Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(58)

Unified Diff: src/base/ieee754.cc

Issue 2060743002: [builtins] Introduce proper Float64Log1p operator. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@Math_Log
Patch Set: REBASE Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/base/ieee754.h ('k') | src/bootstrapper.cc » ('j') | src/builtins.cc » ('J')
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/base/ieee754.cc
diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc
index 2453b627cdd9345ee85f07bb73e205af53d0543c..cd074ee2c9ee1914f2ac10ad079f02457c90e4c4 100644
--- a/src/base/ieee754.cc
+++ b/src/base/ieee754.cc
@@ -163,6 +163,10 @@ typedef union {
(d) = sl_u.value; \
} while (0)
+/* Support macro. */
+
+#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
+
} // namespace
/* log(x)
@@ -294,6 +298,170 @@ double log(double x) {
}
}
+/* double log1p(double x)
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log1p(f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
+ * (the values of Lp1 to Lp7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lp1*s +...+Lp7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log1p(f) = f - (hfsq - s*(hfsq+R)).
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log1p(f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+double log1p(double x) {
+ static const double /* -- */
+ ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+ two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+ Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+ Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+ Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+ Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+ Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+ Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+ Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+ static const double zero = 0.0;
+ static volatile double vzero = 0.0;
+
+ double hfsq, f, c, s, z, R, u;
+ int32_t k, hx, hu, ax;
+
+ GET_HIGH_WORD(hx, x);
+ ax = hx & 0x7fffffff;
+
+ k = 1;
+ if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
+ if (ax >= 0x3ff00000) { /* x <= -1.0 */
+ if (x == -1.0)
+ return -two54 / vzero; /* log1p(-1)=+inf */
+ else
+ return (x - x) / (x - x); /* log1p(x<-1)=NaN */
+ }
+ if (ax < 0x3e200000) { /* |x| < 2**-29 */
+ if (two54 + x > zero /* raise inexact */
+ && ax < 0x3c900000) /* |x| < 2**-54 */
+ return x;
+ else
+ return x - x * x * 0.5;
+ }
+ if (hx > 0 || hx <= static_cast<int32_t>(0xbfd2bec4)) {
+ k = 0;
+ f = x;
+ hu = 1;
+ } /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+ }
+ if (hx >= 0x7ff00000) return x + x;
+ if (k != 0) {
+ if (hx < 0x43400000) {
+ STRICT_ASSIGN(double, u, 1.0 + x);
+ GET_HIGH_WORD(hu, u);
+ k = (hu >> 20) - 1023;
+ c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */
+ c /= u;
+ } else {
+ u = x;
+ GET_HIGH_WORD(hu, u);
+ k = (hu >> 20) - 1023;
+ c = 0;
+ }
+ hu &= 0x000fffff;
+ /*
+ * The approximation to sqrt(2) used in thresholds is not
+ * critical. However, the ones used above must give less
+ * strict bounds than the one here so that the k==0 case is
+ * never reached from here, since here we have committed to
+ * using the correction term but don't use it if k==0.
+ */
+ if (hu < 0x6a09e) { /* u ~< sqrt(2) */
+ SET_HIGH_WORD(u, hu | 0x3ff00000); /* normalize u */
+ } else {
+ k += 1;
+ SET_HIGH_WORD(u, hu | 0x3fe00000); /* normalize u/2 */
+ hu = (0x00100000 - hu) >> 2;
+ }
+ f = u - 1.0;
+ }
+ hfsq = 0.5 * f * f;
+ if (hu == 0) { /* |f| < 2**-20 */
+ if (f == zero) {
+ if (k == 0) {
+ return zero;
+ } else {
+ c += k * ln2_lo;
+ return k * ln2_hi + c;
+ }
+ }
+ R = hfsq * (1.0 - 0.66666666666666666 * f);
+ if (k == 0)
+ return f - R;
+ else
+ return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
+ }
+ s = f / (2.0 + f);
+ z = s * s;
+ R = z * (Lp1 +
+ z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
+ if (k == 0)
+ return f - (hfsq - s * (hfsq + R));
+ else
+ return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
+}
+
} // namespace ieee754
} // namespace base
} // namespace v8
« no previous file with comments | « src/base/ieee754.h ('k') | src/bootstrapper.cc » ('j') | src/builtins.cc » ('J')

Powered by Google App Engine
This is Rietveld 408576698