Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(219)

Side by Side Diff: src/snapshot/serialize.cc

Issue 2042203002: Remove accidentally added files. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/math.js ('k') | test/mjsunit/regress/regress-math-log.js » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/base/platform/platform.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/cpu-profiler.h"
13 #include "src/deoptimizer.h"
14 #include "src/execution.h"
15 #include "src/global-handles.h"
16 #include "src/ic/ic.h"
17 #include "src/ic/stub-cache.h"
18 #include "src/objects.h"
19 #include "src/parser.h"
20 #include "src/runtime/runtime.h"
21 #include "src/snapshot/natives.h"
22 #include "src/snapshot/serialize.h"
23 #include "src/snapshot/snapshot.h"
24 #include "src/snapshot/snapshot-source-sink.h"
25 #include "src/v8threads.h"
26 #include "src/version.h"
27
28 namespace v8 {
29 namespace internal {
30
31
32 // -----------------------------------------------------------------------------
33 // Coding of external references.
34
35
36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
37 ExternalReferenceTable* external_reference_table =
38 isolate->external_reference_table();
39 if (external_reference_table == NULL) {
40 external_reference_table = new ExternalReferenceTable(isolate);
41 isolate->set_external_reference_table(external_reference_table);
42 }
43 return external_reference_table;
44 }
45
46
47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
48 // Miscellaneous
49 Add(ExternalReference::roots_array_start(isolate).address(),
50 "Heap::roots_array_start()");
51 Add(ExternalReference::address_of_stack_limit(isolate).address(),
52 "StackGuard::address_of_jslimit()");
53 Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
54 "StackGuard::address_of_real_jslimit()");
55 Add(ExternalReference::new_space_start(isolate).address(),
56 "Heap::NewSpaceStart()");
57 Add(ExternalReference::new_space_mask(isolate).address(),
58 "Heap::NewSpaceMask()");
59 Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
60 "Heap::NewSpaceAllocationLimitAddress()");
61 Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
62 "Heap::NewSpaceAllocationTopAddress()");
63 Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()");
64 Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
65 "Debug::step_in_fp_addr()");
66 Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
67 "mod_two_doubles");
68 // Keyed lookup cache.
69 Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
70 "KeyedLookupCache::keys()");
71 Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
72 "KeyedLookupCache::field_offsets()");
73 Add(ExternalReference::handle_scope_next_address(isolate).address(),
74 "HandleScope::next");
75 Add(ExternalReference::handle_scope_limit_address(isolate).address(),
76 "HandleScope::limit");
77 Add(ExternalReference::handle_scope_level_address(isolate).address(),
78 "HandleScope::level");
79 Add(ExternalReference::new_deoptimizer_function(isolate).address(),
80 "Deoptimizer::New()");
81 Add(ExternalReference::compute_output_frames_function(isolate).address(),
82 "Deoptimizer::ComputeOutputFrames()");
83 Add(ExternalReference::address_of_min_int().address(),
84 "LDoubleConstant::min_int");
85 Add(ExternalReference::address_of_one_half().address(),
86 "LDoubleConstant::one_half");
87 Add(ExternalReference::isolate_address(isolate).address(), "isolate");
88 Add(ExternalReference::address_of_negative_infinity().address(),
89 "LDoubleConstant::negative_infinity");
90 Add(ExternalReference::power_double_double_function(isolate).address(),
91 "power_double_double_function");
92 Add(ExternalReference::power_double_int_function(isolate).address(),
93 "power_double_int_function");
94 Add(ExternalReference::store_buffer_top(isolate).address(),
95 "store_buffer_top");
96 Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
97 Add(ExternalReference::get_date_field_function(isolate).address(),
98 "JSDate::GetField");
99 Add(ExternalReference::date_cache_stamp(isolate).address(),
100 "date_cache_stamp");
101 Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
102 "address_of_pending_message_obj");
103 Add(ExternalReference::get_make_code_young_function(isolate).address(),
104 "Code::MakeCodeYoung");
105 Add(ExternalReference::cpu_features().address(), "cpu_features");
106 Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
107 "Heap::OldSpaceAllocationTopAddress");
108 Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
109 "Heap::OldSpaceAllocationLimitAddress");
110 Add(ExternalReference::allocation_sites_list_address(isolate).address(),
111 "Heap::allocation_sites_list_address()");
112 Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
113 Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
114 "Code::MarkCodeAsExecuted");
115 Add(ExternalReference::is_profiling_address(isolate).address(),
116 "CpuProfiler::is_profiling");
117 Add(ExternalReference::scheduled_exception_address(isolate).address(),
118 "Isolate::scheduled_exception");
119 Add(ExternalReference::invoke_function_callback(isolate).address(),
120 "InvokeFunctionCallback");
121 Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
122 "InvokeAccessorGetterCallback");
123 Add(ExternalReference::flush_icache_function(isolate).address(),
124 "CpuFeatures::FlushICache");
125 Add(ExternalReference::log_enter_external_function(isolate).address(),
126 "Logger::EnterExternal");
127 Add(ExternalReference::log_leave_external_function(isolate).address(),
128 "Logger::LeaveExternal");
129 Add(ExternalReference::address_of_minus_one_half().address(),
130 "double_constants.minus_one_half");
131 Add(ExternalReference::stress_deopt_count(isolate).address(),
132 "Isolate::stress_deopt_count_address()");
133
134 // Debug addresses
135 Add(ExternalReference::debug_after_break_target_address(isolate).address(),
136 "Debug::after_break_target_address()");
137 Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate)
138 .address(),
139 "Debug::restarter_frame_function_pointer_address()");
140 Add(ExternalReference::debug_is_active_address(isolate).address(),
141 "Debug::is_active_address()");
142
143 #ifndef V8_INTERPRETED_REGEXP
144 Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
145 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
146 Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
147 "RegExpMacroAssembler*::CheckStackGuardState()");
148 Add(ExternalReference::re_grow_stack(isolate).address(),
149 "NativeRegExpMacroAssembler::GrowStack()");
150 Add(ExternalReference::re_word_character_map().address(),
151 "NativeRegExpMacroAssembler::word_character_map");
152 Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
153 "RegExpStack::limit_address()");
154 Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
155 .address(),
156 "RegExpStack::memory_address()");
157 Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
158 "RegExpStack::memory_size()");
159 Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
160 "OffsetsVector::static_offsets_vector");
161 #endif // V8_INTERPRETED_REGEXP
162
163 // The following populates all of the different type of external references
164 // into the ExternalReferenceTable.
165 //
166 // NOTE: This function was originally 100k of code. It has since been
167 // rewritten to be mostly table driven, as the callback macro style tends to
168 // very easily cause code bloat. Please be careful in the future when adding
169 // new references.
170
171 struct RefTableEntry {
172 uint16_t id;
173 const char* name;
174 };
175
176 static const RefTableEntry c_builtins[] = {
177 #define DEF_ENTRY_C(name, ignored) \
178 { Builtins::c_##name, "Builtins::" #name } \
179 ,
180 BUILTIN_LIST_C(DEF_ENTRY_C)
181 #undef DEF_ENTRY_C
182 };
183
184 for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
185 ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
186 isolate);
187 Add(ref.address(), c_builtins[i].name);
188 }
189
190 static const RefTableEntry builtins[] = {
191 #define DEF_ENTRY_C(name, ignored) \
192 { Builtins::k##name, "Builtins::" #name } \
193 ,
194 #define DEF_ENTRY_A(name, i1, i2, i3) \
195 { Builtins::k##name, "Builtins::" #name } \
196 ,
197 BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
198 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
199 #undef DEF_ENTRY_C
200 #undef DEF_ENTRY_A
201 };
202
203 for (unsigned i = 0; i < arraysize(builtins); ++i) {
204 ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
205 Add(ref.address(), builtins[i].name);
206 }
207
208 static const RefTableEntry runtime_functions[] = {
209 #define RUNTIME_ENTRY(name, i1, i2) \
210 { Runtime::k##name, "Runtime::" #name } \
211 ,
212 FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
213 #undef RUNTIME_ENTRY
214 };
215
216 for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
217 ExternalReference ref(
218 static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
219 Add(ref.address(), runtime_functions[i].name);
220 }
221
222 static const RefTableEntry inline_caches[] = {
223 #define IC_ENTRY(name) \
224 { IC::k##name, "IC::" #name } \
225 ,
226 IC_UTIL_LIST(IC_ENTRY)
227 #undef IC_ENTRY
228 };
229
230 for (unsigned i = 0; i < arraysize(inline_caches); ++i) {
231 ExternalReference ref(
232 IC_Utility(static_cast<IC::UtilityId>(inline_caches[i].id)), isolate);
233 Add(ref.address(), runtime_functions[i].name);
234 }
235
236 // Stat counters
237 struct StatsRefTableEntry {
238 StatsCounter* (Counters::*counter)();
239 const char* name;
240 };
241
242 static const StatsRefTableEntry stats_ref_table[] = {
243 #define COUNTER_ENTRY(name, caption) \
244 { &Counters::name, "Counters::" #name } \
245 ,
246 STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
247 #undef COUNTER_ENTRY
248 };
249
250 Counters* counters = isolate->counters();
251 for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
252 // To make sure the indices are not dependent on whether counters are
253 // enabled, use a dummy address as filler.
254 Address address = NotAvailable();
255 StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
256 if (counter->Enabled()) {
257 address = reinterpret_cast<Address>(counter->GetInternalPointer());
258 }
259 Add(address, stats_ref_table[i].name);
260 }
261
262 // Top addresses
263 static const char* address_names[] = {
264 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
265 FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
266 #undef BUILD_NAME_LITERAL
267 };
268
269 for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
270 Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
271 address_names[i]);
272 }
273
274 // Accessors
275 struct AccessorRefTable {
276 Address address;
277 const char* name;
278 };
279
280 static const AccessorRefTable accessors[] = {
281 #define ACCESSOR_INFO_DECLARATION(name) \
282 { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
283 , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"},
284 ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
285 #undef ACCESSOR_INFO_DECLARATION
286 };
287
288 for (unsigned i = 0; i < arraysize(accessors); ++i) {
289 Add(accessors[i].address, accessors[i].name);
290 }
291
292 StubCache* stub_cache = isolate->stub_cache();
293
294 // Stub cache tables
295 Add(stub_cache->key_reference(StubCache::kPrimary).address(),
296 "StubCache::primary_->key");
297 Add(stub_cache->value_reference(StubCache::kPrimary).address(),
298 "StubCache::primary_->value");
299 Add(stub_cache->map_reference(StubCache::kPrimary).address(),
300 "StubCache::primary_->map");
301 Add(stub_cache->key_reference(StubCache::kSecondary).address(),
302 "StubCache::secondary_->key");
303 Add(stub_cache->value_reference(StubCache::kSecondary).address(),
304 "StubCache::secondary_->value");
305 Add(stub_cache->map_reference(StubCache::kSecondary).address(),
306 "StubCache::secondary_->map");
307
308 // Runtime entries
309 Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
310 "HandleScope::DeleteExtensions");
311 Add(ExternalReference::incremental_marking_record_write_function(isolate)
312 .address(),
313 "IncrementalMarking::RecordWrite");
314 Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
315 "StoreBuffer::StoreBufferOverflow");
316
317 // Add a small set of deopt entry addresses to encoder without generating the
318 // deopt table code, which isn't possible at deserialization time.
