| Index: src/base/ieee754.cc
|
| diff --git a/src/base/ieee754.cc b/src/base/ieee754.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..59d83f0dae1f907ae228b7728955c8db7e03eeab
|
| --- /dev/null
|
| +++ b/src/base/ieee754.cc
|
| @@ -0,0 +1,197 @@
|
| +// The following is adapted from fdlibm (http://www.netlib.org/fdlibm).
|
| +//
|
| +// ====================================================
|
| +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
| +//
|
| +// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
| +// Permission to use, copy, modify, and distribute this
|
| +// software is freely granted, provided that this notice
|
| +// is preserved.
|
| +// ====================================================
|
| +//
|
| +// The original source code covered by the above license above has been
|
| +// modified significantly by Google Inc.
|
| +// Copyright 2016 the V8 project authors. All rights reserved.
|
| +
|
| +#include "src/base/ieee754.h"
|
| +
|
| +#include <limits>
|
| +
|
| +#include "src/base/build_config.h"
|
| +#include "src/base/macros.h"
|
| +
|
| +namespace v8 {
|
| +namespace base {
|
| +namespace ieee754 {
|
| +
|
| +namespace {
|
| +
|
| +union Float64 {
|
| + double v;
|
| + uint64_t w;
|
| + struct {
|
| +#if V8_TARGET_LITTLE_ENDIAN
|
| + uint32_t lw;
|
| + uint32_t hw;
|
| +#else
|
| + uint32_t hw;
|
| + uint32_t lw;
|
| +#endif
|
| + } words;
|
| +};
|
| +
|
| +// Extract the less significant 32-bit word from a double.
|
| +V8_INLINE uint32_t extractLowWord32(double v) {
|
| + Float64 f;
|
| + f.v = v;
|
| + return f.words.lw;
|
| +}
|
| +
|
| +// Extract the most significant 32-bit word from a double.
|
| +V8_INLINE uint32_t extractHighWord32(double v) {
|
| + Float64 f;
|
| + f.v = v;
|
| + return f.words.hw;
|
| +}
|
| +
|
| +// Insert the most significant 32-bit word into a double.
|
| +V8_INLINE double insertHighWord32(double v, uint32_t hw) {
|
| + Float64 f;
|
| + f.v = v;
|
| + f.words.hw = hw;
|
| + return f.v;
|
| +}
|
| +
|
| +double const kLn2Hi = 6.93147180369123816490e-01; // 3fe62e42 fee00000
|
| +double const kLn2Lo = 1.90821492927058770002e-10; // 3dea39ef 35793c76
|
| +double const kTwo54 = 1.80143985094819840000e+16; // 43500000 00000000
|
| +double const kLg1 = 6.666666666666735130e-01; // 3FE55555 55555593
|
| +double const kLg2 = 3.999999999940941908e-01; // 3FD99999 9997FA04
|
| +double const kLg3 = 2.857142874366239149e-01; // 3FD24924 94229359
|
| +double const kLg4 = 2.222219843214978396e-01; // 3FCC71C5 1D8E78AF
|
| +double const kLg5 = 1.818357216161805012e-01; // 3FC74664 96CB03DE
|
| +double const kLg6 = 1.531383769920937332e-01; // 3FC39A09 D078C69F
|
| +double const kLg7 = 1.479819860511658591e-01; // 3FC2F112 DF3E5244
|
| +
|
| +} // namespace
|
| +
|
| +/* log(x)
|
| + * Return the logrithm of x
|
| + *
|
| + * Method :
|
| + * 1. Argument Reduction: find k and f such that
|
| + * x = 2^k * (1+f),
|
| + * where sqrt(2)/2 < 1+f < sqrt(2) .
|
| + *
|
| + * 2. Approximation of log(1+f).
|
| + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
| + * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
| + * = 2s + s*R
|
| + * We use a special Reme algorithm on [0,0.1716] to generate
|
| + * a polynomial of degree 14 to approximate R The maximum error
|
| + * of this polynomial approximation is bounded by 2**-58.45. In
|
| + * other words,
|
| + * 2 4 6 8 10 12 14
|
| + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
| + * (the values of Lg1 to Lg7 are listed in the program)
|
| + * and
|
| + * | 2 14 | -58.45
|
| + * | Lg1*s +...+Lg7*s - R(z) | <= 2
|
| + * | |
|
| + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
| + * In order to guarantee error in log below 1ulp, we compute log
|
| + * by
|
| + * log(1+f) = f - s*(f - R) (if f is not too large)
|
| + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
| + *
|
| + * 3. Finally, log(x) = k*ln2 + log(1+f).
