OLD | NEW |
(Empty) | |
| 1 # ----------------------------------------------------------------------------- |
| 2 # ply: yacc.py |
| 3 # |
| 4 # Author(s): David M. Beazley (dave@dabeaz.com) |
| 5 # |
| 6 # Copyright (C) 2001-2009, David M. Beazley |
| 7 # |
| 8 # This library is free software; you can redistribute it and/or |
| 9 # modify it under the terms of the GNU Lesser General Public |
| 10 # License as published by the Free Software Foundation; either |
| 11 # version 2.1 of the License, or (at your option) any later version. |
| 12 # |
| 13 # This library is distributed in the hope that it will be useful, |
| 14 # but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 16 # Lesser General Public License for more details. |
| 17 # |
| 18 # You should have received a copy of the GNU Lesser General Public |
| 19 # License along with this library; if not, write to the Free Software |
| 20 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 21 # |
| 22 # See the file COPYING for a complete copy of the LGPL. |
| 23 # |
| 24 # |
| 25 # This implements an LR parser that is constructed from grammar rules defined |
| 26 # as Python functions. The grammer is specified by supplying the BNF inside |
| 27 # Python documentation strings. The inspiration for this technique was borrowed |
| 28 # from John Aycock's Spark parsing system. PLY might be viewed as cross between |
| 29 # Spark and the GNU bison utility. |
| 30 # |
| 31 # The current implementation is only somewhat object-oriented. The |
| 32 # LR parser itself is defined in terms of an object (which allows multiple |
| 33 # parsers to co-exist). However, most of the variables used during table |
| 34 # construction are defined in terms of global variables. Users shouldn't |
| 35 # notice unless they are trying to define multiple parsers at the same |
| 36 # time using threads (in which case they should have their head examined). |
| 37 # |
| 38 # This implementation supports both SLR and LALR(1) parsing. LALR(1) |
| 39 # support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu), |
| 40 # using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles, |
| 41 # Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced |
| 42 # by the more efficient DeRemer and Pennello algorithm. |
| 43 # |
| 44 # :::::::: WARNING ::::::: |
| 45 # |
| 46 # Construction of LR parsing tables is fairly complicated and expensive. |
| 47 # To make this module run fast, a *LOT* of work has been put into |
| 48 # optimization---often at the expensive of readability and what might |
| 49 # consider to be good Python "coding style." Modify the code at your |
| 50 # own risk! |
| 51 # ---------------------------------------------------------------------------- |
| 52 |
| 53 __version__ = "3.0" |
| 54 __tabversion__ = "3.0" # Table version |
| 55 |
| 56 #----------------------------------------------------------------------------- |
| 57 # === User configurable parameters === |
| 58 # |
| 59 # Change these to modify the default behavior of yacc (if you wish) |
| 60 #----------------------------------------------------------------------------- |
| 61 |
| 62 yaccdebug = 1 # Debugging mode. If set, yacc generates a |
| 63 # a 'parser.out' file in the current directory |
| 64 |
| 65 debug_file = 'parser.out' # Default name of the debugging file |
| 66 tab_module = 'parsetab' # Default name of the table module |
| 67 default_lr = 'LALR' # Default LR table generation method |
| 68 |
| 69 error_count = 3 # Number of symbols that must be shifted to leave
recovery mode |
| 70 |
| 71 yaccdevel = 0 # Set to True if developing yacc. This turns off
optimized |
| 72 # implementations of certain functions. |
| 73 |
| 74 resultlimit = 40 # Size limit of results when running in debug mod
e. |
| 75 |
| 76 import re, types, sys, os.path |
| 77 |
| 78 # Compatibility function for python 2.6/3.0 |
| 79 if sys.version_info[0] < 3: |
| 80 def func_code(f): |
| 81 return f.func_code |
| 82 else: |
| 83 def func_code(f): |
| 84 return f.__code__ |
| 85 |
| 86 # Compatibility |
| 87 try: |
| 88 MAXINT = sys.maxint |
| 89 except AttributeError: |
| 90 MAXINT = sys.maxsize |
| 91 |
| 92 # Python 2.x/3.0 compatibility. |
| 93 def load_ply_lex(): |
| 94 if sys.version_info[0] < 3: |
| 95 import lex |
| 96 else: |
| 97 import ply.lex as lex |
| 98 return lex |
| 99 |
| 100 # This object is a stand-in for a logging object created by the |
| 101 # logging module. PLY will use this by default to create things |
| 102 # such as the parser.out file. If a user wants more detailed |
| 103 # information, they can create their own logging object and pass |
| 104 # it into PLY. |
| 105 |
| 106 class PlyLogger(object): |
| 107 def __init__(self,f): |
| 108 self.f = f |
| 109 def debug(self,msg,*args,**kwargs): |
| 110 self.f.write((msg % args) + "\n") |
| 111 info = debug |
| 112 |
| 113 def warning(self,msg,*args,**kwargs): |
| 114 self.f.write("WARNING: "+ (msg % args) + "\n") |
| 115 |
| 116 def error(self,msg,*args,**kwargs): |
| 117 self.f.write("ERROR: " + (msg % args) + "\n") |
| 118 |
| 119 critical = debug |
| 120 |
| 121 # Null logger is used when no output is generated. Does nothing. |
| 122 class NullLogger(object): |
| 123 def __getattribute__(self,name): |
| 124 return self |
| 125 def __call__(self,*args,**kwargs): |
| 126 return self |
| 127 |
| 128 # Exception raised for yacc-related errors |
| 129 class YaccError(Exception): pass |
| 130 |
| 131 # Format the result message that the parser produces when running in debug mode. |
| 132 def format_result(r): |
| 133 repr_str = repr(r) |
| 134 if '\n' in repr_str: repr_str = repr(repr_str) |
| 135 if len(repr_str) > resultlimit: |
| 136 repr_str = repr_str[:resultlimit]+" ..." |
| 137 result = "<%s @ 0x%x> (%s)" % (type(r).__name__,id(r),repr_str) |
| 138 return result |
| 139 |
| 140 |
| 141 # Format stack entries when the parser is running in debug mode |
| 142 def format_stack_entry(r): |
| 143 repr_str = repr(r) |
| 144 if '\n' in repr_str: repr_str = repr(repr_str) |
| 145 if len(repr_str) < 16: |
| 146 return repr_str |
| 147 else: |
| 148 return "<%s @ 0x%x>" % (type(r).__name__,id(r)) |
| 149 |
| 150 #----------------------------------------------------------------------------- |
| 151 # === LR Parsing Engine === |
| 152 # |
| 153 # The following classes are used for the LR parser itself. These are not |
| 154 # used during table construction and are independent of the actual LR |
| 155 # table generation algorithm |
| 156 #----------------------------------------------------------------------------- |
| 157 |
| 158 # This class is used to hold non-terminal grammar symbols during parsing. |
| 159 # It normally has the following attributes set: |
| 160 # .type = Grammar symbol type |
| 161 # .value = Symbol value |
| 162 # .lineno = Starting line number |
| 163 # .endlineno = Ending line number (optional, set automatically) |
| 164 # .lexpos = Starting lex position |
| 165 # .endlexpos = Ending lex position (optional, set automatically) |
| 166 |
| 167 class YaccSymbol: |
| 168 def __str__(self): return self.type |
| 169 def __repr__(self): return str(self) |
| 170 |
| 171 # This class is a wrapper around the objects actually passed to each |
| 172 # grammar rule. Index lookup and assignment actually assign the |
| 173 # .value attribute of the underlying YaccSymbol object. |
| 174 # The lineno() method returns the line number of a given |
| 175 # item (or 0 if not defined). The linespan() method returns |
| 176 # a tuple of (startline,endline) representing the range of lines |
| 177 # for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos) |
| 178 # representing the range of positional information for a symbol. |
| 179 |
| 180 class YaccProduction: |
| 181 def __init__(self,s,stack=None): |
| 182 self.slice = s |
| 183 self.stack = stack |
| 184 self.lexer = None |
| 185 self.parser= None |
| 186 def __getitem__(self,n): |
| 187 if n >= 0: return self.slice[n].value |
| 188 else: return self.stack[n].value |
| 189 |
| 190 def __setitem__(self,n,v): |
| 191 self.slice[n].value = v |
| 192 |
| 193 def __getslice__(self,i,j): |
| 194 return [s.value for s in self.slice[i:j]] |
| 195 |
| 196 def __len__(self): |
| 197 return len(self.slice) |
| 198 |
| 199 def lineno(self,n): |
| 200 return getattr(self.slice[n],"lineno",0) |
| 201 |
| 202 def set_lineno(self,n,lineno): |
| 203 self.slice[n].lineno = n |
| 204 |
| 205 def linespan(self,n): |
| 206 startline = getattr(self.slice[n],"lineno",0) |
| 207 endline = getattr(self.slice[n],"endlineno",startline) |
| 208 return startline,endline |
| 209 |
| 210 def lexpos(self,n): |
| 211 return getattr(self.slice[n],"lexpos",0) |
| 212 |
| 213 def lexspan(self,n): |
| 214 startpos = getattr(self.slice[n],"lexpos",0) |
| 215 endpos = getattr(self.slice[n],"endlexpos",startpos) |
| 216 return startpos,endpos |
| 217 |
| 218 def error(self): |
| 219 raise SyntaxError |
| 220 |
| 221 |
| 222 # ----------------------------------------------------------------------------- |
| 223 # == LRParser == |
| 224 # |
| 225 # The LR Parsing engine. |
| 226 # ----------------------------------------------------------------------------- |
| 227 |
| 228 class LRParser: |
| 229 def __init__(self,lrtab,errorf): |
| 230 self.productions = lrtab.lr_productions |
| 231 self.action = lrtab.lr_action |
| 232 self.goto = lrtab.lr_goto |
| 233 self.errorfunc = errorf |
| 234 |
| 235 def errok(self): |
| 236 self.errorok = 1 |
| 237 |
| 238 def restart(self): |
| 239 del self.statestack[:] |
| 240 del self.symstack[:] |
| 241 sym = YaccSymbol() |
| 242 sym.type = '$end' |
| 243 self.symstack.append(sym) |
| 244 self.statestack.append(0) |
| 245 |
| 246 def parse(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): |
| 247 if debug or yaccdevel: |
| 248 if isinstance(debug,int): |
| 249 debug = PlyLogger(sys.stderr) |
| 250 return self.parsedebug(input,lexer,debug,tracking,tokenfunc) |
| 251 elif tracking: |
| 252 return self.parseopt(input,lexer,debug,tracking,tokenfunc) |
| 253 else: |
| 254 return self.parseopt_notrack(input,lexer,debug,tracking,tokenfunc) |
| 255 |
| 256 |
| 257 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! |
| 258 # parsedebug(). |
| 259 # |
| 260 # This is the debugging enabled version of parse(). All changes made to the |
| 261 # parsing engine should be made here. For the non-debugging version, |
| 262 # copy this code to a method parseopt() and delete all of the sections |
| 263 # enclosed in: |
| 264 # |
| 265 # #--! DEBUG |
| 266 # statements |
| 267 # #--! DEBUG |
| 268 # |
| 269 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! |
| 270 |
| 271 def parsedebug(self,input=None,lexer=None,debug=None,tracking=0,tokenfunc=No
ne): |
| 272 lookahead = None # Current lookahead symbol |
| 273 lookaheadstack = [ ] # Stack of lookahead symbols |
| 274 actions = self.action # Local reference to action table (to a
void lookup on self.) |
| 275 goto = self.goto # Local reference to goto table (to avo
id lookup on self.) |
| 276 prod = self.productions # Local reference to production list (t
o avoid lookup on self.) |
| 277 pslice = YaccProduction(None) # Production object passed to grammar r
ules |
| 278 errorcount = 0 # Used during error recovery |
| 279 |
| 280 # --! DEBUG |
| 281 debug.info("PLY: PARSE DEBUG START") |
| 282 # --! DEBUG |
| 283 |
| 284 # If no lexer was given, we will try to use the lex module |
| 285 if not lexer: |
| 286 lex = load_ply_lex() |
| 287 lexer = lex.lexer |
| 288 |
| 289 # Set up the lexer and parser objects on pslice |
| 290 pslice.lexer = lexer |
| 291 pslice.parser = self |
| 292 |
| 293 # If input was supplied, pass to lexer |
| 294 if input is not None: |
| 295 lexer.input(input) |
| 296 |
| 297 if tokenfunc is None: |
| 298 # Tokenize function |
| 299 get_token = lexer.token |
| 300 else: |
| 301 get_token = tokenfunc |
| 302 |
| 303 # Set up the state and symbol stacks |
| 304 |
| 305 statestack = [ ] # Stack of parsing states |
| 306 self.statestack = statestack |
| 307 symstack = [ ] # Stack of grammar symbols |
| 308 self.symstack = symstack |
| 309 |
| 310 pslice.stack = symstack # Put in the production |
| 311 errtoken = None # Err token |
| 312 |
| 313 # The start state is assumed to be (0,$end) |
| 314 |
| 315 statestack.append(0) |
| 316 sym = YaccSymbol() |
| 317 sym.type = "$end" |
| 318 symstack.append(sym) |
| 319 state = 0 |
| 320 while 1: |
| 321 # Get the next symbol on the input. If a lookahead symbol |
| 322 # is already set, we just use that. Otherwise, we'll pull |
| 323 # the next token off of the lookaheadstack or from the lexer |
| 324 |
| 325 # --! DEBUG |
| 326 debug.debug('') |
| 327 debug.debug('State : %s', state) |
| 328 # --! DEBUG |
| 329 |
| 330 if not lookahead: |
| 331 if not lookaheadstack: |
| 332 lookahead = get_token() # Get the next token |
| 333 else: |
| 334 lookahead = lookaheadstack.pop() |
| 335 if not lookahead: |
| 336 lookahead = YaccSymbol() |
| 337 lookahead.type = "$end" |
| 338 |
| 339 # --! DEBUG |
| 340 debug.debug('Stack : %s', |
| 341 ("%s . %s" % (" ".join([xx.type for xx in symstack][1:])
, str(lookahead))).lstrip()) |
| 342 # --! DEBUG |
| 343 |
| 344 # Check the action table |
| 345 ltype = lookahead.type |
| 346 t = actions[state].get(ltype) |
| 347 |
| 348 if t is not None: |
| 349 if t > 0: |
| 350 # shift a symbol on the stack |
| 351 statestack.append(t) |
| 352 state = t |
| 353 |
| 354 # --! DEBUG |
| 355 debug.debug("Action : Shift and goto state %s", t) |
| 356 # --! DEBUG |
| 357 |
| 358 symstack.append(lookahead) |
| 359 lookahead = None |
| 360 |
| 361 # Decrease error count on successful shift |
| 362 if errorcount: errorcount -=1 |
| 363 continue |
| 364 |
| 365 if t < 0: |
| 366 # reduce a symbol on the stack, emit a production |
| 367 p = prod[-t] |
| 368 pname = p.name |
| 369 plen = p.len |
| 370 |
| 371 # Get production function |
| 372 sym = YaccSymbol() |
| 373 sym.type = pname # Production name |
| 374 sym.value = None |
| 375 |
| 376 # --! DEBUG |
| 377 if plen: |
| 378 debug.info("Action : Reduce rule [%s] with %s and goto s
tate %d", p.str, "["+",".join([format_stack_entry(_v.value) for _v in symstack[-
plen:]])+"]",-t) |
| 379 else: |
| 380 debug.info("Action : Reduce rule [%s] with %s and goto s
tate %d", p.str, [],-t) |
| 381 |
| 382 # --! DEBUG |
| 383 |
| 384 if plen: |
| 385 targ = symstack[-plen-1:] |
| 386 targ[0] = sym |
| 387 |
| 388 # --! TRACKING |
| 389 if tracking: |
| 390 t1 = targ[1] |
| 391 sym.lineno = t1.lineno |
| 392 sym.lexpos = t1.lexpos |
| 393 t1 = targ[-1] |
| 394 sym.endlineno = getattr(t1,"endlineno",t1.lineno) |
| 395 sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) |
| 396 |
| 397 # --! TRACKING |
| 398 |
| 399 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 400 # The code enclosed in this section is duplicated |
| 401 # below as a performance optimization. Make sure |
| 402 # changes get made in both locations. |
| 403 |
| 404 pslice.slice = targ |
| 405 |
| 406 try: |
| 407 # Call the grammar rule with our special slice objec
t |
| 408 del symstack[-plen:] |
| 409 del statestack[-plen:] |
| 410 p.callable(pslice) |
| 411 # --! DEBUG |
| 412 debug.info("Result : %s", format_result(pslice[0])) |
| 413 # --! DEBUG |
| 414 symstack.append(sym) |
| 415 state = goto[statestack[-1]][pname] |
| 416 statestack.append(state) |
| 417 except SyntaxError: |
| 418 # If an error was set. Enter error recovery state |
| 419 lookaheadstack.append(lookahead) |
| 420 symstack.pop() |
| 421 statestack.pop() |
| 422 state = statestack[-1] |
| 423 sym.type = 'error' |
| 424 lookahead = sym |
| 425 errorcount = error_count |
| 426 self.errorok = 0 |
| 427 continue |
| 428 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 429 |
| 430 else: |
| 431 |
| 432 # --! TRACKING |
| 433 if tracking: |
| 434 sym.lineno = lexer.lineno |
| 435 sym.lexpos = lexer.lexpos |
| 436 # --! TRACKING |
| 437 |
| 438 targ = [ sym ] |
| 439 |
| 440 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 441 # The code enclosed in this section is duplicated |
| 442 # above as a performance optimization. Make sure |
| 443 # changes get made in both locations. |
| 444 |
| 445 pslice.slice = targ |
| 446 |
| 447 try: |
| 448 # Call the grammar rule with our special slice objec
t |
| 449 p.callable(pslice) |
| 450 # --! DEBUG |
| 451 debug.info("Result : %s", format_result(pslice[0])) |
| 452 # --! DEBUG |
| 453 symstack.append(sym) |
| 454 state = goto[statestack[-1]][pname] |
| 455 statestack.append(state) |
| 456 except SyntaxError: |
| 457 # If an error was set. Enter error recovery state |
| 458 lookaheadstack.append(lookahead) |
| 459 symstack.pop() |
| 460 statestack.pop() |
| 461 state = statestack[-1] |
| 462 sym.type = 'error' |
| 463 lookahead = sym |
| 464 errorcount = error_count |
| 465 self.errorok = 0 |
| 466 continue |
| 467 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 468 |
| 469 if t == 0: |
| 470 n = symstack[-1] |
| 471 result = getattr(n,"value",None) |
| 472 # --! DEBUG |
| 473 debug.info("Done : Returning %s", format_result(result)) |
| 474 debug.info("PLY: PARSE DEBUG END") |
| 475 # --! DEBUG |
| 476 return result |
| 477 |
| 478 if t == None: |
| 479 |
| 480 # --! DEBUG |
| 481 debug.error('Error : %s', |
| 482 ("%s . %s" % (" ".join([xx.type for xx in symstack][
1:]), str(lookahead))).lstrip()) |
| 483 # --! DEBUG |
| 484 |
| 485 # We have some kind of parsing error here. To handle |
| 486 # this, we are going to push the current token onto |
| 487 # the tokenstack and replace it with an 'error' token. |
| 488 # If there are any synchronization rules, they may |
| 489 # catch it. |
| 490 # |
| 491 # In addition to pushing the error token, we call call |
| 492 # the user defined p_error() function if this is the |
| 493 # first syntax error. This function is only called if |
| 494 # errorcount == 0. |
| 495 if errorcount == 0 or self.errorok: |
| 496 errorcount = error_count |
| 497 self.errorok = 0 |
| 498 errtoken = lookahead |
| 499 if errtoken.type == "$end": |
| 500 errtoken = None # End of file! |
| 501 if self.errorfunc: |
| 502 global errok,token,restart |
| 503 errok = self.errok # Set some special functions a
vailable in error recovery |
| 504 token = get_token |
| 505 restart = self.restart |
| 506 if errtoken and not hasattr(errtoken,'lexer'): |
| 507 errtoken.lexer = lexer |
| 508 tok = self.errorfunc(errtoken) |
| 509 del errok, token, restart # Delete special functions |
| 510 |
| 511 if self.errorok: |
| 512 # User must have done some kind of panic |
| 513 # mode recovery on their own. The |
| 514 # returned token is the next lookahead |
| 515 lookahead = tok |
| 516 errtoken = None |
| 517 continue |
| 518 else: |
| 519 if errtoken: |
| 520 if hasattr(errtoken,"lineno"): lineno = lookahead.li
neno |
| 521 else: lineno = 0 |
| 522 if lineno: |
| 523 sys.stderr.write("yacc: Syntax error at line %d,
token=%s\n" % (lineno, errtoken.type)) |
| 524 else: |
| 525 sys.stderr.write("yacc: Syntax error, token=%s"
% errtoken.type) |
| 526 else: |
| 527 sys.stderr.write("yacc: Parse error in input. EOF\n"
) |
| 528 return |
| 529 |
| 530 else: |
| 531 errorcount = error_count |
| 532 |
| 533 # case 1: the statestack only has 1 entry on it. If we're in t
his state, the |
| 534 # entire parse has been rolled back and we're completely hosed.