319 HandleScope scope(isolate);
320 for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
321 Address address = Deoptimizer::GetDeoptimizationEntry(
322 isolate,
323 entry,
324 Deoptimizer::LAZY,
325 Deoptimizer::CALCULATE_ENTRY_ADDRESS);
326 Add(address, "lazy_deopt");
327 }
328 }
329
330
331 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
332 map_ = isolate->external_reference_map();
333 if (map_ != NULL) return;
334 map_ = new HashMap(HashMap::PointersMatch);
335 ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
336 for (int i = 0; i < table->size(); ++i) {
337 Address addr = table->address(i);
338 if (addr == ExternalReferenceTable::NotAvailable()) continue;
339 // We expect no duplicate external references entries in the table.
340 DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
341 map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
342 }
343 isolate->set_external_reference_map(map_);
344 }
345
346
347 uint32_t ExternalReferenceEncoder::Encode(Address address) const {
348 DCHECK_NOT_NULL(address);
349 HashMap::Entry* entry =
350 const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
351 DCHECK_NOT_NULL(entry);
352 return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
353 }
354
355
356 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
357 Address address) const {
358 HashMap::Entry* entry =
359 const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
360 if (entry == NULL) return "<unknown>";
361 uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
362 return ExternalReferenceTable::instance(isolate)->name(i);
363 }
364
365
366 RootIndexMap::RootIndexMap(Isolate* isolate) {
367 map_ = isolate->root_index_map();
368 if (map_ != NULL) return;
369 map_ = new HashMap(HashMap::PointersMatch);
370 Object** root_array = isolate->heap()->roots_array_start();
371 for (uint32_t i = 0; i < Heap::kStrongRootListLength; i++) {
372 Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i);
373 Object* root = root_array[root_index];
374 // Omit root entries that can be written after initialization. They must
375 // not be referenced through the root list in the snapshot.
376 if (root->IsHeapObject() &&
377 isolate->heap()->RootCanBeTreatedAsConstant(root_index)) {
378 HeapObject* heap_object = HeapObject::cast(root);
379 HashMap::Entry* entry = LookupEntry(map_, heap_object, false);
380 if (entry != NULL) {
381 // Some are initialized to a previous value in the root list.
382 DCHECK_LT(GetValue(entry), i);
383 } else {
384 SetValue(LookupEntry(map_, heap_object, true), i);
385 }
386 }
387 }
388 isolate->set_root_index_map(map_);
389 }
390
391
392 class CodeAddressMap: public CodeEventLogger {
393 public:
394 explicit CodeAddressMap(Isolate* isolate)
395 : isolate_(isolate) {
396 isolate->logger()->addCodeEventListener(this);
397 }
398
399 virtual ~CodeAddressMap() {
400 isolate_->logger()->removeCodeEventListener(this);
401 }
402
403 virtual void CodeMoveEvent(Address from, Address to) {
404 address_to_name_map_.Move(from, to);
405 }
406
407 virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
408 }
409
410 virtual void CodeDeleteEvent(Address from) {
411 address_to_name_map_.Remove(from);
412 }
413
414 const char* Lookup(Address address) {
415 return address_to_name_map_.Lookup(address);
416 }
417
418 private:
419 class NameMap {
420 public:
421 NameMap() : impl_(HashMap::PointersMatch) {}
422
423 ~NameMap() {
424 for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
425 DeleteArray(static_cast<const char*>(p->value));
426 }
427 }
428
429 void Insert(Address code_address, const char* name, int name_size) {
430 HashMap::Entry* entry = FindOrCreateEntry(code_address);
431 if (entry->value == NULL) {
432 entry->value = CopyName(name, name_size);
433 }
434 }
435
436 const char* Lookup(Address code_address) {
437 HashMap::Entry* entry = FindEntry(code_address);
438 return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
439 }
440
441 void Remove(Address code_address) {
442 HashMap::Entry* entry = FindEntry(code_address);
443 if (entry != NULL) {
444 DeleteArray(static_cast<char*>(entry->value));
445 RemoveEntry(entry);
446 }
447 }
448
449 void Move(Address from, Address to) {
450 if (from == to) return;
451 HashMap::Entry* from_entry = FindEntry(from);
452 DCHECK(from_entry != NULL);
453 void* value = from_entry->value;
454 RemoveEntry(from_entry);
455 HashMap::Entry* to_entry = FindOrCreateEntry(to);
456 DCHECK(to_entry->value == NULL);
457 to_entry->value = value;
458 }
459
460 private:
461 static char* CopyName(const char* name, int name_size) {
462 char* result = NewArray<char>(name_size + 1);
463 for (int i = 0; i < name_size; ++i) {
464 char c = name[i];
465 if (c == '\0') c = ' ';
466 result[i] = c;
467 }
468 result[name_size] = '\0';
469 return result;
470 }
471
472 HashMap::Entry* FindOrCreateEntry(Address code_address) {
473 return impl_.LookupOrInsert(code_address,
474 ComputePointerHash(code_address));
475 }
476
477 HashMap::Entry* FindEntry(Address code_address) {
478 return impl_.Lookup(code_address, ComputePointerHash(code_address));
479 }
480
481 void RemoveEntry(HashMap::Entry* entry) {
482 impl_.Remove(entry->key, entry->hash);
483 }
484
485 HashMap impl_;
486
487 DISALLOW_COPY_AND_ASSIGN(NameMap);
488 };
489
490 virtual void LogRecordedBuffer(Code* code,
491 SharedFunctionInfo*,
492 const char* name,
493 int length) {
494 address_to_name_map_.Insert(code->address(), name, length);
495 }
496
497 NameMap address_to_name_map_;
498 Isolate* isolate_;
499 };
500
501
502 void Deserializer::DecodeReservation(
503 Vector<const SerializedData::Reservation> res) {
504 DCHECK_EQ(0, reservations_[NEW_SPACE].length());
505 STATIC_ASSERT(NEW_SPACE == 0);
506 int current_space = NEW_SPACE;
507 for (auto& r : res) {
508 reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
509 if (r.is_last()) current_space++;
510 }
511 DCHECK_EQ(kNumberOfSpaces, current_space);
512 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
513 }
514
515
516 void Deserializer::FlushICacheForNewCodeObjects() {
517 PageIterator it(isolate_->heap()->code_space());
518 while (it.has_next()) {
519 Page* p = it.next();
520 CpuFeatures::FlushICache(p->area_start(), p->area_end() - p->area_start());
521 }
522 }
523
524
525 bool Deserializer::ReserveSpace() {
526 #ifdef DEBUG
527 for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
528 CHECK(reservations_[i].length() > 0);
529 }
530 #endif // DEBUG
531 if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
532 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
533 high_water_[i] = reservations_[i][0].start;
534 }
535 return true;
536 }
537
538
539 void Deserializer::Initialize(Isolate* isolate) {
540 DCHECK_NULL(isolate_);
541 DCHECK_NOT_NULL(isolate);
542 isolate_ = isolate;
543 DCHECK_NULL(external_reference_table_);
544 external_reference_table_ = ExternalReferenceTable::instance(isolate);
545 CHECK_EQ(magic_number_,
546 SerializedData::ComputeMagicNumber(external_reference_table_));
547 }
548
549
550 void Deserializer::Deserialize(Isolate* isolate) {
551 Initialize(isolate);
552 if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
553 // No active threads.
554 DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
555 // No active handles.
556 DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
557 isolate_->heap()->IterateSmiRoots(this);
558 isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
559 isolate_->heap()->RepairFreeListsAfterDeserialization();
560 isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
561
562 isolate_->heap()->set_native_contexts_list(
563 isolate_->heap()->undefined_value());
564 isolate_->heap()->set_array_buffers_list(
565 isolate_->heap()->undefined_value());
566 isolate->heap()->set_new_array_buffer_views_list(
567 isolate_->heap()->undefined_value());
568
569 // The allocation site list is build during root iteration, but if no sites
570 // were encountered then it needs to be initialized to undefined.
571 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
572 isolate_->heap()->set_allocation_sites_list(
573 isolate_->heap()->undefined_value());
574 }
575
576 // Update data pointers to the external strings containing natives sources.
577 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
578 Object* source = isolate_->heap()->natives_source_cache()->get(i);
579 if (!source->IsUndefined()) {
580 ExternalOneByteString::cast(source)->update_data_cache();
581 }
582 }
583
584 FlushICacheForNewCodeObjects();
585
586 // Issue code events for newly deserialized code objects.
587 LOG_CODE_EVENT(isolate_, LogCodeObjects());
588 LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
589 }
590
591
592 MaybeHandle<Object> Deserializer::DeserializePartial(
593 Isolate* isolate, Handle<JSGlobalProxy> global_proxy,
594 Handle<FixedArray>* outdated_contexts_out) {
595 Initialize(isolate);
596 if (!ReserveSpace()) {
597 V8::FatalProcessOutOfMemory("deserialize context");
598 return MaybeHandle<Object>();
599 }
600
601 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
602 attached_objects[kGlobalProxyReference] = global_proxy;
603 SetAttachedObjects(attached_objects);
604
605 DisallowHeapAllocation no_gc;
606 // Keep track of the code space start and end pointers in case new
607 // code objects were unserialized
608 OldSpace* code_space = isolate_->heap()->code_space();
609 Address start_address = code_space->top();
610 Object* root;
611 Object* outdated_contexts;
612 VisitPointer(&root);
613 VisitPointer(&outdated_contexts);
614
615 // There's no code deserialized here. If this assert fires
616 // then that's changed and logging should be added to notify
617 // the profiler et al of the new code.
618 CHECK_EQ(start_address, code_space->top());
619 CHECK(outdated_contexts->IsFixedArray());
620 *outdated_contexts_out =
621 Handle<FixedArray>(FixedArray::cast(outdated_contexts), isolate);
622 return Handle<Object>(root, isolate);
623 }
624
625
626 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
627 Isolate* isolate) {
628 Initialize(isolate);
629 if (!ReserveSpace()) {
630 return Handle<SharedFunctionInfo>();
631 } else {
632 deserializing_user_code_ = true;
633 DisallowHeapAllocation no_gc;
634 Object* root;
635 VisitPointer(&root);
636 return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
637 }
638 }
639
640
641 Deserializer::~Deserializer() {
642 // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
643 // DCHECK(source_.AtEOF());
644 attached_objects_.Dispose();
645 }
646
647
648 // This is called on the roots. It is the driver of the deserialization
649 // process. It is also called on the body of each function.
650 void Deserializer::VisitPointers(Object** start, Object** end) {
651 // The space must be new space. Any other space would cause ReadChunk to try
652 // to update the remembered using NULL as the address.
653 ReadData(start, end, NEW_SPACE, NULL);
654 }
655
656
657 void Deserializer::RelinkAllocationSite(AllocationSite* site) {
658 if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
659 site->set_weak_next(isolate_->heap()->undefined_value());
660 } else {
661 site->set_weak_next(isolate_->heap()->allocation_sites_list());
662 }
663 isolate_->heap()->set_allocation_sites_list(site);
664 }
665
666
667 // Used to insert a deserialized internalized string into the string table.
668 class StringTableInsertionKey : public HashTableKey {
669 public:
670 explicit StringTableInsertionKey(String* string)
671 : string_(string), hash_(HashForObject(string)) {
672 DCHECK(string->IsInternalizedString());
673 }
674
675 bool IsMatch(Object* string) OVERRIDE {
676 // We know that all entries in a hash table had their hash keys created.
677 // Use that knowledge to have fast failure.
