, u;
|
| + int32_t k, hx, hu, ax;
|
| +
|
| + GET_HIGH_WORD(hx, x);
|
| + ax = hx & 0x7fffffff;
|
| +
|
| + k = 1;
|
| + if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
|
| + if (ax >= 0x3ff00000) { /* x <= -1.0 */
|
| + if (x == -1.0)
|
| + return -two54 / vzero; /* log1p(-1)=+inf */
|
| + else
|
| + return (x - x) / (x - x); /* log1p(x<-1)=NaN */
|
| + }
|
| + if (ax < 0x3e200000) { /* |x| < 2**-29 */
|
| + if (two54 + x > zero /* raise inexact */
|
| + && ax < 0x3c900000) /* |x| < 2**-54 */
|
| + return x;
|
| + else
|
| + return x - x * x * 0.5;
|
| + }
|
| + if (hx > 0 || hx <= static_cast<int32_t>(0xbfd2bec4)) {
|
| + k = 0;
|
| + f = x;
|
| + hu = 1;
|
| + } /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
| + }
|
| + if (hx >= 0x7ff00000) return x + x;
|
| + if (k != 0) {
|
| + if (hx < 0x43400000) {
|
| + STRICT_ASSIGN(double, u, 1.0 + x);
|
| + GET_HIGH_WORD(hu, u);
|
| + k = (hu >> 20) - 1023;
|
| + c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */
|
| + c /= u;
|
| + } else {
|
| + u = x;
|
| + GET_HIGH_WORD(hu, u);
|
| + k = (hu >> 20) - 1023;
|
| + c = 0;
|
| + }
|
| + hu &= 0x000fffff;
|
| + /*
|
| + * The approximation to sqrt(2) used in thresholds is not
|
| + * critical. However, the ones used above must give less
|
| + * strict bounds than the one here so that the k==0 case is
|
| + * never reached from here, since here we have committed to
|
| + * using the correction term but don't use it if k==0.
|
| + */
|
| + if (hu < 0x6a09e) { /* u ~< sqrt(2) */
|
| + SET_HIGH_WORD(u, hu | 0x3ff00000); /* normalize u */
|
| + } else {
|
| + k += 1;
|
| + SET_HIGH_WORD(u, hu | 0x3fe00000); /* normalize u/2 */
|
| + hu = (0x00100000 - hu) >> 2;
|
| + }
|
| + f = u - 1.0;
|
| + }
|
| + hfsq = 0.5 * f * f;
|
| + if (hu == 0) { /* |f| < 2**-20 */
|
| + if (f == zero) {
|
| + if (k == 0) {
|
| + return zero;
|
| + } else {
|
| + c += k * ln2_lo;
|
| + return k * ln2_hi + c;
|
| + }
|
| + }
|
| + R = hfsq * (1.0 - 0.66666666666666666 * f);
|
| + if (k == 0)
|
| + return f - R;
|
| + else
|
| + return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
|
| + }
|
| + s = f / (2.0 + f);
|
| + z = s * s;
|
| + R = z * (Lp1 +
|
| + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
|
| + if (k == 0)
|
| + return f - (hfsq - s * (hfsq + R));
|
| + else
|
| + return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
|
| +}
|
| +
|
| } // namespace ieee754
|
| } // namespace base
|
| } // namespace v8
|
|
|