The token is |
| 535 # discarded and we just keep going. |
| 536 |
| 537 if len(statestack) <= 1 and lookahead.type != "$end": |
| 538 lookahead = None |
| 539 errtoken = None |
| 540 state = 0 |
| 541 # Nuke the pushback stack |
| 542 del lookaheadstack[:] |
| 543 continue |
| 544 |
| 545 # case 2: the statestack has a couple of entries on it, but we'r
e |
| 546 # at the end of the file. nuke the top entry and generate an err
or token |
| 547 |
| 548 # Start nuking entries on the stack |
| 549 if lookahead.type == "$end": |
| 550 # Whoa. We're really hosed here. Bail out |
| 551 return |
| 552 |
| 553 if lookahead.type != 'error': |
| 554 sym = symstack[-1] |
| 555 if sym.type == 'error': |
| 556 # Hmmm. Error is on top of stack, we'll just nuke input |
| 557 # symbol and continue |
| 558 lookahead = None |
| 559 continue |
| 560 t = YaccSymbol() |
| 561 t.type = 'error' |
| 562 if hasattr(lookahead,"lineno"): |
| 563 t.lineno = lookahead.lineno |
| 564 t.value = lookahead |
| 565 lookaheadstack.append(lookahead) |
| 566 lookahead = t |
| 567 else: |
| 568 symstack.pop() |
| 569 statestack.pop() |
| 570 state = statestack[-1] # Potential bug fix |
| 571 |
| 572 continue |
| 573 |
| 574 # Call an error function here |
| 575 raise RuntimeError("yacc: internal parser error!!!\n") |
| 576 |
| 577 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! |
| 578 # parseopt(). |
| 579 # |
| 580 # Optimized version of parse() method. DO NOT EDIT THIS CODE DIRECTLY. |
| 581 # Edit the debug version above, then copy any modifications to the method |
| 582 # below while removing #--! DEBUG sections. |
| 583 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! |
| 584 |
| 585 |
| 586 def parseopt(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None): |
| 587 lookahead = None # Current lookahead symbol |
| 588 lookaheadstack = [ ] # Stack of lookahead symbols |
| 589 actions = self.action # Local reference to action table (to a
void lookup on self.) |
| 590 goto = self.goto # Local reference to goto table (to avo
id lookup on self.) |
| 591 prod = self.productions # Local reference to production list (t
o avoid lookup on self.) |
| 592 pslice = YaccProduction(None) # Production object passed to grammar r
ules |
| 593 errorcount = 0 # Used during error recovery |
| 594 |
| 595 # If no lexer was given, we will try to use the lex module |
| 596 if not lexer: |
| 597 lex = load_ply_lex() |
| 598 lexer = lex.lexer |
| 599 |
| 600 # Set up the lexer and parser objects on pslice |
| 601 pslice.lexer = lexer |
| 602 pslice.parser = self |
| 603 |
| 604 # If input was supplied, pass to lexer |
| 605 if input is not None: |
| 606 lexer.input(input) |
| 607 |
| 608 if tokenfunc is None: |
| 609 # Tokenize function |
| 610 get_token = lexer.token |
| 611 else: |
| 612 get_token = tokenfunc |
| 613 |
| 614 # Set up the state and symbol stacks |
| 615 |
| 616 statestack = [ ] # Stack of parsing states |
| 617 self.statestack = statestack |
| 618 symstack = [ ] # Stack of grammar symbols |
| 619 self.symstack = symstack |
| 620 |
| 621 pslice.stack = symstack # Put in the production |
| 622 errtoken = None # Err token |
| 623 |
| 624 # The start state is assumed to be (0,$end) |
| 625 |
| 626 statestack.append(0) |
| 627 sym = YaccSymbol() |
| 628 sym.type = '$end' |
| 629 symstack.append(sym) |
| 630 state = 0 |
| 631 while 1: |
| 632 # Get the next symbol on the input. If a lookahead symbol |
| 633 # is already set, we just use that. Otherwise, we'll pull |
| 634 # the next token off of the lookaheadstack or from the lexer |
| 635 |
| 636 if not lookahead: |
| 637 if not lookaheadstack: |
| 638 lookahead = get_token() # Get the next token |
| 639 else: |
| 640 lookahead = lookaheadstack.pop() |
| 641 if not lookahead: |
| 642 lookahead = YaccSymbol() |
| 643 lookahead.type = '$end' |
| 644 |
| 645 # Check the action table |
| 646 ltype = lookahead.type |
| 647 t = actions[state].get(ltype) |
| 648 |
| 649 if t is not None: |
| 650 if t > 0: |
| 651 # shift a symbol on the stack |
| 652 statestack.append(t) |
| 653 state = t |
| 654 |
| 655 symstack.append(lookahead) |
| 656 lookahead = None |
| 657 |
| 658 # Decrease error count on successful shift |
| 659 if errorcount: errorcount -=1 |
| 660 continue |
| 661 |
| 662 if t < 0: |
| 663 # reduce a symbol on the stack, emit a production |
| 664 p = prod[-t] |
| 665 pname = p.name |
| 666 plen = p.len |
| 667 |
| 668 # Get production function |
| 669 sym = YaccSymbol() |
| 670 sym.type = pname # Production name |
| 671 sym.value = None |
| 672 |
| 673 if plen: |
| 674 targ = symstack[-plen-1:] |
| 675 targ[0] = sym |
| 676 |
| 677 # --! TRACKING |
| 678 if tracking: |
| 679 t1 = targ[1] |
| 680 sym.lineno = t1.lineno |
| 681 sym.lexpos = t1.lexpos |
| 682 t1 = targ[-1] |
| 683 sym.endlineno = getattr(t1,"endlineno",t1.lineno) |
| 684 sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos) |
| 685 |
| 686 # --! TRACKING |
| 687 |
| 688 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 689 # The code enclosed in this section is duplicated |
| 690 # below as a performance optimization. Make sure |
| 691 # changes get made in both locations. |
| 692 |
| 693 pslice.slice = targ |
| 694 |
| 695 try: |
| 696 # Call the grammar rule with our special slice objec
t |
| 697 del symstack[-plen:] |
| 698 del statestack[-plen:] |
| 699 p.callable(pslice) |
| 700 symstack.append(sym) |
| 701 state = goto[statestack[-1]][pname] |
| 702 statestack.append(state) |
| 703 except SyntaxError: |
| 704 # If an error was set. Enter error recovery state |
| 705 lookaheadstack.append(lookahead) |
| 706 symstack.pop() |
| 707 statestack.pop() |
| 708 state = statestack[-1] |
| 709 sym.type = 'error' |
| 710 lookahead = sym |
| 711 errorcount = error_count |
| 712 self.errorok = 0 |
| 713 continue |
| 714 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 715 |
| 716 else: |
| 717 |
| 718 # --! TRACKING |
| 719 if tracking: |
| 720 sym.lineno = lexer.lineno |
| 721 sym.lexpos = lexer.lexpos |
| 722 # --! TRACKING |
| 723 |
| 724 targ = [ sym ] |
| 725 |
| 726 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 727 # The code enclosed in this section is duplicated |
| 728 # above as a performance optimization. Make sure |
| 729 # changes get made in both locations. |
| 730 |
| 731 pslice.slice = targ |
| 732 |
| 733 try: |
| 734 # Call the grammar rule with our special slice objec
t |
| 735 p.callable(pslice) |
| 736 symstack.append(sym) |
| 737 state = goto[statestack[-1]][pname] |
| 738 statestack.append(state) |
| 739 except SyntaxError: |
| 740 # If an error was set. Enter error recovery state |
| 741 lookaheadstack.append(lookahead) |
| 742 symstack.pop() |
| 743 statestack.pop() |
| 744 state = statestack[-1] |
| 745 sym.type = 'error' |
| 746 lookahead = sym |
| 747 errorcount = error_count |
| 748 self.errorok = 0 |
| 749 continue |
| 750 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 751 |
| 752 if t == 0: |
| 753 n = symstack[-1] |
| 754 return getattr(n,"value",None) |
| 755 |
| 756 if t == None: |
| 757 |
| 758 # We have some kind of parsing error here. To handle |
| 759 # this, we are going to push the current token onto |
| 760 # the tokenstack and replace it with an 'error' token. |
| 761 # If there are any synchronization rules, they may |
| 762 # catch it. |
| 763 # |
| 764 # In addition to pushing the error token, we call call |
| 765 # the user defined p_error() function if this is the |
| 766 # first syntax error. This function is only called if |
| 767 # errorcount == 0. |
| 768 if errorcount == 0 or self.errorok: |
| 769 errorcount = error_count |
| 770 self.errorok = 0 |
| 771 errtoken = lookahead |
| 772 if errtoken.type == '$end': |
| 773 errtoken = None # End of file! |
| 774 if self.errorfunc: |
| 775 global errok,token,restart |
| 776 errok = self.errok # Set some special functions a
vailable in error recovery |
| 777 token = get_token |
| 778 restart = self.restart |
| 779 if errtoken and not hasattr(errtoken,'lexer'): |
| 780 errtoken.lexer = lexer |
| 781 tok = self.errorfunc(errtoken) |
| 782 del errok, token, restart # Delete special functions |
| 783 |
| 784 if self.errorok: |
| 785 # User must have done some kind of panic |
| 786 # mode recovery on their own. The |
| 787 # returned token is the next lookahead |
| 788 lookahead = tok |
| 789 errtoken = None |
| 790 continue |
| 791 else: |
| 792 if errtoken: |
| 793 if hasattr(errtoken,"lineno"): lineno = lookahead.li
neno |
| 794 else: lineno = 0 |
| 795 if lineno: |
| 796 sys.stderr.write("yacc: Syntax error at line %d,
token=%s\n" % (lineno, errtoken.type)) |
| 797 else: |
| 798 sys.stderr.write("yacc: Syntax error, token=%s"
% errtoken.type) |
| 799 else: |
| 800 sys.stderr.write("yacc: Parse error in input. EOF\n"
) |
| 801 return |
| 802 |
| 803 else: |
| 804 errorcount = error_count |
| 805 |
| 806 # case 1: the statestack only has 1 entry on it. If we're in t
his state, the |
| 807 # entire parse has been rolled back and we're completely hosed.