678 if (hash_ != HashForObject(string)) return false;
679 // We want to compare the content of two internalized strings here.
680 return string_->SlowEquals(String::cast(string));
681 }
682
683 uint32_t Hash() OVERRIDE { return hash_; }
684
685 uint32_t HashForObject(Object* key) OVERRIDE {
686 return String::cast(key)->Hash();
687 }
688
689 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate)
690 OVERRIDE {
691 return handle(string_, isolate);
692 }
693
694 String* string_;
695 uint32_t hash_;
696 };
697
698
699 HeapObject* Deserializer::ProcessNewObjectFromSerializedCode(HeapObject* obj) {
700 if (obj->IsString()) {
701 String* string = String::cast(obj);
702 // Uninitialize hash field as the hash seed may have changed.
703 string->set_hash_field(String::kEmptyHashField);
704 if (string->IsInternalizedString()) {
705 DisallowHeapAllocation no_gc;
706 HandleScope scope(isolate_);
707 StringTableInsertionKey key(string);
708 String* canonical = *StringTable::LookupKey(isolate_, &key);
709 string->SetForwardedInternalizedString(canonical);
710 return canonical;
711 }
712 } else if (obj->IsScript()) {
713 Script::cast(obj)->set_id(isolate_->heap()->NextScriptId());
714 }
715 return obj;
716 }
717
718
719 HeapObject* Deserializer::GetBackReferencedObject(int space) {
720 HeapObject* obj;
721 BackReference back_reference(source_.GetInt());
722 if (space == LO_SPACE) {
723 CHECK(back_reference.chunk_index() == 0);
724 uint32_t index = back_reference.large_object_index();
725 obj = deserialized_large_objects_[index];
726 } else {
727 DCHECK(space < kNumberOfPreallocatedSpaces);
728 uint32_t chunk_index = back_reference.chunk_index();
729 DCHECK_LE(chunk_index, current_chunk_[space]);
730 uint32_t chunk_offset = back_reference.chunk_offset();
731 obj = HeapObject::FromAddress(reservations_[space][chunk_index].start +
732 chunk_offset);
733 }
734 if (deserializing_user_code() && obj->IsInternalizedString()) {
735 obj = String::cast(obj)->GetForwardedInternalizedString();
736 }
737 hot_objects_.Add(obj);
738 return obj;
739 }
740
741
742 // This routine writes the new object into the pointer provided and then
743 // returns true if the new object was in young space and false otherwise.
744 // The reason for this strange interface is that otherwise the object is
745 // written very late, which means the FreeSpace map is not set up by the
746 // time we need to use it to mark the space at the end of a page free.
747 void Deserializer::ReadObject(int space_number, Object** write_back) {
748 Address address;
749 HeapObject* obj;
750 int next_int = source_.GetInt();
751
752 bool double_align = false;
753 #ifndef V8_HOST_ARCH_64_BIT
754 double_align = next_int == kDoubleAlignmentSentinel;
755 if (double_align) next_int = source_.GetInt();
756 #endif
757
758 DCHECK_NE(kDoubleAlignmentSentinel, next_int);
759 int size = next_int << kObjectAlignmentBits;
760 int reserved_size = size + (double_align ? kPointerSize : 0);
761 address = Allocate(space_number, reserved_size);
762 obj = HeapObject::FromAddress(address);
763 if (double_align) {
764 obj = isolate_->heap()->DoubleAlignForDeserialization(obj, reserved_size);
765 address = obj->address();
766 }
767
768 isolate_->heap()->OnAllocationEvent(obj, size);
769 Object** current = reinterpret_cast<Object**>(address);
770 Object** limit = current + (size >> kPointerSizeLog2);
771 if (FLAG_log_snapshot_positions) {
772 LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
773 }
774 ReadData(current, limit, space_number, address);
775
776 // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
777 // as a (weak) root. If this root is relocated correctly,
778 // RelinkAllocationSite() isn't necessary.
779 if (obj->IsAllocationSite()) RelinkAllocationSite(AllocationSite::cast(obj));
780
781 // Fix up strings from serialized user code.
782 if (deserializing_user_code()) obj = ProcessNewObjectFromSerializedCode(obj);
783
784 Object* write_back_obj = obj;
785 UnalignedCopy(write_back, &write_back_obj);
786 #ifdef DEBUG
787 if (obj->IsCode()) {
788 DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
789 #ifdef VERIFY_HEAP
790 obj->ObjectVerify();
791 #endif // VERIFY_HEAP
792 } else {
793 DCHECK(space_number != CODE_SPACE);
794 }
795 #endif // DEBUG
796 }
797
798
799 // We know the space requirements before deserialization and can
800 // pre-allocate that reserved space. During deserialization, all we need
801 // to do is to bump up the pointer for each space in the reserved
802 // space. This is also used for fixing back references.
803 // We may have to split up the pre-allocation into several chunks
804 // because it would not fit onto a single page. We do not have to keep
805 // track of when to move to the next chunk. An opcode will signal this.
806 // Since multiple large objects cannot be folded into one large object
807 // space allocation, we have to do an actual allocation when deserializing
808 // each large object. Instead of tracking offset for back references, we
809 // reference large objects by index.
810 Address Deserializer::Allocate(int space_index, int size) {
811 if (space_index == LO_SPACE) {
812 AlwaysAllocateScope scope(isolate_);
813 LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
814 Executability exec = static_cast<Executability>(source_.Get());
815 AllocationResult result = lo_space->AllocateRaw(size, exec);
816 HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
817 deserialized_large_objects_.Add(obj);
818 return obj->address();
819 } else {
820 DCHECK(space_index < kNumberOfPreallocatedSpaces);
821 Address address = high_water_[space_index];
822 DCHECK_NOT_NULL(address);
823 high_water_[space_index] += size;
824 #ifdef DEBUG
825 // Assert that the current reserved chunk is still big enough.
826 const Heap::Reservation& reservation = reservations_[space_index];
827 int chunk_index = current_chunk_[space_index];
828 CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
829 #endif
830 return address;
831 }
832 }
833
834
835 void Deserializer::ReadData(Object** current, Object** limit, int source_space,
836 Address current_object_address) {
837 Isolate* const isolate = isolate_;
838 // Write barrier support costs around 1% in startup time. In fact there
839 // are no new space objects in current boot snapshots, so it's not needed,
840 // but that may change.
841 bool write_barrier_needed =
842 (current_object_address != NULL && source_space != NEW_SPACE &&
843 source_space != CODE_SPACE);
844 while (current < limit) {
845 byte data = source_.Get();
846 switch (data) {
847 #define CASE_STATEMENT(where, how, within, space_number) \
848 case where + how + within + space_number: \
849 STATIC_ASSERT((where & ~kWhereMask) == 0); \
850 STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
851 STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
852 STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
853
854 #define CASE_BODY(where, how, within, space_number_if_any) \
855 { \
856 bool emit_write_barrier = false; \
857 bool current_was_incremented = false; \
858 int space_number = space_number_if_any == kAnyOldSpace \
859 ? (data & kSpaceMask) \
860 : space_number_if_any; \
861 if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
862 ReadObject(space_number, current); \
863 emit_write_barrier = (space_number == NEW_SPACE); \
864 } else { \
865 Object* new_object = NULL; /* May not be a real Object pointer. */ \
866 if (where == kNewObject) { \
867 ReadObject(space_number, &new_object); \
868 } else if (where == kBackref) { \
869 emit_write_barrier = (space_number == NEW_SPACE); \
870 new_object = GetBackReferencedObject(data & kSpaceMask); \
871 } else if (where == kBackrefWithSkip) { \
872 int skip = source_.GetInt(); \
873 current = reinterpret_cast<Object**>( \
874 reinterpret_cast<Address>(current) + skip); \
875 emit_write_barrier = (space_number == NEW_SPACE); \
876 new_object = GetBackReferencedObject(data & kSpaceMask); \
877 } else if (where == kRootArray) { \
878 int root_id = source_.GetInt(); \
879 new_object = isolate->heap()->roots_array_start()[root_id]; \
880 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
881 } else if (where == kPartialSnapshotCache) { \
882 int cache_index = source_.GetInt(); \
883 new_object = isolate->partial_snapshot_cache()->at(cache_index); \
884 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
885 } else if (where == kExternalReference) { \
886 int skip = source_.GetInt(); \
887 current = reinterpret_cast<Object**>( \
888 reinterpret_cast<Address>(current) + skip); \
889 int reference_id = source_.GetInt(); \
890 Address address = external_reference_table_->address(reference_id); \
891 new_object = reinterpret_cast<Object*>(address); \
892 } else if (where == kAttachedReference) { \
893 int index = source_.GetInt(); \
894 DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \
895 new_object = *attached_objects_[index]; \
896 emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
897 } else { \
898 DCHECK(where == kBuiltin); \
899 DCHECK(deserializing_user_code()); \
900 int builtin_id = source_.GetInt(); \
901 DCHECK_LE(0, builtin_id); \
902 DCHECK_LT(builtin_id, Builtins::builtin_count); \
903 Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
904 new_object = isolate->builtins()->builtin(name); \
905 emit_write_barrier = false; \
906 } \
907 if (within == kInnerPointer) { \
908 if (space_number != CODE_SPACE || new_object->IsCode()) { \
909 Code* new_code_object = reinterpret_cast<Code*>(new_object); \
910 new_object = \
911 reinterpret_cast<Object*>(new_code_object->instruction_start()); \
912 } else { \
913 DCHECK(space_number == CODE_SPACE); \
914 Cell* cell = Cell::cast(new_object); \
915 new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
916 } \
917 } \
918 if (how == kFromCode) { \
919 Address location_of_branch_data = reinterpret_cast<Address>(current); \
920 Assembler::deserialization_set_special_target_at( \
921 location_of_branch_data, \
922 Code::cast(HeapObject::FromAddress(current_object_address)), \
923 reinterpret_cast<Address>(new_object)); \
924 location_of_branch_data += Assembler::kSpecialTargetSize; \
925 current = reinterpret_cast<Object**>(location_of_branch_data); \
926 current_was_incremented = true; \
927 } else { \
928 UnalignedCopy(current, &new_object); \
929 } \
930 } \
931 if (emit_write_barrier && write_barrier_needed) { \
932 Address current_address = reinterpret_cast<Address>(current); \
933 isolate->heap()->RecordWrite( \
934 current_object_address, \
935 static_cast<int>(current_address - current_object_address)); \
936 } \
937 if (!current_was_incremented) { \
938 current++; \
939 } \
940 break; \
941 }
942
943 // This generates a case and a body for the new space (which has to do extra
944 // write barrier handling) and handles the other spaces with fall-through cases
945 // and one body.
946 #define ALL_SPACES(where, how, within) \
947 CASE_STATEMENT(where, how, within, NEW_SPACE) \
948 CASE_BODY(where, how, within, NEW_SPACE) \
949 CASE_STATEMENT(where, how, within, OLD_SPACE) \
950 CASE_STATEMENT(where, how, within, CODE_SPACE) \
951 CASE_STATEMENT(where, how, within, MAP_SPACE) \
952 CASE_STATEMENT(where, how, within, LO_SPACE) \
953 CASE_BODY(where, how, within, kAnyOldSpace)
954
955 #define FOUR_CASES(byte_code) \
956 case byte_code: \
957 case byte_code + 1: \
958 case byte_code + 2: \
959 case byte_code + 3:
960
961 #define SIXTEEN_CASES(byte_code) \
962 FOUR_CASES(byte_code) \
963 FOUR_CASES(byte_code + 4) \
964 FOUR_CASES(byte_code + 8) \
965 FOUR_CASES(byte_code + 12)
966
967 // Deserialize a new object and write a pointer to it to the current
968 // object.
