Index: third_party/libpng/contrib/intel/filter_sse2_intrinsics.c |
diff --git a/third_party/libpng/contrib/intel/filter_sse2_intrinsics.c b/third_party/libpng/contrib/intel/filter_sse2_intrinsics.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..92dcd7e4ac4a508d3450f9824e6c93d0d87c1008 |
--- /dev/null |
+++ b/third_party/libpng/contrib/intel/filter_sse2_intrinsics.c |
@@ -0,0 +1,379 @@ |
+ |
+/* filter_sse2_intrinsics.c - SSE2 optimized filter functions |
+ * |
+ * Copyright (c) 2016 Google, Inc. |
+ * Written by Mike Klein and Matt Sarett |
+ * Derived from arm/filter_neon_intrinsics.c, which was |
+ * Copyright (c) 2014,2016 Glenn Randers-Pehrson |
+ * |
+ * Last changed in libpng 1.6.22 [(PENDING RELEASE)] |
+ * |
+ * This code is released under the libpng license. |
+ * For conditions of distribution and use, see the disclaimer |
+ * and license in png.h |
+ */ |
+ |
+#include "../../pngpriv.h" |
+ |
+#ifdef PNG_READ_SUPPORTED |
+ |
+#if PNG_INTEL_SSE_IMPLEMENTATION > 0 |
+ |
+#include <immintrin.h> |
+ |
+/* Functions in this file look at most 3 pixels (a,b,c) to predict the 4th (d). |
+ * They're positioned like this: |
+ * prev: c b |
+ * row: a d |
+ * The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be |
+ * whichever of a, b, or c is closest to p=a+b-c. |
+ */ |
+ |
+static __m128i load4(const void* p) { |
+ return _mm_cvtsi32_si128(*(const int*)p); |
+} |
+ |
+static void store4(void* p, __m128i v) { |
+ *(int*)p = _mm_cvtsi128_si32(v); |
+} |
+ |
+static __m128i load3(const void* p) { |
+ /* We'll load 2 bytes, then 1 byte, |
+ * then mask them together, and finally load into SSE. |
+ */ |
+ const png_uint_16* p01 = p; |
+ const png_byte* p2 = (const png_byte*)(p01+1); |
+ |
+ png_uint_32 v012 = (png_uint_32)(*p01) |
+ | (png_uint_32)(*p2) << 16; |
+ return load4(&v012); |
+} |
+ |
+static void store3(void* p, __m128i v) { |
+ /* We'll pull from SSE as a 32-bit int, then write |
+ * its bottom two bytes, then its third byte. |
+ */ |
+ png_uint_32 v012; |
+ store4(&v012, v); |
+ |
+ png_uint_16* p01 = p; |
+ png_byte* p2 = (png_byte*)(p01+1); |
+ *p01 = v012; |
+ *p2 = v012 >> 16; |
+} |
+ |
+void png_read_filter_row_sub3_sse2(png_row_infop row_info, png_bytep row, |
+ png_const_bytep prev) |
+{ |
+ /* The Sub filter predicts each pixel as the previous pixel, a. |
+ * There is no pixel to the left of the first pixel. It's encoded directly. |
+ * That works with our main loop if we just say that left pixel was zero. |
+ */ |
+ png_debug(1, "in png_read_filter_row_sub3_sse2"); |
+ __m128i a, d = _mm_setzero_si128(); |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb >= 4) { |
+ a = d; d = load4(row); |
+ d = _mm_add_epi8(d, a); |
+ store3(row, d); |
+ |
+ row += 3; |
+ rb -= 3; |
+ } |
+ if (rb > 0) { |
+ a = d; d = load3(row); |
+ d = _mm_add_epi8(d, a); |
+ store3(row, d); |
+ |
+ row += 3; |
+ rb -= 3; |
+ } |
+} |
+ |
+void png_read_filter_row_sub4_sse2(png_row_infop row_info, png_bytep row, |
+ png_const_bytep prev) |
+{ |
+ /* The Sub filter predicts each pixel as the previous pixel, a. |
+ * There is no pixel to the left of the first pixel. It's encoded directly. |
+ * That works with our main loop if we just say that left pixel was zero. |
+ */ |
+ png_debug(1, "in png_read_filter_row_sub4_sse2"); |
+ __m128i a, d = _mm_setzero_si128(); |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ a = d; d = load4(row); |
+ d = _mm_add_epi8(d, a); |
+ store4(row, d); |
+ |
+ row += 4; |
+ rb -= 4; |
+ } |
+} |
+ |