The token is |
| 808 # discarded and we just keep going. |
| 809 |
| 810 if len(statestack) <= 1 and lookahead.type != '$end': |
| 811 lookahead = None |
| 812 errtoken = None |
| 813 state = 0 |
| 814 # Nuke the pushback stack |
| 815 del lookaheadstack[:] |
| 816 continue |
| 817 |
| 818 # case 2: the statestack has a couple of entries on it, but we'r
e |
| 819 # at the end of the file. nuke the top entry and generate an err
or token |
| 820 |
| 821 # Start nuking entries on the stack |
| 822 if lookahead.type == '$end': |
| 823 # Whoa. We're really hosed here. Bail out |
| 824 return |
| 825 |
| 826 if lookahead.type != 'error': |
| 827 sym = symstack[-1] |
| 828 if sym.type == 'error': |
| 829 # Hmmm. Error is on top of stack, we'll just nuke input |
| 830 # symbol and continue |
| 831 lookahead = None |
| 832 continue |
| 833 t = YaccSymbol() |
| 834 t.type = 'error' |
| 835 if hasattr(lookahead,"lineno"): |
| 836 t.lineno = lookahead.lineno |
| 837 t.value = lookahead |
| 838 lookaheadstack.append(lookahead) |
| 839 lookahead = t |
| 840 else: |
| 841 symstack.pop() |
| 842 statestack.pop() |
| 843 state = statestack[-1] # Potential bug fix |
| 844 |
| 845 continue |
| 846 |
| 847 # Call an error function here |
| 848 raise RuntimeError("yacc: internal parser error!!!\n") |
| 849 |
| 850 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! |
| 851 # parseopt_notrack(). |
| 852 # |
| 853 # Optimized version of parseopt() with line number tracking removed. |
| 854 # DO NOT EDIT THIS CODE DIRECTLY. Copy the optimized version and remove |
| 855 # code in the #--! TRACKING sections |
| 856 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! |
| 857 |
| 858 def parseopt_notrack(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc
=None): |
| 859 lookahead = None # Current lookahead symbol |
| 860 lookaheadstack = [ ] # Stack of lookahead symbols |
| 861 actions = self.action # Local reference to action table (to a
void lookup on self.) |
| 862 goto = self.goto # Local reference to goto table (to avo
id lookup on self.) |
| 863 prod = self.productions # Local reference to production list (t
o avoid lookup on self.) |
| 864 pslice = YaccProduction(None) # Production object passed to grammar r
ules |
| 865 errorcount = 0 # Used during error recovery |
| 866 |
| 867 # If no lexer was given, we will try to use the lex module |
| 868 if not lexer: |
| 869 lex = load_ply_lex() |
| 870 lexer = lex.lexer |
| 871 |
| 872 # Set up the lexer and parser objects on pslice |
| 873 pslice.lexer = lexer |
| 874 pslice.parser = self |
| 875 |
| 876 # If input was supplied, pass to lexer |
| 877 if input is not None: |
| 878 lexer.input(input) |
| 879 |
| 880 if tokenfunc is None: |
| 881 # Tokenize function |
| 882 get_token = lexer.token |
| 883 else: |
| 884 get_token = tokenfunc |
| 885 |
| 886 # Set up the state and symbol stacks |
| 887 |
| 888 statestack = [ ] # Stack of parsing states |
| 889 self.statestack = statestack |
| 890 symstack = [ ] # Stack of grammar symbols |
| 891 self.symstack = symstack |
| 892 |
| 893 pslice.stack = symstack # Put in the production |
| 894 errtoken = None # Err token |
| 895 |
| 896 # The start state is assumed to be (0,$end) |
| 897 |
| 898 statestack.append(0) |
| 899 sym = YaccSymbol() |
| 900 sym.type = '$end' |
| 901 symstack.append(sym) |
| 902 state = 0 |
| 903 while 1: |
| 904 # Get the next symbol on the input. If a lookahead symbol |
| 905 # is already set, we just use that. Otherwise, we'll pull |
| 906 # the next token off of the lookaheadstack or from the lexer |
| 907 |
| 908 if not lookahead: |
| 909 if not lookaheadstack: |
| 910 lookahead = get_token() # Get the next token |
| 911 else: |
| 912 lookahead = lookaheadstack.pop() |
| 913 if not lookahead: |
| 914 lookahead = YaccSymbol() |
| 915 lookahead.type = '$end' |
| 916 |
| 917 # Check the action table |
| 918 ltype = lookahead.type |
| 919 t = actions[state].get(ltype) |
| 920 |
| 921 if t is not None: |
| 922 if t > 0: |
| 923 # shift a symbol on the stack |
| 924 statestack.append(t) |
| 925 state = t |
| 926 |
| 927 symstack.append(lookahead) |
| 928 lookahead = None |
| 929 |
| 930 # Decrease error count on successful shift |
| 931 if errorcount: errorcount -=1 |
| 932 continue |
| 933 |
| 934 if t < 0: |
| 935 # reduce a symbol on the stack, emit a production |
| 936 p = prod[-t] |
| 937 pname = p.name |
| 938 plen = p.len |
| 939 |
| 940 # Get production function |
| 941 sym = YaccSymbol() |
| 942 sym.type = pname # Production name |
| 943 sym.value = None |
| 944 |
| 945 if plen: |
| 946 targ = symstack[-plen-1:] |
| 947 targ[0] = sym |
| 948 |
| 949 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 950 # The code enclosed in this section is duplicated |
| 951 # below as a performance optimization. Make sure |
| 952 # changes get made in both locations. |
| 953 |
| 954 pslice.slice = targ |
| 955 |
| 956 try: |
| 957 # Call the grammar rule with our special slice objec
t |
| 958 del symstack[-plen:] |
| 959 del statestack[-plen:] |
| 960 p.callable(pslice) |
| 961 symstack.append(sym) |
| 962 state = goto[statestack[-1]][pname] |
| 963 statestack.append(state) |
| 964 except SyntaxError: |
| 965 # If an error was set. Enter error recovery state |
| 966 lookaheadstack.append(lookahead) |
| 967 symstack.pop() |
| 968 statestack.pop() |
| 969 state = statestack[-1] |
| 970 sym.type = 'error' |
| 971 lookahead = sym |
| 972 errorcount = error_count |
| 973 self.errorok = 0 |
| 974 continue |
| 975 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 976 |
| 977 else: |
| 978 |
| 979 targ = [ sym ] |
| 980 |
| 981 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 982 # The code enclosed in this section is duplicated |
| 983 # above as a performance optimization. Make sure |
| 984 # changes get made in both locations. |
| 985 |
| 986 pslice.slice = targ |
| 987 |
| 988 try: |
| 989 # Call the grammar rule with our special slice objec
t |
| 990 p.callable(pslice) |
| 991 symstack.append(sym) |
| 992 state = goto[statestack[-1]][pname] |
| 993 statestack.append(state) |
| 994 except SyntaxError: |
| 995 # If an error was set. Enter error recovery state |
| 996 lookaheadstack.append(lookahead) |
| 997 symstack.pop() |
| 998 statestack.pop() |
| 999 state = statestack[-1] |
| 1000 sym.type = 'error' |
| 1001 lookahead = sym |
| 1002 errorcount = error_count |
| 1003 self.errorok = 0 |
| 1004 continue |
| 1005 # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| 1006 |
| 1007 if t == 0: |
| 1008 n = symstack[-1] |
| 1009 return getattr(n,"value",None) |
| 1010 |
| 1011 if t == None: |
| 1012 |
| 1013 # We have some kind of parsing error here. To handle |
| 1014 # this, we are going to push the current token onto |
| 1015 # the tokenstack and replace it with an 'error' token. |
| 1016 # If there are any synchronization rules, they may |
| 1017 # catch it. |
| 1018 # |
| 1019 # In addition to pushing the error token, we call call |
| 1020 # the user defined p_error() function if this is the |
| 1021 # first syntax error. This function is only called if |
| 1022 # errorcount == 0. |
| 1023 if errorcount == 0 or self.errorok: |
| 1024 errorcount = error_count |
| 1025 self.errorok = 0 |
| 1026 errtoken = lookahead |
| 1027 if errtoken.type == '$end': |
| 1028 errtoken = None # End of file! |
| 1029 if self.errorfunc: |
| 1030 global errok,token,restart |
| 1031 errok = self.errok # Set some special functions a
vailable in error recovery |
| 1032 token = get_token |
| 1033 restart = self.restart |
| 1034 if errtoken and not hasattr(errtoken,'lexer'): |
| 1035 errtoken.lexer = lexer |
| 1036 tok = self.errorfunc(errtoken) |
| 1037 del errok, token, restart # Delete special functions |
| 1038 |
| 1039 if self.errorok: |
| 1040 # User must have done some kind of panic |
| 1041 # mode recovery on their own. The |
| 1042 # returned token is the next lookahead |
| 1043 lookahead = tok |
| 1044 errtoken = None |
| 1045 continue |
| 1046 else: |
| 1047 if errtoken: |
| 1048 if hasattr(errtoken,"lineno"): lineno = lookahead.li
neno |
| 1049 else: lineno = 0 |
| 1050 if lineno: |
| 1051 sys.stderr.write("yacc: Syntax error at line %d,
token=%s\n" % (lineno, errtoken.type)) |
| 1052 else: |
| 1053 sys.stderr.write("yacc: Syntax error, token=%s"
% errtoken.type) |
| 1054 else: |
| 1055 sys.stderr.write("yacc: Parse error in input. EOF\n"
) |
| 1056 return |
| 1057 |
| 1058 else: |
| 1059 errorcount = error_count |
| 1060 |
| 1061 # case 1: the statestack only has 1 entry on it. If we're in t
his state, the |
| 1062 # entire parse has been rolled back and we're completely hosed.
The token is |
| 1063 # discarded and we just keep going. |
| 1064 |
| 1065 if len(statestack) <= 1 and lookahead.type != '$end': |
| 1066 lookahead = None |
| 1067 errtoken = None |
| 1068 state = 0 |
| 1069 # Nuke the pushback stack |
| 1070 del lookaheadstack[:] |
| 1071 continue |
| 1072 |
| 1073 # case 2: the statestack has a couple of entries on it, but we'r
e |
| 1074 # at the end of the file. nuke the top entry and generate an err
or token |
| 1075 |
| 1076 # Start nuking entries on the stack |
| 1077 if lookahead.type == '$end': |
| 1078 # Whoa. We're really hosed here. Bail out |
| 1079 return |
| 1080 |
| 1081 if lookahead.type != 'error': |
| 1082 sym = symstack[-1] |
| 1083 if sym.type == 'error': |
| 1084 # Hmmm. Error is on top of stack, we'll just nuke input |
| 1085 # symbol and continue |
| 1086 lookahead = None |
| 1087 continue |
| 1088 t = YaccSymbol() |
| 1089 t.type = 'error' |
| 1090 if hasattr(lookahead,"lineno"): |
| 1091 t.lineno = lookahead.lineno |
| 1092 t.value = lookahead |
| 1093 lookaheadstack.append(lookahead) |
| 1094 lookahead = t |
| 1095 else: |
| 1096 symstack.pop() |
| 1097 statestack.pop() |
| 1098 state = statestack[-1] # Potential bug fix |
| 1099 |
| 1100 continue |
| 1101 |
| 1102 # Call an error function here |
| 1103 raise RuntimeError("yacc: internal parser error!!!\n") |
| 1104 |
| 1105 # ----------------------------------------------------------------------------- |
| 1106 # === Grammar Representation === |
| 1107 # |
| 1108 # The following functions, classes, and variables are used to represent and |
| 1109 # manipulate the rules that make up a grammar. |
| 1110 # ----------------------------------------------------------------------------- |
| 1111 |
| 1112 import re |
| 1113 |
| 1114 # regex matching identifiers |
| 1115 _is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$') |
| 1116 |
| 1117 # ----------------------------------------------------------------------------- |
| 1118 # class Production: |
| 1119 # |
| 1120 # This class stores the raw information about a single production or grammar rul
e. |
| 1121 # A grammar rule refers to a specification such as this: |
| 1122 # |
| 1123 # expr : expr PLUS term |
| 1124 # |
| 1125 # Here are the basic attributes defined on all productions |
| 1126 # |
| 1127 # name - Name of the production. For example 'expr' |
| 1128 # prod - A list of symbols on the right side ['expr','PLUS','term'] |
| 1129 # prec - Production precedence level |
| 1130 # number - Production number. |
| 1131 # func - Function that executes on reduce |
| 1132 # file - File where production function is defined |
| 1133 # lineno - Line number where production function is defined |
| 1134 # |
| 1135 # The following attributes are defined or optional. |
| 1136 # |
| 1137 # len - Length of the production (number of symbols on right hand si
de) |
| 1138 # usyms - Set of unique symbols found in the production |
| 1139 # ----------------------------------------------------------------------------- |
| 1140 |
| 1141 class Production(object): |
| 1142 def __init__(self,number,name,prod,precedence=('right',0),func=None,file='',
line=0): |
| 1143 self.name = name |
| 1144 self.prod = tuple(prod) |
| 1145 self.number = number |
| 1146 self.func = func |
| 1147 self.callable = None |
| 1148 self.file = file |
| 1149 self.line = line |
| 1150 self.prec = precedence |
| 1151 |
| 1152 # Internal settings used during table construction |
| 1153 |
| 1154 self.len = len(self.prod) # Length of the production |
| 1155 |
| 1156 # Create a list of unique production symbols used in the production |
| 1157 self.usyms = [ ] |
| 1158 for s in self.prod: |
| 1159 if s not in self.usyms: |
| 1160 self.usyms.append(s) |
| 1161 |
| 1162 # List of all LR items for the production |
| 1163 self.lr_items = [] |
| 1164 self.lr_next = None |
| 1165 |
| 1166 # Create a string representation |
| 1167 if self.prod: |
| 1168 self.str = "%s -> %s" % (self.name," ".join(self.prod)) |
| 1169 else: |
| 1170 self.str = "%s -> <empty>" % self.name |
| 1171 |
| 1172 def __str__(self): |
| 1173 return self.str |
| 1174 |
| 1175 def __repr__(self): |
| 1176 return "Production("+str(self)+")" |
| 1177 |
| 1178 def __len__(self): |
| 1179 return len(self.prod) |
| 1180 |
| 1181 def __nonzero__(self): |
| 1182 return 1 |
| 1183 |
| 1184 def __getitem__(self,index): |
| 1185 return self.prod[index] |
| 1186 |
| 1187 # Return the nth lr_item from the production (or None if at the end) |
| 1188 def lr_item(self,n): |
| 1189 if n > len(self.prod): return None |
| 1190 p = LRItem(self,n) |
| 1191 |
| 1192 # Precompute the list of productions immediately following. Hack. Remov
e later |
| 1193 try: |
| 1194 p.lr_after = Prodnames[p.prod[n+1]] |
| 1195 except (IndexError,KeyError): |
| 1196 p.lr_after = [] |
| 1197 try: |
| 1198 p.lr_before = p.prod[n-1] |
| 1199 except IndexError: |
| 1200 p.lr_before = None |
| 1201 |
| 1202 return p |
| 1203 |
| 1204 # Bind the production function name to a callable |
| 1205 def bind(self,pdict): |
| 1206 if self.func: |
| 1207 self.callable = pdict[self.func] |
| 1208 |
| 1209 # This class serves as a minimal standin for Production objects when |
| 1210 # reading table data from files. It only contains information |
| 1211 # actually used by the LR parsing engine, plus some additional |
| 1212 # debugging information. |
| 1213 class MiniProduction(object): |
| 1214 def __init__(self,str,name,len,func,file,line): |
| 1215 self.name = name |
| 1216 self.len = len |
| 1217 self.func = func |
| 1218 self.callable = None |
| 1219 self.file = file |
| 1220 self.line = line |
| 1221 self.str = str |
| 1222 def __str__(self): |
| 1223 return self.str |
| 1224 def __repr__(self): |
| 1225 return "MiniProduction(%s)" % self.str |
| 1226 |
| 1227 # Bind the production function name to a callable |