969 ALL_SPACES(kNewObject, kPlain, kStartOfObject)
970 // Support for direct instruction pointers in functions. It's an inner
971 // pointer because it points at the entry point, not at the start of the
972 // code object.
973 CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
974 CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
975 // Deserialize a new code object and write a pointer to its first
976 // instruction to the current code object.
977 ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
978 // Find a recently deserialized object using its offset from the current
979 // allocation point and write a pointer to it to the current object.
980 ALL_SPACES(kBackref, kPlain, kStartOfObject)
981 ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
982 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
983 defined(V8_TARGET_ARCH_PPC) || V8_OOL_CONSTANT_POOL
984 // Deserialize a new object from pointer found in code and write
985 // a pointer to it to the current object. Required only for MIPS, PPC or
986 // ARM with ool constant pool, and omitted on the other architectures
987 // because it is fully unrolled and would cause bloat.
988 ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
989 // Find a recently deserialized code object using its offset from the
990 // current allocation point and write a pointer to it to the current
991 // object. Required only for MIPS, PPC or ARM with ool constant pool.
992 ALL_SPACES(kBackref, kFromCode, kStartOfObject)
993 ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
994 #endif
995 // Find a recently deserialized code object using its offset from the
996 // current allocation point and write a pointer to its first instruction
997 // to the current code object or the instruction pointer in a function
998 // object.
999 ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1000 ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1001 ALL_SPACES(kBackref, kPlain, kInnerPointer)
1002 ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1003 // Find an object in the roots array and write a pointer to it to the
1004 // current object.
1005 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
1006 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
1007 #if defined(V8_TARGET_ARCH_MIPS) || V8_OOL_CONSTANT_POOL || \
1008 defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC)
1009 // Find an object in the roots array and write a pointer to it to in code.
1010 CASE_STATEMENT(kRootArray, kFromCode, kStartOfObject, 0)
1011 CASE_BODY(kRootArray, kFromCode, kStartOfObject, 0)
1012 #endif
1013 // Find an object in the partial snapshots cache and write a pointer to it
1014 // to the current object.
1015 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1016 CASE_BODY(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1017 // Find an code entry in the partial snapshots cache and
1018 // write a pointer to it to the current object.
1019 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1020 CASE_BODY(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1021 // Find an external reference and write a pointer to it to the current
1022 // object.
1023 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
1024 CASE_BODY(kExternalReference, kPlain, kStartOfObject, 0)
1025 // Find an external reference and write a pointer to it in the current
1026 // code object.
1027 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
1028 CASE_BODY(kExternalReference, kFromCode, kStartOfObject, 0)
1029 // Find an object in the attached references and write a pointer to it to
1030 // the current object.
1031 CASE_STATEMENT(kAttachedReference, kPlain, kStartOfObject, 0)
1032 CASE_BODY(kAttachedReference, kPlain, kStartOfObject, 0)
1033 CASE_STATEMENT(kAttachedReference, kPlain, kInnerPointer, 0)
1034 CASE_BODY(kAttachedReference, kPlain, kInnerPointer, 0)
1035 CASE_STATEMENT(kAttachedReference, kFromCode, kInnerPointer, 0)
1036 CASE_BODY(kAttachedReference, kFromCode, kInnerPointer, 0)
1037 // Find a builtin and write a pointer to it to the current object.
1038 CASE_STATEMENT(kBuiltin, kPlain, kStartOfObject, 0)
1039 CASE_BODY(kBuiltin, kPlain, kStartOfObject, 0)
1040 CASE_STATEMENT(kBuiltin, kPlain, kInnerPointer, 0)
1041 CASE_BODY(kBuiltin, kPlain, kInnerPointer, 0)
1042 CASE_STATEMENT(kBuiltin, kFromCode, kInnerPointer, 0)
1043 CASE_BODY(kBuiltin, kFromCode, kInnerPointer, 0)
1044
1045 #undef CASE_STATEMENT
1046 #undef CASE_BODY
1047 #undef ALL_SPACES
1048
1049 case kSkip: {
1050 int size = source_.GetInt();
1051 current = reinterpret_cast<Object**>(
1052 reinterpret_cast<intptr_t>(current) + size);
1053 break;
1054 }
1055
1056 case kInternalReferenceEncoded:
1057 case kInternalReference: {
1058 // Internal reference address is not encoded via skip, but by offset
1059 // from code entry.
1060 int pc_offset = source_.GetInt();
1061 int target_offset = source_.GetInt();
1062 Code* code =
1063 Code::cast(HeapObject::FromAddress(current_object_address));
1064 DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
1065 DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
1066 Address pc = code->entry() + pc_offset;
1067 Address target = code->entry() + target_offset;
1068 Assembler::deserialization_set_target_internal_reference_at(
1069 pc, target, data == kInternalReference
1070 ? RelocInfo::INTERNAL_REFERENCE
1071 : RelocInfo::INTERNAL_REFERENCE_ENCODED);
1072 break;
1073 }
1074
1075 case kNop:
1076 break;
1077
1078 case kNextChunk: {
1079 int space = source_.Get();
1080 DCHECK(space < kNumberOfPreallocatedSpaces);
1081 int chunk_index = current_chunk_[space];
1082 const Heap::Reservation& reservation = reservations_[space];
1083 // Make sure the current chunk is indeed exhausted.
1084 CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
1085 // Move to next reserved chunk.
1086 chunk_index = ++current_chunk_[space];
1087 CHECK_LT(chunk_index, reservation.length());
1088 high_water_[space] = reservation[chunk_index].start;
1089 break;
1090 }
1091
1092 case kSynchronize:
1093 // If we get here then that indicates that you have a mismatch between
1094 // the number of GC roots when serializing and deserializing.
1095 CHECK(false);
1096 break;
1097
1098 case kNativesStringResource: {
1099 DCHECK(!isolate_->heap()->deserialization_complete());
1100 int index = source_.Get();
1101 Vector<const char> source_vector = Natives::GetScriptSource(index);
1102 NativesExternalStringResource* resource =
1103 new NativesExternalStringResource(source_vector.start(),
1104 source_vector.length());
1105 Object* resource_obj = reinterpret_cast<Object*>(resource);
1106 UnalignedCopy(current++, &resource_obj);
1107 break;
1108 }
1109
1110 // Deserialize raw data of variable length.
1111 case kVariableRawData: {
1112 int size_in_bytes = source_.GetInt();
1113 byte* raw_data_out = reinterpret_cast<byte*>(current);
1114 source_.CopyRaw(raw_data_out, size_in_bytes);
1115 break;
1116 }
1117
1118 case kVariableRepeat: {
1119 int repeats = source_.GetInt();
1120 Object* object = current[-1];
1121 DCHECK(!isolate->heap()->InNewSpace(object));
1122 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1123 break;
1124 }
1125
1126 STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
1127 STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
1128 SIXTEEN_CASES(kRootArrayConstantsWithSkip)
1129 SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
1130 int skip = source_.GetInt();
1131 current = reinterpret_cast<Object**>(
1132 reinterpret_cast<intptr_t>(current) + skip);
1133 // Fall through.
1134 }
1135
1136 SIXTEEN_CASES(kRootArrayConstants)
1137 SIXTEEN_CASES(kRootArrayConstants + 16) {
1138 int root_id = data & kRootArrayConstantsMask;
1139 Object* object = isolate->heap()->roots_array_start()[root_id];
1140 DCHECK(!isolate->heap()->InNewSpace(object));
1141 UnalignedCopy(current++, &object);
1142 break;
1143 }
1144
1145 STATIC_ASSERT(kNumberOfHotObjects == 8);
1146 FOUR_CASES(kHotObjectWithSkip)
1147 FOUR_CASES(kHotObjectWithSkip + 4) {
1148 int skip = source_.GetInt();
1149 current = reinterpret_cast<Object**>(
1150 reinterpret_cast<Address>(current) + skip);
1151 // Fall through.
1152 }
1153
1154 FOUR_CASES(kHotObject)
1155 FOUR_CASES(kHotObject + 4) {
1156 int index = data & kHotObjectMask;
1157 Object* hot_object = hot_objects_.Get(index);
1158 UnalignedCopy(current, &hot_object);
1159 if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
1160 Address current_address = reinterpret_cast<Address>(current);
1161 isolate->heap()->RecordWrite(
1162 current_object_address,
1163 static_cast<int>(current_address - current_object_address));
1164 }
1165 current++;
1166 break;
1167 }
1168
1169 // Deserialize raw data of fixed length from 1 to 32 words.
1170 STATIC_ASSERT(kNumberOfFixedRawData == 32);
1171 SIXTEEN_CASES(kFixedRawData)
1172 SIXTEEN_CASES(kFixedRawData + 16) {
1173 byte* raw_data_out = reinterpret_cast<byte*>(current);
1174 int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
1175 source_.CopyRaw(raw_data_out, size_in_bytes);
1176 current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
1177 break;
1178 }
1179
1180 STATIC_ASSERT(kNumberOfFixedRepeat == 16);
1181 SIXTEEN_CASES(kFixedRepeat) {
1182 int repeats = data - kFixedRepeatStart;
1183 Object* object;
1184 UnalignedCopy(&object, current - 1);
1185 DCHECK(!isolate->heap()->InNewSpace(object));
1186 for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1187 break;
1188 }
1189
1190 #undef SIXTEEN_CASES
1191 #undef FOUR_CASES
1192
1193 default:
1194 CHECK(false);
1195 }
1196 }
1197 CHECK_EQ(limit, current);
1198 }
1199
1200
1201 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1202 : isolate_(isolate),
1203 sink_(sink),
1204 external_reference_encoder_(isolate),
1205 root_index_map_(isolate),
1206 code_address_map_(NULL),
1207 large_objects_total_size_(0),
1208 seen_large_objects_index_(0) {
1209 // The serializer is meant to be used only to generate initial heap images
1210 // from a context in which there is only one isolate.
1211 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1212 pending_chunk_[i] = 0;
1213 max_chunk_size_[i] = static_cast<uint32_t>(
1214 MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
1215 }
1216 }
1217
1218
1219 Serializer::~Serializer() {
1220 if (code_address_map_ != NULL) delete code_address_map_;
1221 }
1222
1223
1224 void StartupSerializer::SerializeStrongReferences() {
1225 Isolate* isolate = this->isolate();
1226 // No active threads.
1227 CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
1228 // No active or weak handles.
1229 CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1230 CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1231 CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1232 // We don't support serializing installed extensions.
