Index: src/base/ieee754.cc |
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc |
index 2453b627cdd9345ee85f07bb73e205af53d0543c..cd074ee2c9ee1914f2ac10ad079f02457c90e4c4 100644 |
--- a/src/base/ieee754.cc |
+++ b/src/base/ieee754.cc |
@@ -163,6 +163,10 @@ typedef union { |
(d) = sl_u.value; \ |
} while (0) |
+/* Support macro. */ |
+ |
+#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) |
+ |
} // namespace |
/* log(x) |
@@ -294,6 +298,170 @@ double log(double x) { |
} |
} |
+/* double log1p(double x) |
+ * |
+ * Method : |
+ * 1. Argument Reduction: find k and f such that |
+ * 1+x = 2^k * (1+f), |
+ * where sqrt(2)/2 < 1+f < sqrt(2) . |
+ * |
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f |
+ * may not be representable exactly. In that case, a correction |
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
+ * and add back the correction term c/u. |
+ * (Note: when x > 2**53, one can simply return log(x)) |
+ * |
+ * 2. Approximation of log1p(f). |
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
+ * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
+ * = 2s + s*R |
+ * We use a special Reme algorithm on [0,0.1716] to generate |
+ * a polynomial of degree 14 to approximate R The maximum error |
+ * of this polynomial approximation is bounded by 2**-58.45. In |
+ * other words, |
+ * 2 4 6 8 10 12 14 |
+ * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s |
+ * (the values of Lp1 to Lp7 are listed in the program) |
+ * and |
+ * | 2 14 | -58.45 |
+ * | Lp1*s +...+Lp7*s - R(z) | <= 2 |
+ * | | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
+ * In order to guarantee error in log below 1ulp, we compute log |
+ * by |
+ * log1p(f) = f - (hfsq - s*(hfsq+R)). |
+ * |
+ * 3. Finally, log1p(x) = k*ln2 + log1p(f). |
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
+ * Here ln2 is split into two floating point number: |
+ * ln2_hi + ln2_lo, |
+ * where n*ln2_hi is always exact for |n| < 2000. |
+ * |
+ * Special cases: |
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
+ * log1p(NaN) is that NaN with no signal. |
+ * |
+ * Accuracy: |
+ * according to an error analysis, the error is always less than |
+ * 1 ulp (unit in the last place). |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ * |
+ * Note: Assuming log() return accurate answer, the following |
+ * algorithm can be used to compute log1p(x) to within a few ULP: |
+ * |
+ * u = 1+x; |
+ * if(u==1.0) return x ; else |
+ * return log(u)*(x/(u-1.0)); |
+ * |
+ * See HP-15C Advanced Functions Handbook, p.193. |
+ */ |
+double log1p(double x) { |
+ static const double /* -- */ |
+ ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
+ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
+ two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
+ Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
+ Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
+ Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
+ Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
+ Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
+ Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
+ Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
+ |
+ static const double zero = 0.0; |
+ static volatile double vzero = 0.0; |
+ |
+ double hfsq, f, c, s, z, R, u; |
+ int32_t k, hx, hu, ax; |
+ |
+ GET_HIGH_WORD(hx, x); |
+ ax = hx & 0x7fffffff; |
+ |
+ k = 1; |
+ if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ |
+ if (ax >= 0x3ff00000) { /* x <= -1.0 */ |
+ if (x == -1.0) |
+ return -two54 / vzero; /* log1p(-1)=+inf */ |
+ else |
+ return (x - x) / (x - x); /* log1p(x<-1)=NaN */ |
+ } |
+ if (ax < 0x3e200000) { /* |x| < 2**-29 */ |
+ if (two54 + x > zero /* raise inexact */ |
+ && ax < 0x3c900000) /* |x| < 2**-54 */ |
+ return x; |
+ else |
+ return x - x * x * 0.5; |
+ } |
+ if (hx > 0 || hx <= static_cast<int32_t>(0xbfd2bec4)) { |
+ k = 0; |
+ f = x; |
+ hu = 1; |
+ } /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ |
+ } |
+ if (hx >= 0x7ff00000) return x + x; |
+ if (k != 0) { |
+ if (hx < 0x43400000) { |
+ STRICT_ASSIGN(double, u, 1.0 + x); |
+ GET_HIGH_WORD(hu, u); |
+ k = (hu >> 20) - 1023; |
+ c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */ |
+ c /= u; |
+ } else { |
+ u = x; |
+ GET_HIGH_WORD(hu, u); |
+ k = (hu >> 20) - 1023; |
+ c = 0; |
+ } |
+ hu &= 0x000fffff; |
+ /* |
+ * The approximation to sqrt(2) used in thresholds is not |
+ * critical. However, the ones used above must give less |
+ * strict bounds than the one here so that the k==0 case is |
+ * never reached from here, since here we have committed to |
+ * using the correction term but don't use it if k==0. |
+ */ |
+ if (hu < 0x6a09e) { /* u ~< sqrt(2) */ |
+ SET_HIGH_WORD(u, hu | 0x3ff00000); /* normalize u */ |
+ } else { |
+ k += 1; |
+ SET_HIGH_WORD(u, hu | 0x3fe00000); /* normalize u/2 */ |
+ hu = (0x00100000 - hu) >> 2; |
+ } |
+ f = u - 1.0; |
+ } |
+ hfsq = 0.5 * f * f; |
+ if (hu == 0) { /* |f| < 2**-20 */ |
+ if (f == zero) { |
+ if (k == 0) { |
+ return zero; |
+ } else { |
+ c += k * ln2_lo; |
+ return k * ln2_hi + c; |
+ } |
+ } |
+ R = hfsq * (1.0 - 0.66666666666666666 * f); |
+ if (k == 0) |
+ return f - R; |
+ else |
+ return k * ln2_hi - ((R - (k * ln2_lo + c)) - f); |
+ } |
+ s = f / (2.0 + f); |
+ z = s * s; |
+ R = z * (Lp1 + |
+ z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7)))))); |
+ if (k == 0) |
+ return f - (hfsq - s * (hfsq + R)); |
+ else |
+ return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); |
+} |
+ |
} // namespace ieee754 |
} // namespace base |
} // namespace v8 |