| 1228 def bind(self,pdict): |
| 1229 if self.func: |
| 1230 self.callable = pdict[self.func] |
| 1231 |
| 1232 |
| 1233 # ----------------------------------------------------------------------------- |
| 1234 # class LRItem |
| 1235 # |
| 1236 # This class represents a specific stage of parsing a production rule. For |
| 1237 # example: |
| 1238 # |
| 1239 # expr : expr . PLUS term |
| 1240 # |
| 1241 # In the above, the "." represents the current location of the parse. Here |
| 1242 # basic attributes: |
| 1243 # |
| 1244 # name - Name of the production. For example 'expr' |
| 1245 # prod - A list of symbols on the right side ['expr','.', 'PLUS','te
rm'] |
| 1246 # number - Production number. |
| 1247 # |
| 1248 # lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term
' |
| 1249 # then lr_next refers to 'expr -> expr PLUS . term' |
| 1250 # lr_index - LR item index (location of the ".") in the prod list. |
| 1251 # lookaheads - LALR lookahead symbols for this item |
| 1252 # len - Length of the production (number of symbols on right hand s
ide) |
| 1253 # lr_after - List of all productions that immediately follow |
| 1254 # lr_before - Grammar symbol immediately before |
| 1255 # ----------------------------------------------------------------------------- |
| 1256 |
| 1257 class LRItem(object): |
| 1258 def __init__(self,p,n): |
| 1259 self.name = p.name |
| 1260 self.prod = list(p.prod) |
| 1261 self.number = p.number |
| 1262 self.lr_index = n |
| 1263 self.lookaheads = { } |
| 1264 self.prod.insert(n,".") |
| 1265 self.prod = tuple(self.prod) |
| 1266 self.len = len(self.prod) |
| 1267 self.usyms = p.usyms |
| 1268 |
| 1269 def __str__(self): |
| 1270 if self.prod: |
| 1271 s = "%s -> %s" % (self.name," ".join(self.prod)) |
| 1272 else: |
| 1273 s = "%s -> <empty>" % self.name |
| 1274 return s |
| 1275 |
| 1276 def __repr__(self): |
| 1277 return "LRItem("+str(self)+")" |
| 1278 |
| 1279 def __len__(self): |
| 1280 return len(self.prod) |
| 1281 |
| 1282 def __getitem__(self,index): |
| 1283 return self.prod[index] |
| 1284 |
| 1285 # ----------------------------------------------------------------------------- |
| 1286 # rightmost_terminal() |
| 1287 # |
| 1288 # Return the rightmost terminal from a list of symbols. Used in add_production(
) |
| 1289 # ----------------------------------------------------------------------------- |
| 1290 def rightmost_terminal(symbols, terminals): |
| 1291 i = len(symbols) - 1 |
| 1292 while i >= 0: |
| 1293 if symbols[i] in terminals: |
| 1294 return symbols[i] |
| 1295 i -= 1 |
| 1296 return None |
| 1297 |
| 1298 # ----------------------------------------------------------------------------- |
| 1299 # === GRAMMAR CLASS === |
| 1300 # |
| 1301 # The following class represents the contents of the specified grammar along |
| 1302 # with various computed properties such as first sets, follow sets, LR items, et
c. |
| 1303 # This data is used for critical parts of the table generation process later. |
| 1304 # ----------------------------------------------------------------------------- |
| 1305 |
| 1306 class GrammarError(YaccError): pass |
| 1307 |
| 1308 class Grammar(object): |
| 1309 def __init__(self,terminals): |
| 1310 self.Productions = [None] # A list of all of the productions. The fir
st |
| 1311 # entry is always reserved for the purpose o
f |
| 1312 # building an augmented grammar |
| 1313 |
| 1314 self.Prodnames = { } # A dictionary mapping the names of nontermi
nals to a list of all |
| 1315 # productions of that nonterminal. |
| 1316 |
| 1317 self.Prodmap = { } # A dictionary that is only used to detect d
uplicate |
| 1318 # productions. |
| 1319 |
| 1320 self.Terminals = { } # A dictionary mapping the names of terminal
symbols to a |
| 1321 # list of the rules where they are used. |
| 1322 |
| 1323 for term in terminals: |
| 1324 self.Terminals[term] = [] |
| 1325 |
| 1326 self.Terminals['error'] = [] |
| 1327 |
| 1328 self.Nonterminals = { } # A dictionary mapping names of nonterminals
to a list |
| 1329 # of rule numbers where they are used. |
| 1330 |
| 1331 self.First = { } # A dictionary of precomputed FIRST(x) symbo
ls |
| 1332 |
| 1333 self.Follow = { } # A dictionary of precomputed FOLLOW(x) symb
ols |
| 1334 |
| 1335 self.Precedence = { } # Precedence rules for each terminal. Contai
ns tuples of the |
| 1336 # form ('right',level) or ('nonassoc', level
) or ('left',level) |
| 1337 |
| 1338 self.UsedPrecedence = { } # Precedence rules that were actually used b
y the grammer. |
| 1339 # This is only used to provide error checkin
g and to generate |
| 1340 # a warning about unused precedence rules. |
| 1341 |
| 1342 self.Start = None # Starting symbol for the grammar |
| 1343 |
| 1344 |
| 1345 def __len__(self): |
| 1346 return len(self.Productions) |
| 1347 |
| 1348 def __getitem__(self,index): |
| 1349 return self.Productions[index] |
| 1350 |
| 1351 # --------------------------------------------------------------------------
--- |
| 1352 # set_precedence() |
| 1353 # |
| 1354 # Sets the precedence for a given terminal. assoc is the associativity such
as |
| 1355 # 'left','right', or 'nonassoc'. level is a numeric level. |
| 1356 # |
| 1357 # --------------------------------------------------------------------------
--- |
| 1358 |
| 1359 def set_precedence(self,term,assoc,level): |
| 1360 assert self.Productions == [None],"Must call set_precedence() before add
_production()" |
| 1361 if term in self.Precedence: |
| 1362 raise GrammarError("Precedence already specified for terminal '%s'"
% term) |
| 1363 if assoc not in ['left','right','nonassoc']: |
| 1364 raise GrammarError("Associativity must be one of 'left','right', or
'nonassoc'") |
| 1365 self.Precedence[term] = (assoc,level) |
| 1366 |
| 1367 # --------------------------------------------------------------------------
--- |
| 1368 # add_production() |
| 1369 # |
| 1370 # Given an action function, this function assembles a production rule and |
| 1371 # computes its precedence level. |
| 1372 # |
| 1373 # The production rule is supplied as a list of symbols. For example, |
| 1374 # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and |
| 1375 # symbols ['expr','PLUS','term']. |
| 1376 # |
| 1377 # Precedence is determined by the precedence of the right-most non-terminal |
| 1378 # or the precedence of a terminal specified by %prec. |
| 1379 # |
| 1380 # A variety of error checks are performed to make sure production symbols |
| 1381 # are valid and that %prec is used correctly. |
| 1382 # --------------------------------------------------------------------------
--- |
| 1383 |
| 1384 def add_production(self,prodname,syms,func=None,file='',line=0): |
| 1385 |
| 1386 if prodname in self.Terminals: |
| 1387 raise GrammarError("%s:%d: Illegal rule name '%s'. Already defined a
s a token" % (file,line,prodname)) |
| 1388 if prodname == 'error': |
| 1389 raise GrammarError("%s:%d: Illegal rule name '%s'. error is a reserv
ed word" % (file,line,prodname)) |
| 1390 if not _is_identifier.match(prodname): |
| 1391 raise GrammarError("%s:%d: Illegal rule name '%s'" % (file,line,prod
name)) |
| 1392 |
| 1393 # Look for literal tokens |
| 1394 for n,s in enumerate(syms): |
| 1395 if s[0] in "'\"": |
| 1396 try: |
| 1397 c = eval(s) |
| 1398 if (len(c) > 1): |
| 1399 raise GrammarError("%s:%d: Literal token %s in rule '%
s' may only be a single character" % (file,line,s, prodname)) |
| 1400 if not c in self.Terminals: |
| 1401 self.Terminals[c] = [] |
| 1402 syms[n] = c |
| 1403 continue |
| 1404 except SyntaxError: |
| 1405 pass |
| 1406 if not _is_identifier.match(s) and s != '%prec': |
| 1407 raise GrammarError("%s:%d: Illegal name '%s' in rule '%s'" % (fi
le,line,s, prodname)) |
| 1408 |
| 1409 # Determine the precedence level |
| 1410 if '%prec' in syms: |
| 1411 if syms[-1] == '%prec': |
| 1412 raise GrammarError("%s:%d: Syntax error. Nothing follows %%prec"
% (file,line)) |
| 1413 if syms[-2] != '%prec': |
| 1414 raise GrammarError("%s:%d: Syntax error. %%prec can only appear
at the end of a grammar rule" % (file,line)) |
| 1415 precname = syms[-1] |
| 1416 prodprec = self.Precedence.get(precname,None) |
| 1417 if not prodprec: |
| 1418 raise GrammarError("%s:%d: Nothing known about the precedence of
'%s'" % (file,line,precname)) |
| 1419 else: |
| 1420 self.UsedPrecedence[precname] = 1 |
| 1421 del syms[-2:] # Drop %prec from the rule |
| 1422 else: |
| 1423 # If no %prec, precedence is determined by the rightmost terminal sy
mbol |
| 1424 precname = rightmost_terminal(syms,self.Terminals) |
| 1425 prodprec = self.Precedence.get(precname,('right',0)) |
| 1426 |
| 1427 # See if the rule is already in the rulemap |
| 1428 map = "%s -> %s" % (prodname,syms) |
| 1429 if map in self.Prodmap: |
| 1430 m = self.Prodmap[map] |
| 1431 raise GrammarError("%s:%d: Duplicate rule %s. " % (file,line, m) + |
| 1432 "Previous definition at %s:%d" % (file,line, m.fi
le, m.line)) |
| 1433 |
| 1434 # From this point on, everything is valid. Create a new Production inst
ance |
| 1435 pnumber = len(self.Productions) |
| 1436 if not prodname in self.Nonterminals: |
| 1437 self.Nonterminals[prodname] = [ ] |
| 1438 |
| 1439 # Add the production number to Terminals and Nonterminals |
| 1440 for t in syms: |
| 1441 if t in self.Terminals: |
| 1442 self.Terminals[t].append(pnumber) |
| 1443 else: |
| 1444 if not t in self.Nonterminals: |
| 1445 self.Nonterminals[t] = [ ] |
| 1446 self.Nonterminals[t].append(pnumber) |
| 1447 |
| 1448 # Create a production and add it to the list of productions |
| 1449 p = Production(pnumber,prodname,syms,prodprec,func,file,line) |
| 1450 self.Productions.append(p) |
| 1451 self.Prodmap[map] = p |
| 1452 |
| 1453 # Add to the global productions list |
| 1454 try: |
| 1455 self.Prodnames[prodname].append(p) |
| 1456 except KeyError: |
| 1457 self.Prodnames[prodname] = [ p ] |
| 1458 return 0 |
| 1459 |
| 1460 # --------------------------------------------------------------------------
--- |
| 1461 # set_start() |
| 1462 # |
| 1463 # Sets the starting symbol and creates the augmented grammar. Production |
| 1464 # rule 0 is S' -> start where start is the start symbol. |
| 1465 # --------------------------------------------------------------------------
--- |
| 1466 |
| 1467 def set_start(self,start=None): |
| 1468 if not start: |
| 1469 start = self.Productions[1].name |
| 1470 if start not in self.Nonterminals: |
| 1471 raise GrammarError("start symbol %s undefined" % start) |
| 1472 self.Productions[0] = Production(0,"S'",[start]) |
| 1473 self.Nonterminals[start].append(0) |
| 1474 self.Start = start |
| 1475 |
| 1476 # --------------------------------------------------------------------------
--- |
| 1477 # find_unreachable() |
| 1478 # |
| 1479 # Find all of the nonterminal symbols that can't be reached from the startin
g |
| 1480 # symbol. Returns a list of nonterminals that can't be reached. |
| 1481 # --------------------------------------------------------------------------
--- |
| 1482 |
| 1483 def find_unreachable(self): |
| 1484 |
| 1485 # Mark all symbols that are reachable from a symbol s |
| 1486 def mark_reachable_from(s): |
| 1487 if reachable[s]: |
| 1488 # We've already reached symbol s. |
| 1489 return |
| 1490 reachable[s] = 1 |
| 1491 for p in self.Prodnames.get(s,[]): |
| 1492 for r in p.prod: |
| 1493 mark_reachable_from(r) |
| 1494 |
| 1495 reachable = { } |
| 1496 for s in list(self.Terminals) + list(self.Nonterminals): |
| 1497 reachable[s] = 0 |
| 1498 |
| 1499 mark_reachable_from( self.Productions[0].prod[0] ) |
| 1500 |
| 1501 return [s for s in list(self.Nonterminals) |
| 1502 if not reachable[s]] |
| 1503 |
| 1504 # --------------------------------------------------------------------------
--- |
| 1505 # infinite_cycles() |
| 1506 # |
| 1507 # This function looks at the various parsing rules and tries to detect |
| 1508 # infinite recursion cycles (grammar rules where there is no possible way |
| 1509 # to derive a string of only terminals). |
| 1510 # --------------------------------------------------------------------------
--- |
| 1511 |
| 1512 def infinite_cycles(self): |
| 1513 terminates = {} |
| 1514 |
| 1515 # Terminals: |
| 1516 for t in self.Terminals: |
| 1517 terminates[t] = 1 |
| 1518 |
| 1519 terminates['$end'] = 1 |
| 1520 |
| 1521 # Nonterminals: |
| 1522 |
| 1523 # Initialize to false: |
| 1524 for n in self.Nonterminals: |
| 1525 terminates[n] = 0 |
| 1526 |
| 1527 # Then propagate termination until no change: |
| 1528 while 1: |
| 1529 some_change = 0 |
| 1530 for (n,pl) in self.Prodnames.items(): |
| 1531 # Nonterminal n terminates iff any of its productions terminates
. |
| 1532 for p in pl: |
| 1533 # Production p terminates iff all of its rhs symbols termina
te. |
| 1534 for s in p.prod: |
| 1535 if not terminates[s]: |
| 1536 # The symbol s does not terminate, |
| 1537 # so production p does not terminate. |
| 1538 p_terminates = 0 |
| 1539 break |
| 1540 else: |
| 1541 # didn't break from the loop, |
| 1542 # so every symbol s terminates |
| 1543 # so production p terminates. |
| 1544 p_terminates = 1 |
| 1545 |
| 1546 if p_terminates: |
| 1547 # symbol n terminates! |
| 1548 if not terminates[n]: |
| 1549 terminates[n] = 1 |
| 1550 some_change = 1 |
| 1551 # Don't need to consider any more productions for this n
. |
| 1552 break |
| 1553 |
| 1554 if not some_change: |
| 1555 break |
| 1556 |
| 1557 infinite = [] |
| 1558 for (s,term) in terminates.items(): |
| 1559 if not term: |
| 1560 if not s in self.Prodnames and not s in self.Terminals and s !=
'error': |
| 1561 # s is used-but-not-defined, and we've already warned of tha
t, |
| 1562 # so it would be overkill to say that it's also non-terminat
ing. |
| 1563 pass |
| 1564 else: |
| 1565 infinite.append(s) |
| 1566 |
| 1567 return infinite |
| 1568 |
| 1569 |
| 1570 # --------------------------------------------------------------------------
--- |
| 1571 # undefined_symbols() |
| 1572 # |
| 1573 # Find all symbols that were used the grammar, but not defined as tokens or |
| 1574 # grammar rules. Returns a list of tuples (sym, prod) where sym in the symb
ol |
| 1575 # and prod is the production where the symbol was used. |
| 1576 # --------------------------------------------------------------------------
--- |
| 1577 def undefined_symbols(self): |
| 1578 result = [] |
| 1579 for p in self.Productions: |
| 1580 if not p: continue |
| 1581 |
| 1582 for s in p.prod: |