1233 CHECK(!isolate->has_installed_extensions());
1234 isolate->heap()->IterateSmiRoots(this);
1235 isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1236 }
1237
1238
1239 void StartupSerializer::VisitPointers(Object** start, Object** end) {
1240 for (Object** current = start; current < end; current++) {
1241 if (start == isolate()->heap()->roots_array_start()) {
1242 root_index_wave_front_ =
1243 Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1244 }
1245 if (ShouldBeSkipped(current)) {
1246 sink_->Put(kSkip, "Skip");
1247 sink_->PutInt(kPointerSize, "SkipOneWord");
1248 } else if ((*current)->IsSmi()) {
1249 sink_->Put(kOnePointerRawData, "Smi");
1250 for (int i = 0; i < kPointerSize; i++) {
1251 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1252 }
1253 } else {
1254 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1255 }
1256 }
1257 }
1258
1259
1260 void PartialSerializer::Serialize(Object** o) {
1261 if ((*o)->IsContext()) {
1262 Context* context = Context::cast(*o);
1263 global_object_ = context->global_object();
1264 back_reference_map()->AddGlobalProxy(context->global_proxy());
1265 }
1266 VisitPointer(o);
1267 SerializeOutdatedContextsAsFixedArray();
1268 Pad();
1269 }
1270
1271
1272 void PartialSerializer::SerializeOutdatedContextsAsFixedArray() {
1273 int length = outdated_contexts_.length();
1274 if (length == 0) {
1275 FixedArray* empty = isolate_->heap()->empty_fixed_array();
1276 SerializeObject(empty, kPlain, kStartOfObject, 0);
1277 } else {
1278 // Serialize an imaginary fixed array containing outdated contexts.
1279 int size = FixedArray::SizeFor(length);
1280 Allocate(NEW_SPACE, size);
1281 sink_->Put(kNewObject + NEW_SPACE, "emulated FixedArray");
1282 sink_->PutInt(size >> kObjectAlignmentBits, "FixedArray size in words");
1283 Map* map = isolate_->heap()->fixed_array_map();
1284 SerializeObject(map, kPlain, kStartOfObject, 0);
1285 Smi* length_smi = Smi::FromInt(length);
1286 sink_->Put(kOnePointerRawData, "Smi");
1287 for (int i = 0; i < kPointerSize; i++) {
1288 sink_->Put(reinterpret_cast<byte*>(&length_smi)[i], "Byte");
1289 }
1290 for (int i = 0; i < length; i++) {
1291 BackReference back_ref = outdated_contexts_[i];
1292 DCHECK(BackReferenceIsAlreadyAllocated(back_ref));
1293 sink_->Put(kBackref + back_ref.space(), "BackRef");
1294 sink_->PutInt(back_ref.reference(), "BackRefValue");
1295 }
1296 }
1297 }
1298
1299
1300 bool Serializer::ShouldBeSkipped(Object** current) {
1301 Object** roots = isolate()->heap()->roots_array_start();
1302 return current == &roots[Heap::kStoreBufferTopRootIndex]
1303 || current == &roots[Heap::kStackLimitRootIndex]
1304 || current == &roots[Heap::kRealStackLimitRootIndex];
1305 }
1306
1307
1308 void Serializer::VisitPointers(Object** start, Object** end) {
1309 for (Object** current = start; current < end; current++) {
1310 if ((*current)->IsSmi()) {
1311 sink_->Put(kOnePointerRawData, "Smi");
1312 for (int i = 0; i < kPointerSize; i++) {
1313 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1314 }
1315 } else {
1316 SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1317 }
1318 }
1319 }
1320
1321
1322 void Serializer::EncodeReservations(
1323 List<SerializedData::Reservation>* out) const {
1324 for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1325 for (int j = 0; j < completed_chunks_[i].length(); j++) {
1326 out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
1327 }
1328
1329 if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
1330 out->Add(SerializedData::Reservation(pending_chunk_[i]));
1331 }
1332 out->last().mark_as_last();
1333 }
1334
1335 out->Add(SerializedData::Reservation(large_objects_total_size_));
1336 out->last().mark_as_last();
1337 }
1338
1339
1340 // This ensures that the partial snapshot cache keeps things alive during GC and
1341 // tracks their movement. When it is called during serialization of the startup
1342 // snapshot nothing happens. When the partial (context) snapshot is created,
1343 // this array is populated with the pointers that the partial snapshot will
1344 // need. As that happens we emit serialized objects to the startup snapshot
1345 // that correspond to the elements of this cache array. On deserialization we
1346 // therefore need to visit the cache array. This fills it up with pointers to
1347 // deserialized objects.
1348 void SerializerDeserializer::Iterate(Isolate* isolate,
1349 ObjectVisitor* visitor) {
1350 if (isolate->serializer_enabled()) return;
1351 List<Object*>* cache = isolate->partial_snapshot_cache();
1352 for (int i = 0;; ++i) {
1353 // Extend the array ready to get a value when deserializing.
1354 if (cache->length() <= i) cache->Add(Smi::FromInt(0));
1355 visitor->VisitPointer(&cache->at(i));
1356 // Sentinel is the undefined object, which is a root so it will not normally
1357 // be found in the cache.
1358 if (cache->at(i)->IsUndefined()) break;
1359 }
1360 }
1361
1362
1363 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1364 Isolate* isolate = this->isolate();
1365 List<Object*>* cache = isolate->partial_snapshot_cache();
1366 int new_index = cache->length();
1367
1368 int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
1369 if (index == PartialCacheIndexMap::kInvalidIndex) {
1370 // We didn't find the object in the cache. So we add it to the cache and
1371 // then visit the pointer so that it becomes part of the startup snapshot
1372 // and we can refer to it from the partial snapshot.
1373 cache->Add(heap_object);
1374 startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1375 // We don't recurse from the startup snapshot generator into the partial
1376 // snapshot generator.
1377 return new_index;
1378 }
1379 return index;
1380 }
1381
1382
1383 #ifdef DEBUG
1384 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
1385 DCHECK(reference.is_valid());
1386 DCHECK(!reference.is_source());
1387 DCHECK(!reference.is_global_proxy());
1388 AllocationSpace space = reference.space();
1389 int chunk_index = reference.chunk_index();
1390 if (space == LO_SPACE) {
1391 return chunk_index == 0 &&
1392 reference.large_object_index() < seen_large_objects_index_;
1393 } else if (chunk_index == completed_chunks_[space].length()) {
1394 return reference.chunk_offset() < pending_chunk_[space];
1395 } else {
1396 return chunk_index < completed_chunks_[space].length() &&
1397 reference.chunk_offset() < completed_chunks_[space][chunk_index];
1398 }
1399 }
1400 #endif // DEBUG
1401
1402
1403 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
1404 WhereToPoint where_to_point, int skip) {
1405 if (how_to_code == kPlain && where_to_point == kStartOfObject) {
1406 // Encode a reference to a hot object by its index in the working set.
1407 int index = hot_objects_.Find(obj);
1408 if (index != HotObjectsList::kNotFound) {
1409 DCHECK(index >= 0 && index < kNumberOfHotObjects);
1410 if (FLAG_trace_serializer) {
1411 PrintF(" Encoding hot object %d:", index);
1412 obj->ShortPrint();
1413 PrintF("\n");
1414 }
1415 if (skip != 0) {
1416 sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
1417 sink_->PutInt(skip, "HotObjectSkipDistance");
1418 } else {
1419 sink_->Put(kHotObject + index, "HotObject");
1420 }
1421 return true;
1422 }
1423 }
1424 BackReference back_reference = back_reference_map_.Lookup(obj);
1425 if (back_reference.is_valid()) {
1426 // Encode the location of an already deserialized object in order to write
1427 // its location into a later object. We can encode the location as an
1428 // offset fromthe start of the deserialized objects or as an offset
1429 // backwards from thecurrent allocation pointer.
1430 if (back_reference.is_source()) {
1431 FlushSkip(skip);
1432 if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
1433 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1434 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
1435 sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
1436 } else if (back_reference.is_global_proxy()) {
1437 FlushSkip(skip);
1438 if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
1439 DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1440 sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
1441 sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
1442 } else {
1443 if (FLAG_trace_serializer) {
1444 PrintF(" Encoding back reference to: ");
1445 obj->ShortPrint();
1446 PrintF("\n");
1447 }
1448
1449 AllocationSpace space = back_reference.space();
1450 if (skip == 0) {
1451 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
1452 } else {
1453 sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1454 "BackRefWithSkip");
1455 sink_->PutInt(skip, "BackRefSkipDistance");
1456 }
1457 DCHECK(BackReferenceIsAlreadyAllocated(back_reference));
1458 sink_->PutInt(back_reference.reference(), "BackRefValue");
1459
1460 hot_objects_.Add(obj);
1461 }
1462 return true;
1463 }
1464 return false;
1465 }
1466
1467
1468 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1469 WhereToPoint where_to_point, int skip) {
1470 DCHECK(!obj->IsJSFunction());
1471
1472 int root_index = root_index_map_.Lookup(obj);
1473 // We can only encode roots as such if it has already been serialized.
1474 // That applies to root indices below the wave front.
1475 if (root_index != RootIndexMap::kInvalidRootIndex &&
1476 root_index < root_index_wave_front_) {
1477 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1478 return;
1479 }
1480
1481 if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) {
1482 obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
1483 }
1484
1485 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1486
1487 FlushSkip(skip);
1488
1489 // Object has not yet been serialized. Serialize it here.
1490 ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
1491 where_to_point);
1492 object_serializer.Serialize();
1493 }
1494
1495
1496 void StartupSerializer::SerializeWeakReferences() {
1497 // This phase comes right after the serialization (of the snapshot).
1498 // After we have done the partial serialization the partial snapshot cache
1499 // will contain some references needed to decode the partial snapshot. We
1500 // add one entry with 'undefined' which is the sentinel that the deserializer
1501 // uses to know it is done deserializing the array.
1502 Object* undefined = isolate()->heap()->undefined_value();
1503 VisitPointer(&undefined);
1504 isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1505 Pad();
1506 }
1507
1508
1509 void Serializer::PutRoot(int root_index,
1510 HeapObject* object,
1511 SerializerDeserializer::HowToCode how_to_code,
1512 SerializerDeserializer::WhereToPoint where_to_point,
1513 int skip) {
1514 if (FLAG_trace_serializer) {
1515 PrintF(" Encoding root %d:", root_index);
1516 object->ShortPrint();
1517 PrintF("\n");
1518 }
1519
1520 if (how_to_code == kPlain && where_to_point == kStartOfObject &&
1521 root_index < kNumberOfRootArrayConstants &&
1522 !isolate()->heap()->InNewSpace(object)) {
1523 if (skip == 0) {
1524 sink_->Put(kRootArrayConstants + root_index, "RootConstant");
1525 } else {
1526 sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
1527 sink_->PutInt(skip, "SkipInPutRoot");
1528 }
1529 } else {
1530 FlushSkip(skip);
1531 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1532 sink_->PutInt(root_index, "root_index");
1533 }
1534 }
1535
1536
1537 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1538 WhereToPoint where_to_point, int skip) {
1539 if (obj->IsMap()) {
1540 // The code-caches link to context-specific code objects, which
1541 // the startup and context serializes cannot currently handle.
1542 DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
1543 }
1544
1545 // Replace typed arrays by undefined.
1546 if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
1547
1548 int root_index = root_index_map_.Lookup(obj);
1549 if (root_index != RootIndexMap::kInvalidRootIndex) {
1550 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1551 return;
1552 }
1553
1554 if (ShouldBeInThePartialSnapshotCache(obj)) {
1555 FlushSkip(skip);
1556
1557 int cache_index = PartialSnapshotCacheIndex(obj);
1558 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1559 "PartialSnapshotCache");
1560 sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1561 return;
1562 }
1563
1564 // Pointers from the partial snapshot to the objects in the startup snapshot
1565 // should go through the root array or through the partial snapshot cache.
1566 // If this is not the case you may have to add something to the root array.
1567 DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
1568 // All the internalized strings that the partial snapshot needs should be
1569 // either in the root table or in the partial snapshot cache.