+void png_read_filter_row_avg3_sse2(png_row_infop row_info, png_bytep row, |
+ png_const_bytep prev) |
+{ |
+ /* The Avg filter predicts each pixel as the (truncated) average of a and b. |
+ * There's no pixel to the left of the first pixel. Luckily, it's |
+ * predicted to be half of the pixel above it. So again, this works |
+ * perfectly with our loop if we make sure a starts at zero. |
+ */ |
+ png_debug(1, "in png_read_filter_row_avg3_sse2"); |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i b; |
+ __m128i a, d = zero; |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb >= 4) { |
+ b = load4(prev); |
+ a = d; d = load4(row ); |
+ |
+ /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ |
+ __m128i avg = _mm_avg_epu8(a,b); |
+ /* ...but we can fix it up by subtracting off 1 if it rounded up. */ |
+ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), |
+ _mm_set1_epi8(1))); |
+ d = _mm_add_epi8(d, avg); |
+ store3(row, d); |
+ |
+ prev += 3; |
+ row += 3; |
+ rb -= 3; |
+ } |
+ if (rb > 0) { |
+ b = load3(prev); |
+ a = d; d = load3(row ); |
+ |
+ /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ |
+ __m128i avg = _mm_avg_epu8(a,b); |
+ /* ...but we can fix it up by subtracting off 1 if it rounded up. */ |
+ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), |
+ _mm_set1_epi8(1))); |
+ |
+ d = _mm_add_epi8(d, avg); |
+ store3(row, d); |
+ |
+ prev += 3; |
+ row += 3; |
+ rb -= 3; |
+ } |
+} |
+ |
+void png_read_filter_row_avg4_sse2(png_row_infop row_info, png_bytep row, |
+ png_const_bytep prev) |
+{ |
+ /* The Avg filter predicts each pixel as the (truncated) average of a and b. |
+ * There's no pixel to the left of the first pixel. Luckily, it's |
+ * predicted to be half of the pixel above it. So again, this works |
+ * perfectly with our loop if we make sure a starts at zero. |
+ */ |
+ png_debug(1, "in png_read_filter_row_avg4_sse2"); |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i b; |
+ __m128i a, d = zero; |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ b = load4(prev); |
+ a = d; d = load4(row ); |
+ |
+ /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ |
+ __m128i avg = _mm_avg_epu8(a,b); |
+ /* ...but we can fix it up by subtracting off 1 if it rounded up. */ |
+ avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), |
+ _mm_set1_epi8(1))); |
+ |
+ d = _mm_add_epi8(d, avg); |
+ store4(row, d); |
+ |
+ prev += 4; |
+ row += 4; |
+ rb -= 4; |
+ } |
+} |
+ |
+/* Returns |x| for 16-bit lanes. */ |
+static __m128i abs_i16(__m128i x) { |
+#if PNG_INTEL_SSE_IMPLEMENTATION >= 2 |
+ return _mm_abs_epi16(x); |
+#else |
+ /* Read this all as, return x<0 ? -x : x. |
+ * To negate two's complement, you flip all the bits then add 1. |
+ */ |
+ __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); |
+ |
+ /* Flip negative lanes. */ |
+ x = _mm_xor_si128(x, is_negative); |
+ |
+ /* +1 to negative lanes, else +0. */ |
+ x = _mm_add_epi16(x, _mm_srli_epi16(is_negative, 15)); |
+ return x; |
+#endif |
+} |
+ |
+/* Bytewise c ? t : e. */ |
+static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { |
+#if PNG_INTEL_SSE_IMPLEMENTATION >= 3 |
+ return _mm_blendv_epi8(e,t,c); |
+#else |
+ return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); |
+#endif |
+} |
+ |
+void png_read_filter_row_paeth3_sse2(png_row_infop row_info, png_bytep row, |
+ png_const_bytep prev) |
+{ |
+ /* Paeth tries to predict pixel d using the pixel to the left of it, a, |
+ * and two pixels from the previous row, b and c: |
+ * prev: c b |
+ * row: a d |