| 1583 if not s in self.Prodnames and not s in self.Terminals and s !=
'error': |
| 1584 result.append((s,p)) |
| 1585 return result |
| 1586 |
| 1587 # --------------------------------------------------------------------------
--- |
| 1588 # unused_terminals() |
| 1589 # |
| 1590 # Find all terminals that were defined, but not used by the grammar. Return
s |
| 1591 # a list of all symbols. |
| 1592 # --------------------------------------------------------------------------
--- |
| 1593 def unused_terminals(self): |
| 1594 unused_tok = [] |
| 1595 for s,v in self.Terminals.items(): |
| 1596 if s != 'error' and not v: |
| 1597 unused_tok.append(s) |
| 1598 |
| 1599 return unused_tok |
| 1600 |
| 1601 # --------------------------------------------------------------------------
---- |
| 1602 # unused_rules() |
| 1603 # |
| 1604 # Find all grammar rules that were defined, but not used (maybe not reachab
le) |
| 1605 # Returns a list of productions. |
| 1606 # --------------------------------------------------------------------------
---- |
| 1607 |
| 1608 def unused_rules(self): |
| 1609 unused_prod = [] |
| 1610 for s,v in self.Nonterminals.items(): |
| 1611 if not v: |
| 1612 p = self.Prodnames[s][0] |
| 1613 unused_prod.append(p) |
| 1614 return unused_prod |
| 1615 |
| 1616 # --------------------------------------------------------------------------
--- |
| 1617 # unused_precedence() |
| 1618 # |
| 1619 # Returns a list of tuples (term,precedence) corresponding to precedence |
| 1620 # rules that were never used by the grammar. term is the name of the termin
al |
| 1621 # on which precedence was applied and precedence is a string such as 'left'
or |
| 1622 # 'right' corresponding to the type of precedence. |
| 1623 # --------------------------------------------------------------------------
--- |
| 1624 |
| 1625 def unused_precedence(self): |
| 1626 unused = [] |
| 1627 for termname in self.Precedence: |
| 1628 if not (termname in self.Terminals or termname in self.UsedPrecedenc
e): |
| 1629 unused.append((termname,self.Precedence[termname][0])) |
| 1630 |
| 1631 return unused |
| 1632 |
| 1633 # ------------------------------------------------------------------------- |
| 1634 # _first() |
| 1635 # |
| 1636 # Compute the value of FIRST1(beta) where beta is a tuple of symbols. |
| 1637 # |
| 1638 # During execution of compute_first1, the result may be incomplete. |
| 1639 # Afterward (e.g., when called from compute_follow()), it will be complete. |
| 1640 # ------------------------------------------------------------------------- |
| 1641 def _first(self,beta): |
| 1642 |
| 1643 # We are computing First(x1,x2,x3,...,xn) |
| 1644 result = [ ] |
| 1645 for x in beta: |
| 1646 x_produces_empty = 0 |
| 1647 |
| 1648 # Add all the non-<empty> symbols of First[x] to the result. |
| 1649 for f in self.First[x]: |
| 1650 if f == '<empty>': |
| 1651 x_produces_empty = 1 |
| 1652 else: |
| 1653 if f not in result: result.append(f) |
| 1654 |
| 1655 if x_produces_empty: |
| 1656 # We have to consider the next x in beta, |
| 1657 # i.e. stay in the loop. |
| 1658 pass |
| 1659 else: |
| 1660 # We don't have to consider any further symbols in beta. |
| 1661 break |
| 1662 else: |
| 1663 # There was no 'break' from the loop, |
| 1664 # so x_produces_empty was true for all x in beta, |
| 1665 # so beta produces empty as well. |
| 1666 result.append('<empty>') |
| 1667 |
| 1668 return result |
| 1669 |
| 1670 # ------------------------------------------------------------------------- |
| 1671 # compute_first() |
| 1672 # |
| 1673 # Compute the value of FIRST1(X) for all symbols |
| 1674 # ------------------------------------------------------------------------- |
| 1675 def compute_first(self): |
| 1676 if self.First: |
| 1677 return self.First |
| 1678 |
| 1679 # Terminals: |
| 1680 for t in self.Terminals: |
| 1681 self.First[t] = [t] |
| 1682 |
| 1683 self.First['$end'] = ['$end'] |
| 1684 |
| 1685 # Nonterminals: |
| 1686 |
| 1687 # Initialize to the empty set: |
| 1688 for n in self.Nonterminals: |
| 1689 self.First[n] = [] |
| 1690 |
| 1691 # Then propagate symbols until no change: |
| 1692 while 1: |
| 1693 some_change = 0 |
| 1694 for n in self.Nonterminals: |
| 1695 for p in self.Prodnames[n]: |
| 1696 for f in self._first(p.prod): |
| 1697 if f not in self.First[n]: |
| 1698 self.First[n].append( f ) |
| 1699 some_change = 1 |
| 1700 if not some_change: |
| 1701 break |
| 1702 |
| 1703 return self.First |
| 1704 |
| 1705 # --------------------------------------------------------------------- |
| 1706 # compute_follow() |
| 1707 # |
| 1708 # Computes all of the follow sets for every non-terminal symbol. The |
| 1709 # follow set is the set of all symbols that might follow a given |
| 1710 # non-terminal. See the Dragon book, 2nd Ed. p. 189. |
| 1711 # --------------------------------------------------------------------- |
| 1712 def compute_follow(self,start=None): |
| 1713 # If already computed, return the result |
| 1714 if self.Follow: |
| 1715 return self.Follow |
| 1716 |
| 1717 # If first sets not computed yet, do that first. |
| 1718 if not self.First: |
| 1719 self.compute_first() |
| 1720 |
| 1721 # Add '$end' to the follow list of the start symbol |
| 1722 for k in self.Nonterminals: |
| 1723 self.Follow[k] = [ ] |
| 1724 |
| 1725 if not start: |
| 1726 start = self.Productions[1].name |
| 1727 |
| 1728 self.Follow[start] = [ '$end' ] |
| 1729 |
| 1730 while 1: |
| 1731 didadd = 0 |
| 1732 for p in self.Productions[1:]: |
| 1733 # Here is the production set |
| 1734 for i in range(len(p.prod)): |
| 1735 B = p.prod[i] |
| 1736 if B in self.Nonterminals: |
| 1737 # Okay. We got a non-terminal in a production |
| 1738 fst = self._first(p.prod[i+1:]) |
| 1739 hasempty = 0 |
| 1740 for f in fst: |
| 1741 if f != '<empty>' and f not in self.Follow[B]: |
| 1742 self.Follow[B].append(f) |
| 1743 didadd = 1 |
| 1744 if f == '<empty>': |
| 1745 hasempty = 1 |
| 1746 if hasempty or i == (len(p.prod)-1): |
| 1747 # Add elements of follow(a) to follow(b) |
| 1748 for f in self.Follow[p.name]: |
| 1749 if f not in self.Follow[B]: |
| 1750 self.Follow[B].append(f) |
| 1751 didadd = 1 |
| 1752 if not didadd: break |
| 1753 return self.Follow |
| 1754 |
| 1755 |
| 1756 # --------------------------------------------------------------------------
--- |
| 1757 # build_lritems() |
| 1758 # |
| 1759 # This function walks the list of productions and builds a complete set of t
he |
| 1760 # LR items. The LR items are stored in two ways: First, they are uniquely |
| 1761 # numbered and placed in the list _lritems. Second, a linked list of LR ite
ms |
| 1762 # is built for each production. For example: |
| 1763 # |
| 1764 # E -> E PLUS E |
| 1765 # |
| 1766 # Creates the list |
| 1767 # |
| 1768 # [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ] |
| 1769 # --------------------------------------------------------------------------
--- |
| 1770 |
| 1771 def build_lritems(self): |
| 1772 for p in self.Productions: |
| 1773 lastlri = p |
| 1774 i = 0 |
| 1775 lr_items = [] |
| 1776 while 1: |
| 1777 if i > len(p): |
| 1778 lri = None |
| 1779 else: |
| 1780 lri = LRItem(p,i) |
| 1781 # Precompute the list of productions immediately following |
| 1782 try: |
| 1783 lri.lr_after = self.Prodnames[lri.prod[i+1]] |
| 1784 except (IndexError,KeyError): |
| 1785 lri.lr_after = [] |
| 1786 try: |
| 1787 lri.lr_before = lri.prod[i-1] |
| 1788 except IndexError: |
| 1789 lri.lr_before = None |
| 1790 |
| 1791 lastlri.lr_next = lri |
| 1792 if not lri: break |
| 1793 lr_items.append(lri) |
| 1794 lastlri = lri |
| 1795 i += 1 |
| 1796 p.lr_items = lr_items |
| 1797 |
| 1798 # ----------------------------------------------------------------------------- |
| 1799 # == Class LRTable == |
| 1800 # |
| 1801 # This basic class represents a basic table of LR parsing information. |
| 1802 # Methods for generating the tables are not defined here. They are defined |
| 1803 # in the derived class LRGeneratedTable. |
| 1804 # ----------------------------------------------------------------------------- |
| 1805 |
| 1806 class VersionError(YaccError): pass |
| 1807 |
| 1808 class LRTable(object): |
| 1809 def __init__(self): |
| 1810 self.lr_action = None |
| 1811 self.lr_goto = None |
| 1812 self.lr_productions = None |
| 1813 self.lr_method = None |
| 1814 |
| 1815 def read_table(self,module): |
| 1816 if isinstance(module,types.ModuleType): |
| 1817 parsetab = module |
| 1818 else: |
| 1819 if sys.version_info[0] < 3: |
| 1820 exec("import %s as parsetab" % module) |
| 1821 else: |
| 1822 env = { } |
| 1823 exec("import %s as parsetab" % module, env, env) |
| 1824 parsetab = env['parsetab'] |
| 1825 |
| 1826 if parsetab._tabversion != __tabversion__: |
| 1827 raise VersionError("yacc table file version is out of date") |
| 1828 |
| 1829 self.lr_action = parsetab._lr_action |
| 1830 self.lr_goto = parsetab._lr_goto |
| 1831 |
| 1832 self.lr_productions = [] |
| 1833 for p in parsetab._lr_productions: |
| 1834 self.lr_productions.append(MiniProduction(*p)) |
| 1835 |
| 1836 self.lr_method = parsetab._lr_method |
| 1837 return parsetab._lr_signature |
| 1838 |
| 1839 # Bind all production function names to callable objects in pdict |
| 1840 def bind_callables(self,pdict): |
| 1841 for p in self.lr_productions: |
| 1842 p.bind(pdict) |
| 1843 |
| 1844 # ----------------------------------------------------------------------------- |
| 1845 # === LR Generator === |
| 1846 # |
| 1847 # The following classes and functions are used to generate LR parsing tables on |
| 1848 # a grammar. |
| 1849 # ----------------------------------------------------------------------------- |
| 1850 |
| 1851 # ----------------------------------------------------------------------------- |
| 1852 # digraph() |
| 1853 # traverse() |
| 1854 # |
| 1855 # The following two functions are used to compute set valued functions |
| 1856 # of the form: |
| 1857 # |
| 1858 # F(x) = F'(x) U U{F(y) | x R y} |
| 1859 # |
| 1860 # This is used to compute the values of Read() sets as well as FOLLOW sets |
| 1861 # in LALR(1) generation. |
| 1862 # |
| 1863 # Inputs: X - An input set |
| 1864 # R - A relation |
| 1865 # FP - Set-valued function |
| 1866 # ------------------------------------------------------------------------------ |
| 1867 |
| 1868 def digraph(X,R,FP): |
| 1869 N = { } |
| 1870 for x in X: |
| 1871 N[x] = 0 |
| 1872 stack = [] |
| 1873 F = { } |
| 1874 for x in X: |
| 1875 if N[x] == 0: traverse(x,N,stack,F,X,R,FP) |
| 1876 return F |
| 1877 |
| 1878 def traverse(x,N,stack,F,X,R,FP): |
| 1879 stack.append(x) |
| 1880 d = len(stack) |
| 1881 N[x] = d |
| 1882 F[x] = FP(x) # F(X) <- F'(x) |
| 1883 |
| 1884 rel = R(x) # Get y's related to x |
| 1885 for y in rel: |
| 1886 if N[y] == 0: |
| 1887 traverse(y,N,stack,F,X,R,FP) |
| 1888 N[x] = min(N[x],N[y]) |
| 1889 for a in F.get(y,[]): |
| 1890 if a not in F[x]: F[x].append(a) |
| 1891 if N[x] == d: |
| 1892 N[stack[-1]] = MAXINT |
| 1893 F[stack[-1]] = F[x] |
| 1894 element = stack.pop() |
| 1895 while element != x: |
| 1896 N[stack[-1]] = MAXINT |
| 1897 F[stack[-1]] = F[x] |
| 1898 element = stack.pop() |
| 1899 |
| 1900 class LALRError(YaccError): pass |
| 1901 |
| 1902 # ----------------------------------------------------------------------------- |
| 1903 # == LRGeneratedTable == |
| 1904 # |
| 1905 # This class implements the LR table generation algorithm. There are no |
| 1906 # public methods except for write() |
| 1907 # ----------------------------------------------------------------------------- |
| 1908 |
| 1909 class LRGeneratedTable(LRTable): |
| 1910 def __init__(self,grammar,method='LALR',log=None): |
| 1911 if method not in ['SLR','LALR']: |
| 1912 raise LALRError("Unsupported method %s" % method) |
| 1913 |
| 1914 self.grammar = grammar |
| 1915 self.lr_method = method |
| 1916 |
| 1917 # Set up the logger |
| 1918 if not log: |
| 1919 log = NullLogger() |
| 1920 self.log = log |
| 1921 |
| 1922 # Internal attributes |
| 1923 self.lr_action = {} # Action table |
| 1924 self.lr_goto = {} # Goto table |
| 1925 self.lr_productions = grammar.Productions # Copy of grammar Producti
on array |
| 1926 self.lr_goto_cache = {} # Cache of computed gotos |
| 1927 self.lr0_cidhash = {} # Cache of closures |
| 1928 |
| 1929 self._add_count = 0 # Internal counter used to detect cycles |
| 1930 |
| 1931 # Diagonistic information filled in by the table generator |
| 1932 self.sr_conflict = 0 |
| 1933 self.rr_conflict = 0 |
| 1934 self.conflicts = [] # List of conflicts |
| 1935 |
| 1936 self.sr_conflicts = [] |
| 1937 self.rr_conflicts = [] |
| 1938 |
| 1939 # Build the tables |
| 1940 self.grammar.build_lritems() |
| 1941 self.grammar.compute_first() |
| 1942 self.grammar.compute_follow() |
| 1943 self.lr_parse_table() |
| 1944 |
| 1945 # Compute the LR(0) closure operation on I, where I is a set of LR(0) items. |
| 1946 |
| 1947 def lr0_closure(self,I): |
| 1948 self._add_count += 1 |
| 1949 |
| 1950 # Add everything in I to J |
| 1951 J = I[:] |
| 1952 didadd = 1 |
| 1953 while didadd: |
| 1954 didadd = 0 |
| 1955 for j in J: |
| 1956 for x in j.lr_after: |
| 1957 if getattr(x,"lr0_added",0) == self._add_count: continue |
| 1958 # Add B --> .G to J |
| 1959 J.append(x.lr_next) |
| 1960 x.lr0_added = self._add_count |
| 1961 didadd = 1 |
| 1962 |
| 1963 return J |
| 1964 |
| 1965 # Compute the LR(0) goto function goto(I,X) where I is a set |
| 1966 # of LR(0) items and X is a grammar symbol. This function is written |
| 1967 # in a way that guarantees uniqueness of the generated goto sets |
| 1968 # (i.e. the same goto set will never be returned as two different Python |
| 1969 # objects). With uniqueness, we can later do fast set comparisons using |
| 1970 # id(obj) instead of element-wise comparison. |
| 1971 |
| 1972 def lr0_goto(self,I,x): |
| 1973 # First we look for a previously cached entry |
| 1974 g = self.lr_goto_cache.get((id(I),x),None) |
| 1975 if g: return g |
| 1976 |
| 1977 # Now we generate the goto set in a way that guarantees uniqueness |
| 1978 # of the result |
| 1979 |
| 1980 s = self.lr_goto_cache.get(x,None) |
| 1981 if not s: |
| 1982 s = { } |
| 1983 self.lr_goto_cache[x] = s |
| 1984 |
| 1985 gs = [ ] |
| 1986 for p in I: |
| 1987 n = p.lr_next |
| 1988 if n and n.lr_before == x: |
| 1989 s1 = s.get(id(n),None) |
| 1990 if not s1: |
| 1991 s1 = { } |
| 1992 s[id(n)] = s1 |
| 1993 gs.append(n) |