1570 DCHECK(!obj->IsInternalizedString());
1571
1572 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1573
1574 FlushSkip(skip);
1575
1576 // Clear literal boilerplates.
1577 if (obj->IsJSFunction() && !JSFunction::cast(obj)->shared()->bound()) {
1578 FixedArray* literals = JSFunction::cast(obj)->literals();
1579 for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
1580 }
1581
1582 // Object has not yet been serialized. Serialize it here.
1583 ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
1584 serializer.Serialize();
1585
1586 if (obj->IsContext() &&
1587 Context::cast(obj)->global_object() == global_object_) {
1588 // Context refers to the current global object. This reference will
1589 // become outdated after deserialization.
1590 BackReference back_reference = back_reference_map_.Lookup(obj);
1591 DCHECK(back_reference.is_valid());
1592 outdated_contexts_.Add(back_reference);
1593 }
1594 }
1595
1596
1597 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
1598 int size, Map* map) {
1599 if (serializer_->code_address_map_) {
1600 const char* code_name =
1601 serializer_->code_address_map_->Lookup(object_->address());
1602 LOG(serializer_->isolate_,
1603 CodeNameEvent(object_->address(), sink_->Position(), code_name));
1604 LOG(serializer_->isolate_,
1605 SnapshotPositionEvent(object_->address(), sink_->Position()));
1606 }
1607
1608 BackReference back_reference;
1609 if (space == LO_SPACE) {
1610 sink_->Put(kNewObject + reference_representation_ + space,
1611 "NewLargeObject");
1612 sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1613 if (object_->IsCode()) {
1614 sink_->Put(EXECUTABLE, "executable large object");
1615 } else {
1616 sink_->Put(NOT_EXECUTABLE, "not executable large object");
1617 }
1618 back_reference = serializer_->AllocateLargeObject(size);
1619 } else {
1620 bool needs_double_align = false;
1621 if (object_->NeedsToEnsureDoubleAlignment()) {
1622 // Add wriggle room for double alignment padding.
1623 back_reference = serializer_->Allocate(space, size + kPointerSize);
1624 needs_double_align = true;
1625 } else {
1626 back_reference = serializer_->Allocate(space, size);
1627 }
1628 sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
1629 if (needs_double_align)
1630 sink_->PutInt(kDoubleAlignmentSentinel, "DoubleAlignSentinel");
1631 int encoded_size = size >> kObjectAlignmentBits;
1632 DCHECK_NE(kDoubleAlignmentSentinel, encoded_size);
1633 sink_->PutInt(encoded_size, "ObjectSizeInWords");
1634 }
1635
1636 // Mark this object as already serialized.
1637 serializer_->back_reference_map()->Add(object_, back_reference);
1638
1639 // Serialize the map (first word of the object).
1640 serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
1641 }
1642
1643
1644 void Serializer::ObjectSerializer::SerializeExternalString() {
1645 // Instead of serializing this as an external string, we serialize
1646 // an imaginary sequential string with the same content.
1647 Isolate* isolate = serializer_->isolate();
1648 DCHECK(object_->IsExternalString());
1649 DCHECK(object_->map() != isolate->heap()->native_source_string_map());
1650 ExternalString* string = ExternalString::cast(object_);
1651 int length = string->length();
1652 Map* map;
1653 int content_size;
1654 int allocation_size;
1655 const byte* resource;
1656 // Find the map and size for the imaginary sequential string.
1657 bool internalized = object_->IsInternalizedString();
1658 if (object_->IsExternalOneByteString()) {
1659 map = internalized ? isolate->heap()->one_byte_internalized_string_map()
1660 : isolate->heap()->one_byte_string_map();
1661 allocation_size = SeqOneByteString::SizeFor(length);
1662 content_size = length * kCharSize;
1663 resource = reinterpret_cast<const byte*>(
1664 ExternalOneByteString::cast(string)->resource()->data());
1665 } else {
1666 map = internalized ? isolate->heap()->internalized_string_map()
1667 : isolate->heap()->string_map();
1668 allocation_size = SeqTwoByteString::SizeFor(length);
1669 content_size = length * kShortSize;
1670 resource = reinterpret_cast<const byte*>(
1671 ExternalTwoByteString::cast(string)->resource()->data());
1672 }
1673
1674 AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
1675 ? LO_SPACE
1676 : OLD_SPACE;
1677 SerializePrologue(space, allocation_size, map);
1678
1679 // Output the rest of the imaginary string.
1680 int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
1681
1682 // Output raw data header. Do not bother with common raw length cases here.
1683 sink_->Put(kVariableRawData, "RawDataForString");
1684 sink_->PutInt(bytes_to_output, "length");
1685
1686 // Serialize string header (except for map).
1687 Address string_start = string->address();
1688 for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
1689 sink_->PutSection(string_start[i], "StringHeader");
1690 }
1691
1692 // Serialize string content.
1693 sink_->PutRaw(resource, content_size, "StringContent");
1694
1695 // Since the allocation size is rounded up to object alignment, there
1696 // maybe left-over bytes that need to be padded.
1697 int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
1698 DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
1699 for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
1700
1701 sink_->Put(kSkip, "SkipAfterString");
1702 sink_->PutInt(bytes_to_output, "SkipDistance");
1703 }
1704
1705
1706 void Serializer::ObjectSerializer::Serialize() {
1707 if (FLAG_trace_serializer) {
1708 PrintF(" Encoding heap object: ");
1709 object_->ShortPrint();
1710 PrintF("\n");
1711 }
1712
1713 // We cannot serialize typed array objects correctly.
1714 DCHECK(!object_->IsJSTypedArray());
1715
1716 if (object_->IsScript()) {
1717 // Clear cached line ends.
1718 Object* undefined = serializer_->isolate()->heap()->undefined_value();
1719 Script::cast(object_)->set_line_ends(undefined);
1720 }
1721
1722 if (object_->IsExternalString()) {
1723 Heap* heap = serializer_->isolate()->heap();
1724 if (object_->map() != heap->native_source_string_map()) {
1725 // Usually we cannot recreate resources for external strings. To work
1726 // around this, external strings are serialized to look like ordinary
1727 // sequential strings.
1728 // The exception are native source code strings, since we can recreate
1729 // their resources. In that case we fall through and leave it to
1730 // VisitExternalOneByteString further down.
1731 SerializeExternalString();
1732 return;
1733 }
1734 }
1735
1736 int size = object_->Size();
1737 Map* map = object_->map();
1738 AllocationSpace space =
1739 MemoryChunk::FromAddress(object_->address())->owner()->identity();
1740 SerializePrologue(space, size, map);
1741
1742 // Serialize the rest of the object.
1743 CHECK_EQ(0, bytes_processed_so_far_);
1744 bytes_processed_so_far_ = kPointerSize;
1745
1746 object_->IterateBody(map->instance_type(), size, this);
1747 OutputRawData(object_->address() + size);
1748 }
1749
1750
1751 void Serializer::ObjectSerializer::VisitPointers(Object** start,
1752 Object** end) {
1753 Object** current = start;
1754 while (current < end) {
1755 while (current < end && (*current)->IsSmi()) current++;
1756 if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1757
1758 while (current < end && !(*current)->IsSmi()) {
1759 HeapObject* current_contents = HeapObject::cast(*current);
1760 int root_index = serializer_->root_index_map()->Lookup(current_contents);
1761 // Repeats are not subject to the write barrier so we can only use
1762 // immortal immovable root members. They are never in new space.
1763 if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
1764 Heap::RootIsImmortalImmovable(root_index) &&
1765 current_contents == current[-1]) {
1766 DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
1767 int repeat_count = 1;
1768 while (&current[repeat_count] < end - 1 &&
1769 current[repeat_count] == current_contents) {
1770 repeat_count++;
1771 }
1772 current += repeat_count;
1773 bytes_processed_so_far_ += repeat_count * kPointerSize;
1774 if (repeat_count > kNumberOfFixedRepeat) {
1775 sink_->Put(kVariableRepeat, "VariableRepeat");
1776 sink_->PutInt(repeat_count, "repeat count");
1777 } else {
1778 sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
1779 }
1780 } else {
1781 serializer_->SerializeObject(
1782 current_contents, kPlain, kStartOfObject, 0);
1783 bytes_processed_so_far_ += kPointerSize;
1784 current++;
1785 }
1786 }
1787 }
1788 }
1789
1790
1791 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
1792 // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1793 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1794
1795 int skip = OutputRawData(rinfo->target_address_address(),
1796 kCanReturnSkipInsteadOfSkipping);
1797 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1798 Object* object = rinfo->target_object();
1799 serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
1800 kStartOfObject, skip);
1801 bytes_processed_so_far_ += rinfo->target_address_size();
1802 }
1803
1804
1805 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
1806 int skip = OutputRawData(reinterpret_cast<Address>(p),
1807 kCanReturnSkipInsteadOfSkipping);
1808 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1809 sink_->PutInt(skip, "SkipB4ExternalRef");
1810 Address target = *p;
1811 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1812 bytes_processed_so_far_ += kPointerSize;
1813 }
1814
1815
1816 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
1817 int skip = OutputRawData(rinfo->target_address_address(),
1818 kCanReturnSkipInsteadOfSkipping);
1819 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1820 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1821 sink_->PutInt(skip, "SkipB4ExternalRef");
1822 Address target = rinfo->target_external_reference();
1823 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1824 bytes_processed_so_far_ += rinfo->target_address_size();
1825 }
1826
1827
1828 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
1829 // We can only reference to internal references of code that has been output.
1830 DCHECK(is_code_object_ && code_has_been_output_);
1831 // We do not use skip from last patched pc to find the pc to patch, since
1832 // target_address_address may not return addresses in ascending order when
1833 // used for internal references. External references may be stored at the
1834 // end of the code in the constant pool, whereas internal references are
1835 // inline. That would cause the skip to be negative. Instead, we store the
1836 // offset from code entry.
1837 Address entry = Code::cast(object_)->entry();
1838 intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
1839 intptr_t target_offset = rinfo->target_internal_reference() - entry;
1840 DCHECK(0 <= pc_offset &&
1841 pc_offset <= Code::cast(object_)->instruction_size());
1842 DCHECK(0 <= target_offset &&
1843 target_offset <= Code::cast(object_)->instruction_size());
1844 sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
1845 ? kInternalReference
1846 : kInternalReferenceEncoded,
1847 "InternalRef");
1848 sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
1849 sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
1850 }
1851
1852
1853 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1854 int skip = OutputRawData(rinfo->target_address_address(),
1855 kCanReturnSkipInsteadOfSkipping);
1856 HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1857 sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
1858 sink_->PutInt(skip, "SkipB4ExternalRef");
1859 Address target = rinfo->target_address();
1860 sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
1861 bytes_processed_so_far_ += rinfo->target_address_size();
1862 }
1863
1864
1865 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1866 // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1867 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1868
1869 int skip = OutputRawData(rinfo->target_address_address(),
1870 kCanReturnSkipInsteadOfSkipping);
1871 Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
1872 serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
1873 bytes_processed_so_far_ += rinfo->target_address_size();
1874 }
1875
1876
1877 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1878 int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
1879 Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1880 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1881 bytes_processed_so_far_ += kPointerSize;
1882 }
1883
1884
1885 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
1886 // Out-of-line constant pool entries will be visited by the ConstantPoolArray.