|
| + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
| + * Here ln2 is split into two floating point number:
|
| + * ln2_hi + ln2_lo,
|
| + * where n*ln2_hi is always exact for |n| < 2000.
|
| + *
|
| + * Special cases:
|
| + * log(x) is NaN with signal if x < 0 (including -INF) ;
|
| + * log(+INF) is +INF; log(0) is -INF with signal;
|
| + * log(NaN) is that NaN with no signal.
|
| + *
|
| + * Accuracy:
|
| + * according to an error analysis, the error is always less than
|
| + * 1 ulp (unit in the last place).
|
| + *
|
| + * Constants:
|
| + * The hexadecimal values are the intended ones for the following
|
| + * constants. The decimal values may be used, provided that the
|
| + * compiler will convert from decimal to binary accurately enough
|
| + * to produce the hexadecimal values shown.
|
| + */
|
| +double log(double x) {
|
| + double hfsq, f, s, z, r, w, t1, t2, dk;
|
| + int32_t k = 0, i, j;
|
| + int32_t hx = extractHighWord32(x);
|
| + uint32_t lx = extractLowWord32(x);
|
| +
|
| + if (hx < 0x00100000) { /* x < 2**-1022 */
|
| + if (((hx & 0x7fffffff) | lx) == 0) {
|
| + return -std::numeric_limits<double>::infinity();
|
| + }
|
| + if (hx < 0) {
|
| + return std::numeric_limits<double>::quiet_NaN();
|
| + }
|
| + k -= 54;
|
| + x *= kTwo54; /* subnormal number, scale up x */
|
| + hx = extractHighWord32(x);
|
| + }
|
| + if (hx >= 0x7ff00000) return x + x;
|
| + k += (hx >> 20) - 1023;
|
| + hx &= 0x000fffff;
|
| + i = (hx + 0x95f64) & 0x100000;
|
| + x = insertHighWord32(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */
|
| + k += (i >> 20);
|
| + f = x - 1.0;
|
| + if ((0x000fffff & (2 + hx)) < 3) { /* -2**-20 <= f < 2**-20 */
|
| + if (f == 0.0) {
|
| + if (k == 0) {
|
| + return 0.0;
|
| + } else {
|
| + dk = static_cast<double>(k);
|
| + return dk * kLn2Hi + dk * kLn2Lo;
|
| + }
|
| + }
|
| + r = f * f * (0.5 - 0.33333333333333333 * f);
|
| + if (k == 0) {
|
| + return f - r;
|
| + } else {
|
| + dk = static_cast<double>(k);
|
| + return dk * kLn2Hi - ((r - dk * kLn2Lo) - f);
|
| + }
|
| + }
|
| + s = f / (2.0 + f);
|
| + dk = static_cast<double>(k);
|
| + z = s * s;
|
| + i = hx - 0x6147a;
|
| + w = z * z;
|
| + j = 0x6b851 - hx;
|
| + t1 = w * (kLg2 + w * (kLg4 + w * kLg6));
|
| + t2 = z * (kLg1 + w * (kLg3 + w * (kLg5 + w * kLg7)));
|
| + i |= j;
|
| + r = t2 + t1;
|
| + if (i > 0) {
|
| + hfsq = 0.5 * f * f;
|
| + if (k == 0) {
|
| + return f - (hfsq - s * (hfsq + r));
|
| + } else {
|
| + return dk * kLn2Hi - ((hfsq - (s * (hfsq + r) + dk * kLn2Lo)) - f);
|
| + }
|
| + } else {
|
| + if (k == 0) {
|
| + return f - s * (f - r);
|
| + } else {
|
| + return dk * kLn2Hi - ((s * (f - r) - dk * kLn2Lo) - f);
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // namespace ieee754
|
| +} // namespace base
|
| +} // namespace v8
|
|
|