| 1994 s = s1 |
| 1995 g = s.get('$end',None) |
| 1996 if not g: |
| 1997 if gs: |
| 1998 g = self.lr0_closure(gs) |
| 1999 s['$end'] = g |
| 2000 else: |
| 2001 s['$end'] = gs |
| 2002 self.lr_goto_cache[(id(I),x)] = g |
| 2003 return g |
| 2004 |
| 2005 # Compute the LR(0) sets of item function |
| 2006 def lr0_items(self): |
| 2007 |
| 2008 C = [ self.lr0_closure([self.grammar.Productions[0].lr_next]) ] |
| 2009 i = 0 |
| 2010 for I in C: |
| 2011 self.lr0_cidhash[id(I)] = i |
| 2012 i += 1 |
| 2013 |
| 2014 # Loop over the items in C and each grammar symbols |
| 2015 i = 0 |
| 2016 while i < len(C): |
| 2017 I = C[i] |
| 2018 i += 1 |
| 2019 |
| 2020 # Collect all of the symbols that could possibly be in the goto(I,X)
sets |
| 2021 asyms = { } |
| 2022 for ii in I: |
| 2023 for s in ii.usyms: |
| 2024 asyms[s] = None |
| 2025 |
| 2026 for x in asyms: |
| 2027 g = self.lr0_goto(I,x) |
| 2028 if not g: continue |
| 2029 if id(g) in self.lr0_cidhash: continue |
| 2030 self.lr0_cidhash[id(g)] = len(C) |
| 2031 C.append(g) |
| 2032 |
| 2033 return C |
| 2034 |
| 2035 # --------------------------------------------------------------------------
--- |
| 2036 # ==== LALR(1) Parsing ==== |
| 2037 # |
| 2038 # LALR(1) parsing is almost exactly the same as SLR except that instead of |
| 2039 # relying upon Follow() sets when performing reductions, a more selective |
| 2040 # lookahead set that incorporates the state of the LR(0) machine is utilized
. |
| 2041 # Thus, we mainly just have to focus on calculating the lookahead sets. |
| 2042 # |
| 2043 # The method used here is due to DeRemer and Pennelo (1982). |
| 2044 # |
| 2045 # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1) |
| 2046 # Lookahead Sets", ACM Transactions on Programming Languages and Systems
, |
| 2047 # Vol. 4, No. 4, Oct. 1982, pp. 615-649 |
| 2048 # |
| 2049 # Further details can also be found in: |
| 2050 # |
| 2051 # J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing
", |
| 2052 # McGraw-Hill Book Company, (1985). |
| 2053 # |
| 2054 # --------------------------------------------------------------------------
--- |
| 2055 |
| 2056 # --------------------------------------------------------------------------
--- |
| 2057 # compute_nullable_nonterminals() |
| 2058 # |
| 2059 # Creates a dictionary containing all of the non-terminals that might produc
e |
| 2060 # an empty production. |
| 2061 # --------------------------------------------------------------------------
--- |
| 2062 |
| 2063 def compute_nullable_nonterminals(self): |
| 2064 nullable = {} |
| 2065 num_nullable = 0 |
| 2066 while 1: |
| 2067 for p in self.grammar.Productions[1:]: |
| 2068 if p.len == 0: |
| 2069 nullable[p.name] = 1 |
| 2070 continue |
| 2071 for t in p.prod: |
| 2072 if not t in nullable: break |
| 2073 else: |
| 2074 nullable[p.name] = 1 |
| 2075 if len(nullable) == num_nullable: break |
| 2076 num_nullable = len(nullable) |
| 2077 return nullable |
| 2078 |
| 2079 # --------------------------------------------------------------------------
--- |
| 2080 # find_nonterminal_trans(C) |
| 2081 # |
| 2082 # Given a set of LR(0) items, this functions finds all of the non-terminal |
| 2083 # transitions. These are transitions in which a dot appears immediately b
efore |
| 2084 # a non-terminal. Returns a list of tuples of the form (state,N) where sta
te |
| 2085 # is the state number and N is the nonterminal symbol. |
| 2086 # |
| 2087 # The input C is the set of LR(0) items. |
| 2088 # --------------------------------------------------------------------------
--- |
| 2089 |
| 2090 def find_nonterminal_transitions(self,C): |
| 2091 trans = [] |
| 2092 for state in range(len(C)): |
| 2093 for p in C[state]: |
| 2094 if p.lr_index < p.len - 1: |
| 2095 t = (state,p.prod[p.lr_index+1]) |
| 2096 if t[1] in self.grammar.Nonterminals: |
| 2097 if t not in trans: trans.append(t) |
| 2098 state = state + 1 |
| 2099 return trans |
| 2100 |
| 2101 # --------------------------------------------------------------------------
--- |
| 2102 # dr_relation() |
| 2103 # |
| 2104 # Computes the DR(p,A) relationships for non-terminal transitions. The inpu
t |
| 2105 # is a tuple (state,N) where state is a number and N is a nonterminal symbol
. |
| 2106 # |
| 2107 # Returns a list of terminals. |
| 2108 # --------------------------------------------------------------------------
--- |
| 2109 |
| 2110 def dr_relation(self,C,trans,nullable): |
| 2111 dr_set = { } |
| 2112 state,N = trans |
| 2113 terms = [] |
| 2114 |
| 2115 g = self.lr0_goto(C[state],N) |
| 2116 for p in g: |
| 2117 if p.lr_index < p.len - 1: |
| 2118 a = p.prod[p.lr_index+1] |
| 2119 if a in self.grammar.Terminals: |
| 2120 if a not in terms: terms.append(a) |
| 2121 |
| 2122 # This extra bit is to handle the start state |
| 2123 if state == 0 and N == self.grammar.Productions[0].prod[0]: |
| 2124 terms.append('$end') |
| 2125 |
| 2126 return terms |
| 2127 |
| 2128 # --------------------------------------------------------------------------
--- |
| 2129 # reads_relation() |
| 2130 # |
| 2131 # Computes the READS() relation (p,A) READS (t,C). |
| 2132 # --------------------------------------------------------------------------
--- |
| 2133 |
| 2134 def reads_relation(self,C, trans, empty): |
| 2135 # Look for empty transitions |
| 2136 rel = [] |
| 2137 state, N = trans |
| 2138 |
| 2139 g = self.lr0_goto(C[state],N) |
| 2140 j = self.lr0_cidhash.get(id(g),-1) |
| 2141 for p in g: |
| 2142 if p.lr_index < p.len - 1: |
| 2143 a = p.prod[p.lr_index + 1] |
| 2144 if a in empty: |
| 2145 rel.append((j,a)) |
| 2146 |
| 2147 return rel |
| 2148 |
| 2149 # --------------------------------------------------------------------------
--- |
| 2150 # compute_lookback_includes() |
| 2151 # |
| 2152 # Determines the lookback and includes relations |
| 2153 # |
| 2154 # LOOKBACK: |
| 2155 # |
| 2156 # This relation is determined by running the LR(0) state machine forward. |
| 2157 # For example, starting with a production "N : . A B C", we run it forward |
| 2158 # to obtain "N : A B C ." We then build a relationship between this final |
| 2159 # state and the starting state. These relationships are stored in a dictio
nary |
| 2160 # lookdict. |
| 2161 # |
| 2162 # INCLUDES: |
| 2163 # |
| 2164 # Computes the INCLUDE() relation (p,A) INCLUDES (p',B). |
| 2165 # |
| 2166 # This relation is used to determine non-terminal transitions that occur |
| 2167 # inside of other non-terminal transition states. (p,A) INCLUDES (p', B) |
| 2168 # if the following holds: |
| 2169 # |
| 2170 # B -> LAT, where T -> epsilon and p' -L-> p |
| 2171 # |
| 2172 # L is essentially a prefix (which may be empty), T is a suffix that must be |
| 2173 # able to derive an empty string. State p' must lead to state p with the st
ring L. |
| 2174 # |
| 2175 # --------------------------------------------------------------------------
--- |
| 2176 |
| 2177 def compute_lookback_includes(self,C,trans,nullable): |
| 2178 |
| 2179 lookdict = {} # Dictionary of lookback relations |
| 2180 includedict = {} # Dictionary of include relations |
| 2181 |
| 2182 # Make a dictionary of non-terminal transitions |
| 2183 dtrans = {} |
| 2184 for t in trans: |
| 2185 dtrans[t] = 1 |
| 2186 |
| 2187 # Loop over all transitions and compute lookbacks and includes |
| 2188 for state,N in trans: |
| 2189 lookb = [] |
| 2190 includes = [] |
| 2191 for p in C[state]: |
| 2192 if p.name != N: continue |
| 2193 |
| 2194 # Okay, we have a name match. We now follow the production all
the way |
| 2195 # through the state machine until we get the . on the right hand
side |
| 2196 |
| 2197 lr_index = p.lr_index |
| 2198 j = state |
| 2199 while lr_index < p.len - 1: |
| 2200 lr_index = lr_index + 1 |
| 2201 t = p.prod[lr_index] |
| 2202 |
| 2203 # Check to see if this symbol and state are a non-terminal
transition |
| 2204 if (j,t) in dtrans: |
| 2205 # Yes. Okay, there is some chance that this is an in
cludes relation |
| 2206 # the only way to know for certain is whether the res
t of the |
| 2207 # production derives empty |
| 2208 |
| 2209 li = lr_index + 1 |
| 2210 while li < p.len: |
| 2211 if p.prod[li] in self.grammar.Terminals: break
# No forget it |
| 2212 if not p.prod[li] in nullable: break |
| 2213 li = li + 1 |
| 2214 else: |
| 2215 # Appears to be a relation between (j,t) and (st
ate,N) |
| 2216 includes.append((j,t)) |
| 2217 |
| 2218 g = self.lr0_goto(C[j],t) # Go to next set |
| 2219 j = self.lr0_cidhash.get(id(g),-1) # Go to next state |
| 2220 |
| 2221 # When we get here, j is the final state, now we have to locate
the production |
| 2222 for r in C[j]: |
| 2223 if r.name != p.name: continue |
| 2224 if r.len != p.len: continue |
| 2225 i = 0 |
| 2226 # This look is comparing a production ". A B C" with "A B C
." |
| 2227 while i < r.lr_index: |
| 2228 if r.prod[i] != p.prod[i+1]: break |
| 2229 i = i + 1 |
| 2230 else: |
| 2231 lookb.append((j,r)) |
| 2232 for i in includes: |
| 2233 if not i in includedict: includedict[i] = [] |
| 2234 includedict[i].append((state,N)) |
| 2235 lookdict[(state,N)] = lookb |
| 2236 |
| 2237 return lookdict,includedict |
| 2238 |
| 2239 # --------------------------------------------------------------------------
--- |
| 2240 # compute_read_sets() |
| 2241 # |
| 2242 # Given a set of LR(0) items, this function computes the read sets. |
| 2243 # |
| 2244 # Inputs: C = Set of LR(0) items |
| 2245 # ntrans = Set of nonterminal transitions |
| 2246 # nullable = Set of empty transitions |
| 2247 # |
| 2248 # Returns a set containing the read sets |
| 2249 # --------------------------------------------------------------------------
--- |
| 2250 |
| 2251 def compute_read_sets(self,C, ntrans, nullable): |
| 2252 FP = lambda x: self.dr_relation(C,x,nullable) |
| 2253 R = lambda x: self.reads_relation(C,x,nullable) |
| 2254 F = digraph(ntrans,R,FP) |
| 2255 return F |
| 2256 |
| 2257 # --------------------------------------------------------------------------
--- |
| 2258 # compute_follow_sets() |
| 2259 # |
| 2260 # Given a set of LR(0) items, a set of non-terminal transitions, a readset, |
| 2261 # and an include set, this function computes the follow sets |
| 2262 # |
| 2263 # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)} |
| 2264 # |
| 2265 # Inputs: |
| 2266 # ntrans = Set of nonterminal transitions |
| 2267 # readsets = Readset (previously computed) |
| 2268 # inclsets = Include sets (previously computed) |
| 2269 # |
| 2270 # Returns a set containing the follow sets |
| 2271 # --------------------------------------------------------------------------
--- |
| 2272 |
| 2273 def compute_follow_sets(self,ntrans,readsets,inclsets): |
| 2274 FP = lambda x: readsets[x] |
| 2275 R = lambda x: inclsets.get(x,[]) |
| 2276 F = digraph(ntrans,R,FP) |
| 2277 return F |
| 2278 |
| 2279 # --------------------------------------------------------------------------
--- |
| 2280 # add_lookaheads() |
| 2281 # |
| 2282 # Attaches the lookahead symbols to grammar rules. |
| 2283 # |
| 2284 # Inputs: lookbacks - Set of lookback relations |
| 2285 # followset - Computed follow set |
| 2286 # |
| 2287 # This function directly attaches the lookaheads to productions contained |
| 2288 # in the lookbacks set |
| 2289 # --------------------------------------------------------------------------
--- |
| 2290 |
| 2291 def add_lookaheads(self,lookbacks,followset): |
| 2292 for trans,lb in lookbacks.items(): |
| 2293 # Loop over productions in lookback |
| 2294 for state,p in lb: |
| 2295 if not state in p.lookaheads: |
| 2296 p.lookaheads[state] = [] |
| 2297 f = followset.get(trans,[]) |
| 2298 for a in f: |
| 2299 if a not in p.lookaheads[state]: p.lookaheads[state].appen
d(a) |
| 2300 |
| 2301 # --------------------------------------------------------------------------
--- |
| 2302 # add_lalr_lookaheads() |
| 2303 # |
| 2304 # This function does all of the work of adding lookahead information for use |
| 2305 # with LALR parsing |
| 2306 # --------------------------------------------------------------------------
--- |
| 2307 |
| 2308 def add_lalr_lookaheads(self,C): |
| 2309 # Determine all of the nullable nonterminals |
| 2310 nullable = self.compute_nullable_nonterminals() |
| 2311 |
| 2312 # Find all non-terminal transitions |
| 2313 trans = self.find_nonterminal_transitions(C) |
| 2314 |
| 2315 # Compute read sets |
| 2316 readsets = self.compute_read_sets(C,trans,nullable) |
| 2317 |
| 2318 # Compute lookback/includes relations |
| 2319 lookd, included = self.compute_lookback_includes(C,trans,nullable) |
| 2320 |
| 2321 # Compute LALR FOLLOW sets |
| 2322 followsets = self.compute_follow_sets(trans,readsets,included) |
| 2323 |
| 2324 # Add all of the lookaheads |
| 2325 self.add_lookaheads(lookd,followsets) |
| 2326 |
| 2327 # --------------------------------------------------------------------------
--- |
| 2328 # lr_parse_table() |
| 2329 # |
| 2330 # This function constructs the parse tables for SLR or LALR |
| 2331 # --------------------------------------------------------------------------
--- |
| 2332 def lr_parse_table(self): |
| 2333 goto = self.lr_goto # Goto array |
| 2334 action = self.lr_action # Action array |
| 2335 log = self.log # Logger for output |
| 2336 |
| 2337 actionp = { } # Action production array (temporary) |
| 2338 |
| 2339 log.info("Parsing method: %s", self.lr_method) |
| 2340 |
| 2341 # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items |
| 2342 # This determines the number of states |
| 2343 |
| 2344 C = self.lr0_items() |
| 2345 |
| 2346 if self.lr_method == 'LALR': |
| 2347 self.add_lalr_lookaheads(C) |
| 2348 |
| 2349 # Build the parser table, state by state |
| 2350 st = 0 |
| 2351 for I in C: |
| 2352 # Loop over each production in I |
| 2353 actlist = [ ] # List of actions |
| 2354 st_action = { } |
| 2355 st_actionp = { } |
| 2356 st_goto = { } |
| 2357 log.info("") |
| 2358 log.info("state %d", st) |
| 2359 log.info("") |
| 2360 for p in I: |
| 2361 log.info(" (%d) %s", p.number, str(p)) |
| 2362 log.info("") |
| 2363 |
| 2364 for p in I: |
| 2365 if p.len == p.lr_index + 1: |
| 2366 if p.name == "S'": |
| 2367 # Start symbol. Accept! |
| 2368 st_action["$end"] = 0 |
| 2369 st_actionp["$end"] = p |
| 2370 else: |
| 2371 # We are at the end of a production. Reduce! |
| 2372 if self.lr_method == 'LALR': |
| 2373 laheads = p.lookaheads[st] |
| 2374 else: |
| 2375 laheads = self.grammar.Follow[p.name] |
