| Index: src/core/SkScalerContext.cpp
|
| ===================================================================
|
| --- src/core/SkScalerContext.cpp (revision 10398)
|
| +++ src/core/SkScalerContext.cpp (working copy)
|
| @@ -340,6 +340,18 @@
|
| glyph->fTop = ir.fTop;
|
| glyph->fWidth = SkToU16(ir.width());
|
| glyph->fHeight = SkToU16(ir.height());
|
| +
|
| + if (glyph->fWidth > 0) {
|
| + switch (fRec.fMaskFormat) {
|
| + case SkMask::kLCD16_Format:
|
| + case SkMask::kLCD32_Format:
|
| + glyph->fWidth += 2;
|
| + glyph->fLeft -= 1;
|
| + break;
|
| + default:
|
| + break;
|
| + }
|
| + }
|
| }
|
| }
|
|
|
| @@ -386,6 +398,7 @@
|
| glyph->fMaskFormat = fRec.fMaskFormat;
|
| }
|
|
|
| +#define SK_SHOW_TEXT_BLIT_COVERAGE 0
|
|
|
| static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) {
|
| uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage;
|
| @@ -400,30 +413,83 @@
|
| }
|
|
|
| template<bool APPLY_PREBLEND>
|
| -static void pack3xHToLCD16(const SkBitmap& src, const SkMask& dst,
|
| +static void pack4xHToLCD16(const SkBitmap& src, const SkMask& dst,
|
| const SkMaskGamma::PreBlend& maskPreBlend) {
|
| +#define SAMPLES_PER_PIXEL 4
|
| +#define LCD_PER_PIXEL 3
|
| SkASSERT(SkBitmap::kA8_Config == src.config());
|
| SkASSERT(SkMask::kLCD16_Format == dst.fFormat);
|
|
|
| - const int width = dst.fBounds.width();
|
| - const int height = dst.fBounds.height();
|
| + const int sample_width = src.width();
|
| + const int height = src.height();
|
| +
|
| uint16_t* dstP = (uint16_t*)dst.fImage;
|
| size_t dstRB = dst.fRowBytes;
|
| + // An N tap FIR is defined by
|
| + // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N]
|
| + // or
|
| + // out[n] = sum(i, 0, N, coeff[i]*x[n-i])
|
|
|
| + // The strategy is to use one FIR (different coefficients) for each of r, g, and b.
|
| + // This means using every 4th FIR output value of each FIR and discarding the rest.
|
| + // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'.
|
| + // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.)
|
| +
|
| + // These are in some fixed point repesentation.
|
| + // Adding up to more than one simulates ink spread.
|
| + // For implementation reasons, these should never add up to more than two.
|
| +
|
| + // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast').
|
| + // Calculated using tools/generate_fir_coeff.py
|
| + // With this one almost no fringing is ever seen, but it is imperceptibly blurry.
|
| + // The lcd smoothed text is almost imperceptibly different from gray,
|
| + // but is still sharper on small stems and small rounded corners than gray.
|
| + // This also seems to be about as wide as one can get and only have a three pixel kernel.
|
| + // TODO: caculate these at runtime so parameters can be adjusted (esp contrast).
|
| + static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = {
|
| + //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted.
|
| + { 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, },
|
| + //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric
|
| + { 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, },
|
| + //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted.
|
| + { 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, },
|
| + };
|
| +
|
| for (int y = 0; y < height; ++y) {
|
| const uint8_t* srcP = src.getAddr8(0, y);
|
| - for (int x = 0; x < width; ++x) {
|
| - U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(*srcP++, maskPreBlend.fR);
|
| - U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(*srcP++, maskPreBlend.fG);
|
| - U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(*srcP++, maskPreBlend.fB);
|
| - dstP[x] = SkPack888ToRGB16(r, g, b);
|
| +
|
| + // TODO: this fir filter implementation is straight forward, but slow.
|
| + // It should be possible to make it much faster.