1887 if (FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool()) return;
1888
1889 int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
1890 Cell* object = Cell::cast(rinfo->target_cell());
1891 serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
1892 bytes_processed_so_far_ += kPointerSize;
1893 }
1894
1895
1896 void Serializer::ObjectSerializer::VisitExternalOneByteString(
1897 v8::String::ExternalOneByteStringResource** resource_pointer) {
1898 Address references_start = reinterpret_cast<Address>(resource_pointer);
1899 OutputRawData(references_start);
1900 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1901 Object* source =
1902 serializer_->isolate()->heap()->natives_source_cache()->get(i);
1903 if (!source->IsUndefined()) {
1904 ExternalOneByteString* string = ExternalOneByteString::cast(source);
1905 typedef v8::String::ExternalOneByteStringResource Resource;
1906 const Resource* resource = string->resource();
1907 if (resource == *resource_pointer) {
1908 sink_->Put(kNativesStringResource, "NativesStringResource");
1909 sink_->PutSection(i, "NativesStringResourceEnd");
1910 bytes_processed_so_far_ += sizeof(resource);
1911 return;
1912 }
1913 }
1914 }
1915 // One of the strings in the natives cache should match the resource. We
1916 // don't expect any other kinds of external strings here.
1917 UNREACHABLE();
1918 }
1919
1920
1921 Address Serializer::ObjectSerializer::PrepareCode() {
1922 // To make snapshots reproducible, we make a copy of the code object
1923 // and wipe all pointers in the copy, which we then serialize.
1924 Code* original = Code::cast(object_);
1925 Code* code = serializer_->CopyCode(original);
1926 // Code age headers are not serializable.
1927 code->MakeYoung(serializer_->isolate());
1928 int mode_mask = RelocInfo::kCodeTargetMask |
1929 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
1930 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
1931 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
1932 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
1933 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
1934 for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
1935 RelocInfo* rinfo = it.rinfo();
1936 if (!(FLAG_enable_ool_constant_pool && rinfo->IsInConstantPool())) {
1937 rinfo->WipeOut();
1938 }
1939 }
1940 // We need to wipe out the header fields *after* wiping out the
1941 // relocations, because some of these fields are needed for the latter.
1942 code->WipeOutHeader();
1943 return code->address();
1944 }
1945
1946
1947 int Serializer::ObjectSerializer::OutputRawData(
1948 Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
1949 Address object_start = object_->address();
1950 int base = bytes_processed_so_far_;
1951 int up_to_offset = static_cast<int>(up_to - object_start);
1952 int to_skip = up_to_offset - bytes_processed_so_far_;
1953 int bytes_to_output = to_skip;
1954 bytes_processed_so_far_ += to_skip;
1955 // This assert will fail if the reloc info gives us the target_address_address
1956 // locations in a non-ascending order. Luckily that doesn't happen.
1957 DCHECK(to_skip >= 0);
1958 bool outputting_code = false;
1959 if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
1960 // Output the code all at once and fix later.
1961 bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
1962 outputting_code = true;
1963 code_has_been_output_ = true;
1964 }
1965 if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
1966 if (!outputting_code && bytes_to_output == to_skip &&
1967 IsAligned(bytes_to_output, kPointerAlignment) &&
1968 bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
1969 int size_in_words = bytes_to_output >> kPointerSizeLog2;
1970 sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
1971 to_skip = 0; // This instruction includes skip.
1972 } else {
1973 // We always end up here if we are outputting the code of a code object.
1974 sink_->Put(kVariableRawData, "VariableRawData");
1975 sink_->PutInt(bytes_to_output, "length");
1976 }
1977
1978 if (is_code_object_) object_start = PrepareCode();
1979
1980 const char* description = is_code_object_ ? "Code" : "Byte";
1981 #ifdef MEMORY_SANITIZER
1982 // Object sizes are usually rounded up with uninitialized padding space.
1983 MSAN_MEMORY_IS_INITIALIZED(object_start + base, bytes_to_output);
1984 #endif // MEMORY_SANITIZER
1985 sink_->PutRaw(object_start + base, bytes_to_output, description);
1986 }
1987 if (to_skip != 0 && return_skip == kIgnoringReturn) {
1988 sink_->Put(kSkip, "Skip");
1989 sink_->PutInt(to_skip, "SkipDistance");
1990 to_skip = 0;
1991 }
1992 return to_skip;
1993 }
1994
1995
1996 BackReference Serializer::AllocateLargeObject(int size) {
1997 // Large objects are allocated one-by-one when deserializing. We do not
1998 // have to keep track of multiple chunks.
1999 large_objects_total_size_ += size;
2000 return BackReference::LargeObjectReference(seen_large_objects_index_++);
2001 }
2002
2003
2004 BackReference Serializer::Allocate(AllocationSpace space, int size) {
2005 DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
2006 DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
2007 uint32_t new_chunk_size = pending_chunk_[space] + size;
2008 if (new_chunk_size > max_chunk_size(space)) {
2009 // The new chunk size would not fit onto a single page. Complete the
2010 // current chunk and start a new one.
2011 sink_->Put(kNextChunk, "NextChunk");
2012 sink_->Put(space, "NextChunkSpace");
2013 completed_chunks_[space].Add(pending_chunk_[space]);
2014 DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
2015 pending_chunk_[space] = 0;
2016 new_chunk_size = size;
2017 }
2018 uint32_t offset = pending_chunk_[space];
2019 pending_chunk_[space] = new_chunk_size;
2020 return BackReference::Reference(space, completed_chunks_[space].length(),
2021 offset);
2022 }
2023
2024
2025 void Serializer::Pad() {
2026 // The non-branching GetInt will read up to 3 bytes too far, so we need
2027 // to pad the snapshot to make sure we don't read over the end.
2028 for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
2029 sink_->Put(kNop, "Padding");
2030 }
2031 // Pad up to pointer size for checksum.
2032 while (!IsAligned(sink_->Position(), kPointerAlignment)) {
2033 sink_->Put(kNop, "Padding");
2034 }
2035 }
2036
2037
2038 void Serializer::InitializeCodeAddressMap() {
2039 isolate_->InitializeLoggingAndCounters();
2040 code_address_map_ = new CodeAddressMap(isolate_);
2041 }
2042
2043
2044 Code* Serializer::CopyCode(Code* code) {
2045 code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
2046 int size = code->CodeSize();
2047 code_buffer_.AddAll(Vector<byte>(code->address(), size));
2048 return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
2049 }
2050
2051
2052 ScriptData* CodeSerializer::Serialize(Isolate* isolate,
2053 Handle<SharedFunctionInfo> info,
2054 Handle<String> source) {
2055 base::ElapsedTimer timer;
2056 if (FLAG_profile_deserialization) timer.Start();
2057 if (FLAG_trace_serializer) {
2058 PrintF("[Serializing from");
2059 Object* script = info->script();
2060 if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
2061 PrintF("]\n");
2062 }
2063
2064 // Serialize code object.
2065 SnapshotByteSink sink(info->code()->CodeSize() * 2);
2066 CodeSerializer cs(isolate, &sink, *source, info->code());
2067 DisallowHeapAllocation no_gc;
2068 Object** location = Handle<Object>::cast(info).location();
2069 cs.VisitPointer(location);
2070 cs.Pad();
2071
2072 SerializedCodeData data(sink.data(), cs);
2073 ScriptData* script_data = data.GetScriptData();
2074
2075 if (FLAG_profile_deserialization) {
2076 double ms = timer.Elapsed().InMillisecondsF();
2077 int length = script_data->length();
2078 PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
2079 }
2080
2081 return script_data;
2082 }
2083
2084
2085 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
2086 WhereToPoint where_to_point, int skip) {
2087 int root_index = root_index_map_.Lookup(obj);
2088 if (root_index != RootIndexMap::kInvalidRootIndex) {
2089 PutRoot(root_index, obj, how_to_code, where_to_point, skip);
2090 return;
2091 }
2092
2093 if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
2094
2095 FlushSkip(skip);
2096
2097 if (obj->IsCode()) {
2098 Code* code_object = Code::cast(obj);
2099 switch (code_object->kind()) {
2100 case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
2101 case Code::HANDLER: // No handlers patched in yet.
2102 case Code::REGEXP: // No regexp literals initialized yet.
2103 case Code::NUMBER_OF_KINDS: // Pseudo enum value.
2104 CHECK(false);
2105 case Code::BUILTIN:
2106 SerializeBuiltin(code_object->builtin_index(), how_to_code,
2107 where_to_point);
2108 return;
2109 case Code::STUB:
2110 SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
2111 return;
2112 #define IC_KIND_CASE(KIND) case Code::KIND:
2113 IC_KIND_LIST(IC_KIND_CASE)
2114 #undef IC_KIND_CASE
2115 SerializeIC(code_object, how_to_code, where_to_point);
2116 return;
2117 case Code::FUNCTION:
2118 DCHECK(code_object->has_reloc_info_for_serialization());
2119 // Only serialize the code for the toplevel function unless specified
2120 // by flag. Replace code of inner functions by the lazy compile builtin.
2121 // This is safe, as checked in Compiler::BuildFunctionInfo.
2122 if (code_object != main_code_ && !FLAG_serialize_inner) {
2123 SerializeBuiltin(Builtins::kCompileLazy, how_to_code, where_to_point);
2124 } else {
2125 SerializeGeneric(code_object, how_to_code, where_to_point);
2126 }
2127 return;
2128 }
2129 UNREACHABLE();
2130 }
2131
2132 // Past this point we should not see any (context-specific) maps anymore.
2133 CHECK(!obj->IsMap());
2134 // There should be no references to the global object embedded.
2135 CHECK(!obj->IsJSGlobalProxy() && !obj->IsGlobalObject());
2136 // There should be no hash table embedded. They would require rehashing.
2137 CHECK(!obj->IsHashTable());
2138 // We expect no instantiated function objects or contexts.
2139 CHECK(!obj->IsJSFunction() && !obj->IsContext());
2140
2141 SerializeGeneric(obj, how_to_code, where_to_point);
2142 }
2143
2144
2145 void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
2146 HowToCode how_to_code,
2147 WhereToPoint where_to_point) {
2148 if (heap_object->IsInternalizedString()) num_internalized_strings_++;
2149
2150 // Object has not yet been serialized. Serialize it here.
2151 ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
2152 where_to_point);
2153 serializer.Serialize();
2154 }
2155
2156
2157 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
2158 WhereToPoint where_to_point) {
2159 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2160 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2161 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2162 DCHECK_LT(builtin_index, Builtins::builtin_count);
2163 DCHECK_LE(0, builtin_index);
2164
2165 if (FLAG_trace_serializer) {
2166 PrintF(" Encoding builtin: %s\n",
2167 isolate()->builtins()->name(builtin_index));
2168 }
2169
2170 sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
2171 sink_->PutInt(builtin_index, "builtin_index");
2172 }
2173
2174
2175 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
2176 WhereToPoint where_to_point) {
2177 DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2178 (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2179 (how_to_code == kFromCode && where_to_point == kInnerPointer));
2180 DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
2181 DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
2182
2183 int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
2184
2185 if (FLAG_trace_serializer) {
2186 PrintF(" Encoding code stub %s as %d\n",
2187 CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false),
2188 index);
2189 }
2190
2191 sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
2192 sink_->PutInt(index, "CodeStub key");
2193 }
2194
2195
2196 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
2197 WhereToPoint where_to_point) {
2198 // The IC may be implemented as a stub.