| 2376 for a in laheads: |
| 2377 actlist.append((a,p,"reduce using rule %d (%s)"
% (p.number,p))) |
| 2378 r = st_action.get(a,None) |
| 2379 if r is not None: |
| 2380 # Whoa. Have a shift/reduce or reduce/reduce
conflict |
| 2381 if r > 0: |
| 2382 # Need to decide on shift or reduce here |
| 2383 # By default we favor shifting. Need to
add |
| 2384 # some precedence rules here. |
| 2385 sprec,slevel = self.grammar.Productions[
st_actionp[a].number].prec |
| 2386 rprec,rlevel = self.grammar.Precedence.g
et(a,('right',0)) |
| 2387 if (slevel < rlevel) or ((slevel == rlev
el) and (rprec == 'left')): |
| 2388 # We really need to reduce here. |
| 2389 st_action[a] = -p.number |
| 2390 st_actionp[a] = p |
| 2391 if not slevel and not rlevel: |
| 2392 log.info(" ! shift/reduce confl
ict for %s resolved as reduce",a) |
| 2393 self.sr_conflicts.append((st,a,'
reduce')) |
| 2394 elif (slevel == rlevel) and (rprec == 'n
onassoc'): |
| 2395 st_action[a] = None |
| 2396 else: |
| 2397 # Hmmm. Guess we'll keep the shift |
| 2398 if not rlevel: |
| 2399 log.info(" ! shift/reduce confl
ict for %s resolved as shift",a) |
| 2400 self.sr_conflicts.append((st,a,'
shift')) |
| 2401 elif r < 0: |
| 2402 # Reduce/reduce conflict. In this case
, we favor the rule |
| 2403 # that was defined first in the grammar
file |
| 2404 oldp = self.grammar.Productions[-r] |
| 2405 pp = self.grammar.Productions[p.number] |
| 2406 if oldp.line > pp.line: |
| 2407 st_action[a] = -p.number |
| 2408 st_actionp[a] = p |
| 2409 chosenp,rejectp = pp,oldp |
| 2410 else: |
| 2411 chosenp,rejectp = oldp,pp |
| 2412 self.rr_conflicts.append((st,chosenp,rej
ectp)) |
| 2413 log.info(" ! reduce/reduce conflict for
%s resolved using rule %d (%s)", a,st_actionp[a].number, st_actionp[a]) |
| 2414 else: |
| 2415 raise LALRError("Unknown conflict in sta
te %d" % st) |
| 2416 else: |
| 2417 st_action[a] = -p.number |
| 2418 st_actionp[a] = p |
| 2419 else: |
| 2420 i = p.lr_index |
| 2421 a = p.prod[i+1] # Get symbol right after the "." |
| 2422 if a in self.grammar.Terminals: |
| 2423 g = self.lr0_goto(I,a) |
| 2424 j = self.lr0_cidhash.get(id(g),-1) |
| 2425 if j >= 0: |
| 2426 # We are in a shift state |
| 2427 actlist.append((a,p,"shift and go to state %d" %
j)) |
| 2428 r = st_action.get(a,None) |
| 2429 if r is not None: |
| 2430 # Whoa have a shift/reduce or shift/shift co
nflict |
| 2431 if r > 0: |
| 2432 if r != j: |
| 2433 raise LALRError("Shift/shift conflic
t in state %d" % st) |
| 2434 elif r < 0: |
| 2435 # Do a precedence check. |
| 2436 # - if precedence of reduce rule is h
igher, we reduce. |
| 2437 # - if precedence of reduce is same a
nd left assoc, we reduce. |
| 2438 # - otherwise we shift |
| 2439 rprec,rlevel = self.grammar.Productions[
st_actionp[a].number].prec |
| 2440 sprec,slevel = self.grammar.Precedence.g
et(a,('right',0)) |
| 2441 if (slevel > rlevel) or ((slevel == rlev
el) and (rprec == 'right')): |
| 2442 # We decide to shift here... highest
precedence to shift |
| 2443 st_action[a] = j |
| 2444 st_actionp[a] = p |
| 2445 if not rlevel: |
| 2446 log.info(" ! shift/reduce confl
ict for %s resolved as shift",a) |
| 2447 self.sr_conflicts.append((st,a,'
shift')) |
| 2448 elif (slevel == rlevel) and (rprec == 'n
onassoc'): |
| 2449 st_action[a] = None |
| 2450 else: |
| 2451 # Hmmm. Guess we'll keep the reduce |
| 2452 if not slevel and not rlevel: |
| 2453 log.info(" ! shift/reduce confl
ict for %s resolved as reduce",a) |
| 2454 self.sr_conflicts.append((st,a,'
reduce')) |
| 2455 |
| 2456 else: |
| 2457 raise LALRError("Unknown conflict in sta
te %d" % st) |
| 2458 else: |
| 2459 st_action[a] = j |
| 2460 st_actionp[a] = p |
| 2461 |
| 2462 # Print the actions associated with each terminal |
| 2463 _actprint = { } |
| 2464 for a,p,m in actlist: |
| 2465 if a in st_action: |
| 2466 if p is st_actionp[a]: |
| 2467 log.info(" %-15s %s",a,m) |
| 2468 _actprint[(a,m)] = 1 |
| 2469 log.info("") |
| 2470 # Print the actions that were not used. (debugging) |
| 2471 not_used = 0 |
| 2472 for a,p,m in actlist: |
| 2473 if a in st_action: |
| 2474 if p is not st_actionp[a]: |
| 2475 if not (a,m) in _actprint: |
| 2476 log.debug(" ! %-15s [ %s ]",a,m) |
| 2477 not_used = 1 |
| 2478 _actprint[(a,m)] = 1 |
| 2479 if not_used: |
| 2480 log.debug("") |
| 2481 |
| 2482 # Construct the goto table for this state |
| 2483 |
| 2484 nkeys = { } |
| 2485 for ii in I: |
| 2486 for s in ii.usyms: |
| 2487 if s in self.grammar.Nonterminals: |
| 2488 nkeys[s] = None |
| 2489 for n in nkeys: |
| 2490 g = self.lr0_goto(I,n) |
| 2491 j = self.lr0_cidhash.get(id(g),-1) |
| 2492 if j >= 0: |
| 2493 st_goto[n] = j |
| 2494 log.info(" %-30s shift and go to state %d",n,j) |
| 2495 |
| 2496 action[st] = st_action |
| 2497 actionp[st] = st_actionp |
| 2498 goto[st] = st_goto |
| 2499 st += 1 |
| 2500 |
| 2501 |
| 2502 # --------------------------------------------------------------------------
--- |
| 2503 # write() |
| 2504 # |
| 2505 # This function writes the LR parsing tables to a file |
| 2506 # --------------------------------------------------------------------------
--- |
| 2507 |
| 2508 def write_table(self,modulename,outputdir='',signature=""): |
| 2509 basemodulename = modulename.split(".")[-1] |
| 2510 filename = os.path.join(outputdir,basemodulename) + ".py" |
| 2511 try: |
| 2512 f = open(filename,"w") |
| 2513 |
| 2514 f.write(""" |
| 2515 # %s |
| 2516 # This file is automatically generated. Do not edit. |
| 2517 _tabversion = %r |
| 2518 |
| 2519 _lr_method = %r |
| 2520 |
| 2521 _lr_signature = %r |
| 2522 """ % (filename, __tabversion__, self.lr_method, signature)) |
| 2523 |
| 2524 # Change smaller to 0 to go back to original tables |
| 2525 smaller = 1 |
| 2526 |
| 2527 # Factor out names to try and make smaller |
| 2528 if smaller: |
| 2529 items = { } |
| 2530 |
| 2531 for s,nd in self.lr_action.items(): |
| 2532 for name,v in nd.items(): |
| 2533 i = items.get(name) |
| 2534 if not i: |
| 2535 i = ([],[]) |
| 2536 items[name] = i |
| 2537 i[0].append(s) |
| 2538 i[1].append(v) |
| 2539 |
| 2540 f.write("\n_lr_action_items = {") |
| 2541 for k,v in items.items(): |
| 2542 f.write("%r:([" % k) |
| 2543 for i in v[0]: |
| 2544 f.write("%r," % i) |
| 2545 f.write("],[") |
| 2546 for i in v[1]: |
| 2547 f.write("%r," % i) |
| 2548 |
| 2549 f.write("]),") |
| 2550 f.write("}\n") |
| 2551 |
| 2552 f.write(""" |
| 2553 _lr_action = { } |
| 2554 for _k, _v in _lr_action_items.items(): |
| 2555 for _x,_y in zip(_v[0],_v[1]): |
| 2556 if not _x in _lr_action: _lr_action[_x] = { } |
| 2557 _lr_action[_x][_k] = _y |
| 2558 del _lr_action_items |
| 2559 """) |
| 2560 |
| 2561 else: |
| 2562 f.write("\n_lr_action = { "); |
| 2563 for k,v in self.lr_action.items(): |
| 2564 f.write("(%r,%r):%r," % (k[0],k[1],v)) |
| 2565 f.write("}\n"); |
| 2566 |
| 2567 if smaller: |
| 2568 # Factor out names to try and make smaller |
| 2569 items = { } |
| 2570 |
| 2571 for s,nd in self.lr_goto.items(): |
| 2572 for name,v in nd.items(): |
| 2573 i = items.get(name) |
| 2574 if not i: |
| 2575 i = ([],[]) |
| 2576 items[name] = i |
| 2577 i[0].append(s) |
| 2578 i[1].append(v) |
| 2579 |
| 2580 f.write("\n_lr_goto_items = {") |
| 2581 for k,v in items.items(): |
| 2582 f.write("%r:([" % k) |
| 2583 for i in v[0]: |
| 2584 f.write("%r," % i) |
| 2585 f.write("],[") |
| 2586 for i in v[1]: |
| 2587 f.write("%r," % i) |
| 2588 |
| 2589 f.write("]),") |
| 2590 f.write("}\n") |
| 2591 |
| 2592 f.write(""" |
| 2593 _lr_goto = { } |
| 2594 for _k, _v in _lr_goto_items.items(): |
| 2595 for _x,_y in zip(_v[0],_v[1]): |
| 2596 if not _x in _lr_goto: _lr_goto[_x] = { } |
| 2597 _lr_goto[_x][_k] = _y |
| 2598 del _lr_goto_items |
| 2599 """) |
| 2600 else: |
| 2601 f.write("\n_lr_goto = { "); |
| 2602 for k,v in self.lr_goto.items(): |
| 2603 f.write("(%r,%r):%r," % (k[0],k[1],v)) |
| 2604 f.write("}\n"); |
| 2605 |
| 2606 # Write production table |
| 2607 f.write("_lr_productions = [\n") |
| 2608 for p in self.lr_productions: |
| 2609 if p.func: |
| 2610 f.write(" (%r,%r,%d,%r,%r,%d),\n" % (p.str,p.name, p.len, p
.func,p.file,p.line)) |
| 2611 else: |
| 2612 f.write(" (%r,%r,%d,None,None,None),\n" % (str(p),p.name, p
.len)) |
| 2613 f.write("]\n") |
| 2614 f.close() |
| 2615 |
| 2616 except IOError: |
| 2617 e = sys.exc_info()[1] |
| 2618 sys.stderr.write("Unable to create '%s'\n" % filename) |
| 2619 sys.stderr.write(str(e)+"\n") |
| 2620 return |
| 2621 |
| 2622 |
| 2623 # ----------------------------------------------------------------------------- |
| 2624 # === INTROSPECTION === |
| 2625 # |
| 2626 # The following functions and classes are used to implement the PLY |
| 2627 # introspection features followed by the yacc() function itself. |
| 2628 # ----------------------------------------------------------------------------- |
| 2629 |
| 2630 # ----------------------------------------------------------------------------- |
| 2631 # get_caller_module_dict() |
| 2632 # |
| 2633 # This function returns a dictionary containing all of the symbols defined withi
n |
| 2634 # a caller further down the call stack. This is used to get the environment |
| 2635 # associated with the yacc() call if none was provided. |
| 2636 # ----------------------------------------------------------------------------- |
| 2637 |
| 2638 def get_caller_module_dict(levels): |
| 2639 try: |
| 2640 raise RuntimeError |
| 2641 except RuntimeError: |
| 2642 e,b,t = sys.exc_info() |
| 2643 f = t.tb_frame |
| 2644 while levels > 0: |
| 2645 f = f.f_back |
| 2646 levels -= 1 |
| 2647 ldict = f.f_globals.copy() |
| 2648 if f.f_globals != f.f_locals: |
| 2649 ldict.update(f.f_locals) |
| 2650 |
| 2651 return ldict |
| 2652 |
| 2653 # ----------------------------------------------------------------------------- |
| 2654 # parse_grammar() |
| 2655 # |
| 2656 # This takes a raw grammar rule string and parses it into production data |
| 2657 # ----------------------------------------------------------------------------- |
| 2658 def parse_grammar(doc,file,line): |
| 2659 grammar = [] |
| 2660 # Split the doc string into lines |
| 2661 pstrings = doc.splitlines() |
| 2662 lastp = None |
| 2663 dline = line |
| 2664 for ps in pstrings: |
| 2665 dline += 1 |
| 2666 p = ps.split() |
| 2667 if not p: continue |
| 2668 try: |
| 2669 if p[0] == '|': |
| 2670 # This is a continuation of a previous rule |
| 2671 if not lastp: |
| 2672 raise SyntaxError("%s:%d: Misplaced '|'" % (file,dline)) |
| 2673 prodname = lastp |
| 2674 syms = p[1:] |
| 2675 else: |
| 2676 prodname = p[0] |
| 2677 lastp = prodname |
| 2678 syms = p[2:] |
| 2679 assign = p[1] |
| 2680 if assign != ':' and assign != '::=': |
| 2681 raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (fil
e,dline)) |
| 2682 |
| 2683 grammar.append((file,dline,prodname,syms)) |
| 2684 except SyntaxError: |
| 2685 raise |
| 2686 except Exception: |
| 2687 raise SyntaxError("%s:%d: Syntax error in rule '%s'" % (file,dline,p
s.strip())) |
| 2688 |
| 2689 return grammar |
| 2690 |
| 2691 # ----------------------------------------------------------------------------- |
| 2692 # ParserReflect() |
| 2693 # |
| 2694 # This class represents information extracted for building a parser including |
| 2695 # start symbol, error function, tokens, precedence list, action functions, |
| 2696 # etc. |
| 2697 # ----------------------------------------------------------------------------- |
| 2698 class ParserReflect(object): |
| 2699 def __init__(self,pdict,log=None): |
| 2700 self.pdict = pdict |
| 2701 self.start = None |
| 2702 self.error_func = None |
| 2703 self.tokens = None |
| 2704 self.files = {} |
| 2705 self.grammar = [] |
| 2706 self.error = 0 |
| 2707 |
| 2708 if log is None: |
| 2709 self.log = PlyLogger(sys.stderr) |
| 2710 else: |
| 2711 self.log = log |
| 2712 |
| 2713 # Get all of the basic information |
| 2714 def get_all(self): |
| 2715 self.get_start() |
| 2716 self.get_error_func() |
| 2717 self.get_tokens() |
| 2718 self.get_precedence() |
| 2719 self.get_pfunctions() |
| 2720 |
| 2721 # Validate all of the information |
| 2722 def validate_all(self): |
| 2723 self.validate_start() |
| 2724 self.validate_error_func() |
| 2725 self.validate_tokens() |
| 2726 self.validate_precedence() |
| 2727 self.validate_pfunctions() |
| 2728 self.validate_files() |
| 2729 return self.error |
| 2730 |
| 2731 # Compute a signature over the grammar |
| 2732 def signature(self): |
| 2733 from binascii import crc32 |
| 2734 sig = 0 |
| 2735 try: |
| 2736 if self.start: |
| 2737 sig = crc32(self.start.encode('latin-1'),sig) |
| 2738 if self.prec: |
| 2739 sig = crc32("".join(["".join(p) for p in self.prec]).encode('lat
in-1'),sig) |
| 2740 if self.tokens: |
| 2741 sig = crc32(" ".join(self.tokens).encode('latin-1'),sig) |
| 2742 for f in self.pfuncs: |
| 2743 if f[3]: |
| 2744 sig = crc32(f[3].encode('latin-1'),sig) |
| 2745 except (TypeError,ValueError): |
| 2746 pass |
| 2747 return sig |
| 2748 |
| 2749 # --------------------------------------------------------------------------
--- |
| 2750 # validate_file() |
| 2751 # |
| 2752 # This method checks to see if there are duplicated p_rulename() functions |
| 2753 # in the parser module file. Without this function, it is really easy for |
| 2754 # users to make mistakes by cutting and pasting code fragments (and it's a r
eal |
| 2755 # bugger to try and figure out why the resulting parser doesn't work). Ther
efore, |
| 2756 # we just do a little regular expression pattern matching of def statements |
| 2757 # to try and detect duplicates. |
| 2758 # --------------------------------------------------------------------------
--- |
| 2759 |
| 2760 def validate_files(self): |
| 2761 # Match def p_funcname( |
| 2762 fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(') |
| 2763 |
| 2764 for filename in self.files.keys(): |
| 2765 base,ext = os.path.splitext(filename) |
| 2766 if ext != '.py': return 1 # No idea. Assume it's okay. |
| 2767 |
| 2768 try: |
| 2769 f = open(filename) |
| 2770 lines = f.readlines() |
| 2771 f.close() |
| 2772 except IOError: |
| 2773 continue |
| 2774 |
| 2775 counthash = { } |
| 2776 for linen,l in enumerate(lines): |
| 2777 linen += 1 |
| 2778 m = fre.match(l) |
| 2779 if m: |
| 2780 name = m.group(1) |
| 2781 prev = counthash.get(name) |
| 2782 if not prev: |
| 2783 counthash[name] = linen |
| 2784 else: |
| 2785 self.log.warning("%s:%d: Function %s redefined. Previous
ly defined on line %d", filename,linen,name,prev) |