|
| + for (int sample_x = -4, pixel_x = 0; sample_x < sample_width + 4; sample_x += 4, ++pixel_x) {
|
| + int fir[LCD_PER_PIXEL] = { 0 };
|
| + for (int sample_index = SkMax32(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4)
|
| + ; sample_index < SkMin32(sample_x + 8, sample_width)
|
| + ; ++sample_index, ++coeff_index)
|
| + {
|
| + int sample_value = srcP[sample_index];
|
| + for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
|
| + fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value;
|
| + }
|
| + }
|
| + for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
|
| + fir[subpxl_index] /= 0x100;
|
| + fir[subpxl_index] = SkMin32(fir[subpxl_index], 255);
|
| + }
|
| +
|
| + U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(fir[0], maskPreBlend.fR);
|
| + U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(fir[1], maskPreBlend.fG);
|
| + U8CPU b = sk_apply_lut_if<APPLY_PREBLEND>(fir[2], maskPreBlend.fB);
|
| +#if SK_SHOW_TEXT_BLIT_COVERAGE
|
| + r = SkMax32(r, 10); g = SkMax32(g, 10); b = SkMax32(b, 10);
|
| +#endif
|
| + dstP[pixel_x] = SkPack888ToRGB16(r, g, b);
|
| }
|
| dstP = (uint16_t*)((char*)dstP + dstRB);
|
| }
|
| }
|
|
|
| template<bool APPLY_PREBLEND>
|
| -static void pack3xHToLCD32(const SkBitmap& src, const SkMask& dst,
|
| +static void pack4xHToLCD32(const SkBitmap& src, const SkMask& dst,
|
| const SkMaskGamma::PreBlend& maskPreBlend) {
|
| SkASSERT(SkBitmap::kA8_Config == src.config());
|
| SkASSERT(SkMask::kLCD32_Format == dst.fFormat);
|
| @@ -435,6 +501,8 @@
|
|
|
| for (int y = 0; y < height; ++y) {
|
| const uint8_t* srcP = src.getAddr8(0, y);
|
| +
|
| + // TODO: need to use fir filter here as well.
|
| for (int x = 0; x < width; ++x) {
|
| U8CPU r = sk_apply_lut_if<APPLY_PREBLEND>(*srcP++, maskPreBlend.fR);
|
| U8CPU g = sk_apply_lut_if<APPLY_PREBLEND>(*srcP++, maskPreBlend.fG);
|
| @@ -472,8 +540,10 @@
|
| case SkMask::kLCD16_Format:
|
| case SkMask::kLCD32_Format:
|
| // TODO: trigger off LCD orientation
|
| - dstW *= 3;
|
| - matrix.postScale(SkIntToScalar(3), SK_Scalar1);
|
| + dstW = 4*dstW - 8;
|
| + matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft + 1),
|
| + -SkIntToScalar(mask.fBounds.fTop));
|
| + matrix.postScale(SkIntToScalar(4), SK_Scalar1);
|
| dstRB = 0; // signals we need a copy
|
| break;
|
| default:
|
| @@ -514,16 +584,16 @@
|
| break;
|
| case SkMask::kLCD16_Format:
|
| if (maskPreBlend.isApplicable()) {
|
| - pack3xHToLCD16<true>(bm, mask, maskPreBlend);
|
| + pack4xHToLCD16<true>(bm, mask, maskPreBlend);
|
| } else {
|
| - pack3xHToLCD16<false>(bm, mask, maskPreBlend);
|
| + pack4xHToLCD16<false>(bm, mask, maskPreBlend);
|
| }
|
| break;
|
| case SkMask::kLCD32_Format:
|
| if (maskPreBlend.isApplicable()) {
|
| - pack3xHToLCD32<true>(bm, mask, maskPreBlend);
|
| + pack4xHToLCD32<true>(bm, mask, maskPreBlend);
|
| } else {
|
| - pack3xHToLCD32<false>(bm, mask, maskPreBlend);
|
| + pack4xHToLCD32<false>(bm, mask, maskPreBlend);
|
| }
|
| break;
|
| default:
|
|
|