2199 uint32_t stub_key = ic->stub_key();
2200 if (stub_key != CodeStub::NoCacheKey()) {
2201 if (FLAG_trace_serializer) {
2202 PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
2203 }
2204 SerializeCodeStub(stub_key, how_to_code, where_to_point);
2205 return;
2206 }
2207 // The IC may be implemented as builtin. Only real builtins have an
2208 // actual builtin_index value attached (otherwise it's just garbage).
2209 // Compare to make sure we are really dealing with a builtin.
2210 int builtin_index = ic->builtin_index();
2211 if (builtin_index < Builtins::builtin_count) {
2212 Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
2213 Code* builtin = isolate()->builtins()->builtin(name);
2214 if (builtin == ic) {
2215 if (FLAG_trace_serializer) {
2216 PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
2217 }
2218 DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
2219 ic->kind() == Code::KEYED_STORE_IC);
2220 SerializeBuiltin(builtin_index, how_to_code, where_to_point);
2221 return;
2222 }
2223 }
2224 // The IC may also just be a piece of code kept in the non_monomorphic_cache.
2225 // In that case, just serialize as a normal code object.
2226 if (FLAG_trace_serializer) {
2227 PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
2228 }
2229 DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
2230 SerializeGeneric(ic, how_to_code, where_to_point);
2231 }
2232
2233
2234 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
2235 // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
2236 int index = 0;
2237 while (index < stub_keys_.length()) {
2238 if (stub_keys_[index] == stub_key) return index;
2239 index++;
2240 }
2241 stub_keys_.Add(stub_key);
2242 return index;
2243 }
2244
2245
2246 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
2247 Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
2248 base::ElapsedTimer timer;
2249 if (FLAG_profile_deserialization) timer.Start();
2250
2251 HandleScope scope(isolate);
2252
2253 SmartPointer<SerializedCodeData> scd(
2254 SerializedCodeData::FromCachedData(isolate, cached_data, *source));
2255 if (scd.is_empty()) {
2256 if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
2257 DCHECK(cached_data->rejected());
2258 return MaybeHandle<SharedFunctionInfo>();
2259 }
2260
2261 // Eagerly expand string table to avoid allocations during deserialization.
2262 StringTable::EnsureCapacityForDeserialization(isolate,
2263 scd->NumInternalizedStrings());
2264
2265 // Prepare and register list of attached objects.
2266 Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
2267 Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
2268 code_stub_keys.length() + kCodeStubsBaseIndex);
2269 attached_objects[kSourceObjectIndex] = source;
2270 for (int i = 0; i < code_stub_keys.length(); i++) {
2271 attached_objects[i + kCodeStubsBaseIndex] =
2272 CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
2273 }
2274
2275 Deserializer deserializer(scd.get());
2276 deserializer.SetAttachedObjects(attached_objects);
2277
2278 // Deserialize.
2279 Handle<SharedFunctionInfo> result;
2280 if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
2281 // Deserializing may fail if the reservations cannot be fulfilled.
2282 if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
2283 return MaybeHandle<SharedFunctionInfo>();
2284 }
2285 deserializer.FlushICacheForNewCodeObjects();
2286
2287 if (FLAG_profile_deserialization) {
2288 double ms = timer.Elapsed().InMillisecondsF();
2289 int length = cached_data->length();
2290 PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
2291 }
2292 result->set_deserialized(true);
2293
2294 if (isolate->logger()->is_logging_code_events() ||
2295 isolate->cpu_profiler()->is_profiling()) {
2296 String* name = isolate->heap()->empty_string();
2297 if (result->script()->IsScript()) {
2298 Script* script = Script::cast(result->script());
2299 if (script->name()->IsString()) name = String::cast(script->name());
2300 }
2301 isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(),
2302 *result, NULL, name);
2303 }
2304 return scope.CloseAndEscape(result);
2305 }
2306
2307
2308 void SerializedData::AllocateData(int size) {
2309 DCHECK(!owns_data_);
2310 data_ = NewArray<byte>(size);
2311 size_ = size;
2312 owns_data_ = true;
2313 DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
2314 }
2315
2316
2317 SnapshotData::SnapshotData(const Serializer& ser) {
2318 DisallowHeapAllocation no_gc;
2319 List<Reservation> reservations;
2320 ser.EncodeReservations(&reservations);
2321 const List<byte>& payload = ser.sink()->data();
2322
2323 // Calculate sizes.
2324 int reservation_size = reservations.length() * kInt32Size;
2325 int size = kHeaderSize + reservation_size + payload.length();
2326
2327 // Allocate backing store and create result data.
2328 AllocateData(size);
2329
2330 // Set header values.
2331 SetMagicNumber(ser.isolate());
2332 SetHeaderValue(kCheckSumOffset, Version::Hash());
2333 SetHeaderValue(kNumReservationsOffset, reservations.length());
2334 SetHeaderValue(kPayloadLengthOffset, payload.length());
2335
2336 // Copy reservation chunk sizes.
2337 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2338 reservation_size);
2339
2340 // Copy serialized data.
2341 CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
2342 static_cast<size_t>(payload.length()));
2343 }
2344
2345
2346 bool SnapshotData::IsSane() {
2347 return GetHeaderValue(kCheckSumOffset) == Version::Hash();
2348 }
2349
2350
2351 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
2352 return Vector<const Reservation>(
2353 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2354 GetHeaderValue(kNumReservationsOffset));
2355 }
2356
2357
2358 Vector<const byte> SnapshotData::Payload() const {
2359 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2360 const byte* payload = data_ + kHeaderSize + reservations_size;
2361 int length = GetHeaderValue(kPayloadLengthOffset);
2362 DCHECK_EQ(data_ + size_, payload + length);
2363 return Vector<const byte>(payload, length);
2364 }
2365
2366
2367 class Checksum {
2368 public:
2369 explicit Checksum(Vector<const byte> payload) {
2370 // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
2371 uintptr_t a = 1;
2372 uintptr_t b = 0;
2373 const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
2374 DCHECK(IsAligned(payload.length(), kIntptrSize));
2375 const uintptr_t* end = cur + payload.length() / kIntptrSize;
2376 while (cur < end) {
2377 // Unsigned overflow expected and intended.
2378 a += *cur++;
2379 b += a;
2380 }
2381 #if V8_HOST_ARCH_64_BIT
2382 a ^= a >> 32;
2383 b ^= b >> 32;
2384 #endif // V8_HOST_ARCH_64_BIT
2385 a_ = static_cast<uint32_t>(a);
2386 b_ = static_cast<uint32_t>(b);
2387 }
2388
2389 bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
2390
2391 uint32_t a() const { return a_; }
2392 uint32_t b() const { return b_; }
2393
2394 private:
2395 uint32_t a_;
2396 uint32_t b_;
2397
2398 DISALLOW_COPY_AND_ASSIGN(Checksum);
2399 };
2400
2401
2402 SerializedCodeData::SerializedCodeData(const List<byte>& payload,
2403 const CodeSerializer& cs) {
2404 DisallowHeapAllocation no_gc;
2405 const List<uint32_t>* stub_keys = cs.stub_keys();
2406
2407 List<Reservation> reservations;
2408 cs.EncodeReservations(&reservations);
2409
2410 // Calculate sizes.
2411 int reservation_size = reservations.length() * kInt32Size;
2412 int num_stub_keys = stub_keys->length();
2413 int stub_keys_size = stub_keys->length() * kInt32Size;
2414 int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
2415 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2416 int size = padded_payload_offset + payload.length();
2417
2418 // Allocate backing store and create result data.
2419 AllocateData(size);
2420
2421 // Set header values.
2422 SetMagicNumber(cs.isolate());
2423 SetHeaderValue(kVersionHashOffset, Version::Hash());
2424 SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
2425 SetHeaderValue(kCpuFeaturesOffset,
2426 static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
2427 SetHeaderValue(kFlagHashOffset, FlagList::Hash());
2428 SetHeaderValue(kNumInternalizedStringsOffset, cs.num_internalized_strings());
2429 SetHeaderValue(kNumReservationsOffset, reservations.length());
2430 SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
2431 SetHeaderValue(kPayloadLengthOffset, payload.length());
2432
2433 Checksum checksum(payload.ToConstVector());
2434 SetHeaderValue(kChecksum1Offset, checksum.a());
2435 SetHeaderValue(kChecksum2Offset, checksum.b());
2436
2437 // Copy reservation chunk sizes.
2438 CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2439 reservation_size);
2440
2441 // Copy code stub keys.
2442 CopyBytes(data_ + kHeaderSize + reservation_size,
2443 reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
2444
2445 memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
2446
2447 // Copy serialized data.
2448 CopyBytes(data_ + padded_payload_offset, payload.begin(),
2449 static_cast<size_t>(payload.length()));
2450 }
2451
2452
2453 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
2454 Isolate* isolate, String* source) const {
2455 uint32_t magic_number = GetMagicNumber();
2456 uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
2457 uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
2458 uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
2459 uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
2460 uint32_t c1 = GetHeaderValue(kChecksum1Offset);
2461 uint32_t c2 = GetHeaderValue(kChecksum2Offset);
2462 if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
2463 if (version_hash != Version::Hash()) return VERSION_MISMATCH;
2464 if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
2465 if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
2466 return CPU_FEATURES_MISMATCH;
2467 }
2468 if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
2469 if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
2470 return CHECK_SUCCESS;
2471 }
2472
2473
2474 // Return ScriptData object and relinquish ownership over it to the caller.
2475 ScriptData* SerializedCodeData::GetScriptData() {
2476 DCHECK(owns_data_);
2477 ScriptData* result = new ScriptData(data_, size_);
2478 result->AcquireDataOwnership();
2479 owns_data_ = false;
2480 data_ = NULL;
2481 return result;
2482 }
2483
2484
2485 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
2486 const {
2487 return Vector<const Reservation>(
2488 reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2489 GetHeaderValue(kNumReservationsOffset));
2490 }
2491
2492
2493 Vector<const byte> SerializedCodeData::Payload() const {
2494 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2495 int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
2496 int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
2497 int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2498 const byte* payload = data_ + padded_payload_offset;
2499 DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
2500 int length = GetHeaderValue(kPayloadLengthOffset);
2501 DCHECK_EQ(data_ + size_, payload + length);
2502 return Vector<const byte>(payload, length);
2503 }
2504
2505
2506 int SerializedCodeData::NumInternalizedStrings() const {
2507 return GetHeaderValue(kNumInternalizedStringsOffset);
2508 }
2509
2510 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
2511 int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2512 const byte* start = data_ + kHeaderSize + reservations_size;
2513 return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
2514 GetHeaderValue(kNumCodeStubKeysOffset));
2515 }
2516
2517
2518 SerializedCodeData::SerializedCodeData(ScriptData* data)
2519 : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
2520
2521
2522 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
2523 ScriptData* cached_data,
2524 String* source) {
2525 DisallowHeapAllocation no_gc;
2526 SerializedCodeData* scd = new SerializedCodeData(cached_data);
2527 SanityCheckResult r = scd->SanityCheck(isolate, source);
2528 if (r == CHECK_SUCCESS) return scd;
2529 cached_data->Reject();
2530 source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
2531 delete scd;
2532 return NULL;
2533 }
2534
2535 } // namespace internal
2536 } // namespace v8
OLDNEW
« no previous file with comments | « src/math.js ('k') | test/mjsunit/regress/regress-math-log.js » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698