| 2786 |
| 2787 # Get the start symbol |
| 2788 def get_start(self): |
| 2789 self.start = self.pdict.get('start') |
| 2790 |
| 2791 # Validate the start symbol |
| 2792 def validate_start(self): |
| 2793 if self.start is not None: |
| 2794 if not isinstance(self.start,str): |
| 2795 self.log.error("'start' must be a string") |
| 2796 |
| 2797 # Look for error handler |
| 2798 def get_error_func(self): |
| 2799 self.error_func = self.pdict.get('p_error') |
| 2800 |
| 2801 # Validate the error function |
| 2802 def validate_error_func(self): |
| 2803 if self.error_func: |
| 2804 if isinstance(self.error_func,types.FunctionType): |
| 2805 ismethod = 0 |
| 2806 elif isinstance(self.error_func, types.MethodType): |
| 2807 ismethod = 1 |
| 2808 else: |
| 2809 self.log.error("'p_error' defined, but is not a function or meth
od") |
| 2810 self.error = 1 |
| 2811 return |
| 2812 |
| 2813 eline = func_code(self.error_func).co_firstlineno |
| 2814 efile = func_code(self.error_func).co_filename |
| 2815 self.files[efile] = 1 |
| 2816 |
| 2817 if (func_code(self.error_func).co_argcount != 1+ismethod): |
| 2818 self.log.error("%s:%d: p_error() requires 1 argument",efile,elin
e) |
| 2819 self.error = 1 |
| 2820 |
| 2821 # Get the tokens map |
| 2822 def get_tokens(self): |
| 2823 tokens = self.pdict.get("tokens",None) |
| 2824 if not tokens: |
| 2825 self.log.error("No token list is defined") |
| 2826 self.error = 1 |
| 2827 return |
| 2828 |
| 2829 if not isinstance(tokens,(list, tuple)): |
| 2830 self.log.error("tokens must be a list or tuple") |
| 2831 self.error = 1 |
| 2832 return |
| 2833 |
| 2834 if not tokens: |
| 2835 self.log.error("tokens is empty") |
| 2836 self.error = 1 |
| 2837 return |
| 2838 |
| 2839 self.tokens = tokens |
| 2840 |
| 2841 # Validate the tokens |
| 2842 def validate_tokens(self): |
| 2843 # Validate the tokens. |
| 2844 if 'error' in self.tokens: |
| 2845 self.log.error("Illegal token name 'error'. Is a reserved word") |
| 2846 self.error = 1 |
| 2847 return |
| 2848 |
| 2849 terminals = {} |
| 2850 for n in self.tokens: |
| 2851 if n in terminals: |
| 2852 self.log.warning("Token '%s' multiply defined", n) |
| 2853 terminals[n] = 1 |
| 2854 |
| 2855 # Get the precedence map (if any) |
| 2856 def get_precedence(self): |
| 2857 self.prec = self.pdict.get("precedence",None) |
| 2858 |
| 2859 # Validate and parse the precedence map |
| 2860 def validate_precedence(self): |
| 2861 preclist = [] |
| 2862 if self.prec: |
| 2863 if not isinstance(self.prec,(list,tuple)): |
| 2864 self.log.error("precedence must be a list or tuple") |
| 2865 self.error = 1 |
| 2866 return |
| 2867 for level,p in enumerate(self.prec): |
| 2868 if not isinstance(p,(list,tuple)): |
| 2869 self.log.error("Bad precedence table") |
| 2870 self.error = 1 |
| 2871 return |
| 2872 |
| 2873 if len(p) < 2: |
| 2874 self.log.error("Malformed precedence entry %s. Must be (asso
c, term, ..., term)",p) |
| 2875 self.error = 1 |
| 2876 return |
| 2877 assoc = p[0] |
| 2878 if not isinstance(assoc,str): |
| 2879 self.log.error("precedence associativity must be a string") |
| 2880 self.error = 1 |
| 2881 return |
| 2882 for term in p[1:]: |
| 2883 if not isinstance(term,str): |
| 2884 self.log.error("precedence items must be strings") |
| 2885 self.error = 1 |
| 2886 return |
| 2887 preclist.append((term,assoc,level+1)) |
| 2888 self.preclist = preclist |
| 2889 |
| 2890 # Get all p_functions from the grammar |
| 2891 def get_pfunctions(self): |
| 2892 p_functions = [] |
| 2893 for name, item in self.pdict.items(): |
| 2894 if name[:2] != 'p_': continue |
| 2895 if name == 'p_error': continue |
| 2896 if isinstance(item,(types.FunctionType,types.MethodType)): |
| 2897 line = func_code(item).co_firstlineno |
| 2898 file = func_code(item).co_filename |
| 2899 p_functions.append((line,file,name,item.__doc__)) |
| 2900 |
| 2901 # Sort all of the actions by line number |
| 2902 p_functions.sort() |
| 2903 self.pfuncs = p_functions |
| 2904 |
| 2905 |
| 2906 # Validate all of the p_functions |
| 2907 def validate_pfunctions(self): |
| 2908 grammar = [] |
| 2909 # Check for non-empty symbols |
| 2910 if len(self.pfuncs) == 0: |
| 2911 self.log.error("no rules of the form p_rulename are defined") |
| 2912 self.error = 1 |
| 2913 return |
| 2914 |
| 2915 for line, file, name, doc in self.pfuncs: |
| 2916 func = self.pdict[name] |
| 2917 if isinstance(func, types.MethodType): |
| 2918 reqargs = 2 |
| 2919 else: |
| 2920 reqargs = 1 |
| 2921 if func_code(func).co_argcount > reqargs: |
| 2922 self.log.error("%s:%d: Rule '%s' has too many arguments",file,li
ne,func.__name__) |
| 2923 self.error = 1 |
| 2924 elif func_code(func).co_argcount < reqargs: |
| 2925 self.log.error("%s:%d: Rule '%s' requires an argument",file,line
,func.__name__) |
| 2926 self.error = 1 |
| 2927 elif not func.__doc__: |
| 2928 self.log.warning("%s:%d: No documentation string specified in fu
nction '%s' (ignored)",file,line,func.__name__) |
| 2929 else: |
| 2930 try: |
| 2931 parsed_g = parse_grammar(doc,file,line) |
| 2932 for g in parsed_g: |
| 2933 grammar.append((name, g)) |
| 2934 except SyntaxError: |
| 2935 e = sys.exc_info()[1] |
| 2936 self.log.error(str(e)) |
| 2937 self.error = 1 |
| 2938 |
| 2939 # Looks like a valid grammar rule |
| 2940 # Mark the file in which defined. |
| 2941 self.files[file] = 1 |
| 2942 |
| 2943 # Secondary validation step that looks for p_ definitions that are not f
unctions |
| 2944 # or functions that look like they might be grammar rules. |
| 2945 |
| 2946 for n,v in self.pdict.items(): |
| 2947 if n[0:2] == 'p_' and isinstance(v, (types.FunctionType, types.Metho
dType)): continue |
| 2948 if n[0:2] == 't_': continue |
| 2949 if n[0:2] == 'p_' and n != 'p_error': |
| 2950 self.log.warning("'%s' not defined as a function", n) |
| 2951 if ((isinstance(v,types.FunctionType) and func_code(v).co_argcount =
= 1) or |
| 2952 (isinstance(v,types.MethodType) and func_code(v).co_argcount ==
2)): |
| 2953 try: |
| 2954 doc = v.__doc__.split(" ") |
| 2955 if doc[1] == ':': |
| 2956 self.log.warning("%s:%d: Possible grammar rule '%s' defi
ned without p_ prefix", |
| 2957 func_code(v).co_filename, func_code(v).
co_firstlineno,n) |
| 2958 except Exception: |
| 2959 pass |
| 2960 |
| 2961 self.grammar = grammar |
| 2962 |
| 2963 # ----------------------------------------------------------------------------- |
| 2964 # yacc(module) |
| 2965 # |
| 2966 # Build a parser |
| 2967 # ----------------------------------------------------------------------------- |
| 2968 |
| 2969 def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, star
t=None, |
| 2970 check_recursion=1, optimize=0, write_tables=1, debugfile=debug_file,out
putdir='', |
| 2971 debuglog=None, errorlog = None): |
| 2972 |
| 2973 global parse # Reference to the parsing method of the last b
uilt parser |
| 2974 |
| 2975 if errorlog is None: |
| 2976 errorlog = PlyLogger(sys.stderr) |
| 2977 |
| 2978 # Get the module dictionary used for the parser |
| 2979 if module: |
| 2980 _items = [(k,getattr(module,k)) for k in dir(module)] |
| 2981 pdict = dict(_items) |
| 2982 else: |
| 2983 pdict = get_caller_module_dict(2) |
| 2984 |
| 2985 # Collect parser information from the dictionary |
| 2986 pinfo = ParserReflect(pdict,log=errorlog) |
| 2987 pinfo.get_all() |
| 2988 |
| 2989 if pinfo.error: |
| 2990 raise YaccError("Unable to build parser") |
| 2991 |
| 2992 # Check signature against table files (if any) |
| 2993 signature = pinfo.signature() |
| 2994 |
| 2995 # Read the tables |
| 2996 try: |
| 2997 lr = LRTable() |
| 2998 read_signature = lr.read_table(tabmodule) |
| 2999 if optimize or (read_signature == signature): |
| 3000 try: |
| 3001 lr.bind_callables(pinfo.pdict) |
| 3002 parser = LRParser(lr,pinfo.error_func) |
| 3003 parse = parser.parse |
| 3004 return parser |
| 3005 except Exception: |
| 3006 e = sys.exc_info()[1] |
| 3007 errorlog.warning("There was a problem loading the table file: %s
", repr(e)) |
| 3008 except VersionError: |
| 3009 e = sys.exc_info() |
| 3010 errorlog.warning(str(e)) |
| 3011 except Exception: |
| 3012 pass |
| 3013 |
| 3014 if debuglog is None: |
| 3015 if debug: |
| 3016 debuglog = PlyLogger(open(debugfile,"w")) |
| 3017 else: |
| 3018 debuglog = NullLogger() |
| 3019 |
| 3020 debuglog.info("Created by PLY version %s (http://www.dabeaz.com/ply)", __ver
sion__) |
| 3021 |
| 3022 |
| 3023 errors = 0 |
| 3024 |
| 3025 # Validate the parser information |
| 3026 if pinfo.validate_all(): |
| 3027 raise YaccError("Unable to build parser") |
| 3028 |
| 3029 if not pinfo.error_func: |
| 3030 errorlog.warning("no p_error() function is defined") |
| 3031 |
| 3032 # Create a grammar object |
| 3033 grammar = Grammar(pinfo.tokens) |
| 3034 |
| 3035 # Set precedence level for terminals |
| 3036 for term, assoc, level in pinfo.preclist: |
| 3037 try: |
| 3038 grammar.set_precedence(term,assoc,level) |
| 3039 except GrammarError: |
| 3040 e = sys.exc_info()[1] |
| 3041 errorlog.warning("%s",str(e)) |
| 3042 |
| 3043 # Add productions to the grammar |
| 3044 for funcname, gram in pinfo.grammar: |
| 3045 file, line, prodname, syms = gram |
| 3046 try: |
| 3047 grammar.add_production(prodname,syms,funcname,file,line) |
| 3048 except GrammarError: |
| 3049 e = sys.exc_info()[1] |
| 3050 errorlog.error("%s",str(e)) |
| 3051 errors = 1 |
| 3052 |
| 3053 # Set the grammar start symbols |
| 3054 try: |
| 3055 if start is None: |
| 3056 grammar.set_start(pinfo.start) |
| 3057 else: |
| 3058 grammar.set_start(start) |
| 3059 except GrammarError: |
| 3060 e = sys.exc_info()[1] |
| 3061 errorlog.error(str(e)) |
| 3062 errors = 1 |
| 3063 |
| 3064 if errors: |
| 3065 raise YaccError("Unable to build parser") |
| 3066 |
| 3067 # Verify the grammar structure |
| 3068 undefined_symbols = grammar.undefined_symbols() |
| 3069 for sym, prod in undefined_symbols: |
| 3070 errorlog.error("%s:%d: Symbol '%s' used, but not defined as a token or a
rule",prod.file,prod.line,sym) |
| 3071 errors = 1 |
| 3072 |
| 3073 unused_terminals = grammar.unused_terminals() |
| 3074 if unused_terminals: |
| 3075 debuglog.info("") |
| 3076 debuglog.info("Unused terminals:") |
| 3077 debuglog.info("") |
| 3078 for term in unused_terminals: |
| 3079 errorlog.warning("Token '%s' defined, but not used", term) |
| 3080 debuglog.info(" %s", term) |
| 3081 |
| 3082 # Print out all productions to the debug log |
| 3083 if debug: |
| 3084 debuglog.info("") |
| 3085 debuglog.info("Grammar") |
| 3086 debuglog.info("") |
| 3087 for n,p in enumerate(grammar.Productions): |
| 3088 debuglog.info("Rule %-5d %s", n+1, p) |
| 3089 |
| 3090 # Find unused non-terminals |
| 3091 unused_rules = grammar.unused_rules() |
| 3092 for prod in unused_rules: |
| 3093 errorlog.warning("%s:%d: Rule '%s' defined, but not used", prod.file, pr
od.line, prod.name) |
| 3094 |
| 3095 if len(unused_terminals) == 1: |
| 3096 errorlog.warning("There is 1 unused token") |
| 3097 if len(unused_terminals) > 1: |
| 3098 errorlog.warning("There are %d unused tokens", len(unused_terminals)) |
| 3099 |
| 3100 if len(unused_rules) == 1: |
| 3101 errorlog.warning("There is 1 unused rule") |
| 3102 if len(unused_rules) > 1: |
| 3103 errorlog.warning("There are %d unused rules", len(unused_rules)) |
| 3104 |
| 3105 if debug: |
| 3106 debuglog.info("") |
| 3107 debuglog.info("Terminals, with rules where they appear") |
| 3108 debuglog.info("") |
| 3109 terms = list(grammar.Terminals) |
| 3110 terms.sort() |
| 3111 for term in terms: |
| 3112 debuglog.info("%-20s : %s", term, " ".join([str(s) for s in grammar.
Terminals[term]])) |
| 3113 |
| 3114 debuglog.info("") |
| 3115 debuglog.info("Nonterminals, with rules where they appear") |
| 3116 debuglog.info("") |
| 3117 nonterms = list(grammar.Nonterminals) |
| 3118 nonterms.sort() |
| 3119 for nonterm in nonterms: |
| 3120 debuglog.info("%-20s : %s", nonterm, " ".join([str(s) for s in gramm
ar.Nonterminals[nonterm]])) |
| 3121 debuglog.info("") |
| 3122 |
| 3123 if check_recursion: |
| 3124 unreachable = grammar.find_unreachable() |
| 3125 for u in unreachable: |
| 3126 errorlog.warning("Symbol '%s' is unreachable",u) |
| 3127 |
| 3128 infinite = grammar.infinite_cycles() |
| 3129 for inf in infinite: |
| 3130 errorlog.error("Infinite recursion detected for symbol '%s'", inf) |
| 3131 errors = 1 |
| 3132 |
| 3133 unused_prec = grammar.unused_precedence() |
| 3134 for term, assoc in unused_prec: |
| 3135 errorlog.error("Precedence rule '%s' defined for unknown symbol '%s'", a
ssoc, term) |
| 3136 errors = 1 |
| 3137 |
| 3138 if errors: |
| 3139 raise YaccError("Unable to build parser") |
| 3140 |
| 3141 # Run the LRGeneratedTable on the grammar |
| 3142 if debug: |
| 3143 errorlog.debug("Generating %s tables", method) |
| 3144 |
| 3145 lr = LRGeneratedTable(grammar,method,debuglog) |
| 3146 |
| 3147 if debug: |
| 3148 num_sr = len(lr.sr_conflicts) |
| 3149 |
| 3150 # Report shift/reduce and reduce/reduce conflicts |
| 3151 if num_sr == 1: |
| 3152 errorlog.warning("1 shift/reduce conflict") |
| 3153 elif num_sr > 1: |
| 3154 errorlog.warning("%d shift/reduce conflicts", num_sr) |
| 3155 |
| 3156 num_rr = len(lr.rr_conflicts) |
| 3157 if num_rr == 1: |
| 3158 errorlog.warning("1 reduce/reduce conflict") |
| 3159 elif num_rr > 1: |
| 3160 errorlog.warning("%d reduce/reduce conflicts", num_rr) |
| 3161 |
| 3162 # Write out conflicts to the output file |
| 3163 if debug and (lr.sr_conflicts or lr.rr_conflicts): |
| 3164 debuglog.warning("") |
| 3165 debuglog.warning("Conflicts:") |
| 3166 debuglog.warning("") |
| 3167 |
| 3168 for state, tok, resolution in lr.sr_conflicts: |
| 3169 debuglog.warning("shift/reduce conflict for %s in state %d resolved
as %s", tok, state, resolution) |
| 3170 |
| 3171 for state, rule, rejected in lr.rr_conflicts: |
| 3172 debuglog.warning("reduce/reduce conflict in state %d resolved using
rule (%s)", state, rule) |
| 3173 debuglog.warning("rejected rule (%s)", rejected) |
| 3174 errorlog.warning("reduce/reduce conflict in state %d resolved using
rule (%s)", state, rule) |
| 3175 errorlog.warning("rejected rule (%s)", rejected) |
| 3176 |
| 3177 # Write the table file if requested |
| 3178 if write_tables: |
| 3179 lr.write_table(tabmodule,outputdir,signature) |
| 3180 |
| 3181 # Build the parser |
| 3182 lr.bind_callables(pinfo.pdict) |
| 3183 parser = LRParser(lr,pinfo.error_func) |
| 3184 |
| 3185 parse = parser.parse |
| 3186 return parser |
OLD | NEW |