+ * The Paeth function predicts d to be whichever of a, b, or c is nearest to |
+ * p=a+b-c. |
+ * |
+ * The first pixel has no left context, and so uses an Up filter, p = b. |
+ * This works naturally with our main loop's p = a+b-c if we force a and c |
+ * to zero. |
+ * Here we zero b and d, which become c and a respectively at the start of |
+ * the loop. |
+ */ |
+ png_debug(1, "in png_read_filter_row_paeth3_sse2"); |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i c, b = zero, |
+ a, d = zero; |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb >= 4) { |
+ /* It's easiest to do this math (particularly, deal with pc) with 16-bit |
+ * intermediates. |
+ */ |
+ c = b; b = _mm_unpacklo_epi8(load4(prev), zero); |
+ a = d; d = _mm_unpacklo_epi8(load4(row ), zero); |
+ |
+ /* (p-a) == (a+b-c - a) == (b-c) */ |
+ __m128i pa = _mm_sub_epi16(b,c); |
+ |
+ /* (p-b) == (a+b-c - b) == (a-c) */ |
+ __m128i pb = _mm_sub_epi16(a,c); |
+ |
+ /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ |
+ __m128i pc = _mm_add_epi16(pa,pb); |
+ |
+ pa = abs_i16(pa); /* |p-a| */ |
+ pb = abs_i16(pb); /* |p-b| */ |
+ pc = abs_i16(pc); /* |p-c| */ |
+ |
+ __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); |
+ |
+ /* Paeth breaks ties favoring a over b over c. */ |
+ __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, |
+ if_then_else(_mm_cmpeq_epi16(smallest, pb), b, |
+ c)); |
+ |
+ /* Note `_epi8`: we need addition to wrap modulo 255. */ |
+ d = _mm_add_epi8(d, nearest); |
+ store3(row, _mm_packus_epi16(d,d)); |
+ |
+ prev += 3; |
+ row += 3; |
+ rb -= 3; |
+ } |
+ if (rb > 0) { |
+ /* It's easiest to do this math (particularly, deal with pc) with 16-bit |
+ * intermediates. |
+ */ |
+ c = b; b = _mm_unpacklo_epi8(load3(prev), zero); |
+ a = d; d = _mm_unpacklo_epi8(load3(row ), zero); |
+ |
+ /* (p-a) == (a+b-c - a) == (b-c) */ |
+ __m128i pa = _mm_sub_epi16(b,c); |
+ |
+ /* (p-b) == (a+b-c - b) == (a-c) */ |
+ __m128i pb = _mm_sub_epi16(a,c); |
+ |
+ /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ |
+ __m128i pc = _mm_add_epi16(pa,pb); |
+ |
+ pa = abs_i16(pa); /* |p-a| */ |
+ pb = abs_i16(pb); /* |p-b| */ |
+ pc = abs_i16(pc); /* |p-c| */ |
+ |
+ __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); |
+ |
+ /* Paeth breaks ties favoring a over b over c. */ |
+ __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, |
+ if_then_else(_mm_cmpeq_epi16(smallest, pb), b, |
+ c)); |
+ |
+ /* Note `_epi8`: we need addition to wrap modulo 255. */ |
+ d = _mm_add_epi8(d, nearest); |
+ store3(row, _mm_packus_epi16(d,d)); |
+ |
+ prev += 3; |
+ row += 3; |
+ rb -= 3; |
+ } |
+} |
+ |
+void png_read_filter_row_paeth4_sse2(png_row_infop row_info, png_bytep row, |
+ png_const_bytep prev) |
+{ |
+ /* Paeth tries to predict pixel d using the pixel to the left of it, a, |
+ * and two pixels from the previous row, b and c: |
+ * prev: c b |
+ * row: a d |
+ * The Paeth function predicts d to be whichever of a, b, or c is nearest to |
+ * p=a+b-c. |
+ * |
+ * The first pixel has no left context, and so uses an Up filter, p = b. |
+ * This works naturally with our main loop's p = a+b-c if we force a and c |
+ * to zero. |
+ * Here we zero b and d, which become c and a respectively at the start of |
+ * the loop. |
+ */ |
+ png_debug(1, "in png_read_filter_row_paeth4_sse2"); |
+ const __m128i zero = _mm_setzero_si128(); |
+ __m128i c, b = zero, |
+ a, d = zero; |
+ |
+ int rb = row_info->rowbytes; |
+ while (rb > 0) { |
+ /* It's easiest to do this math (particularly, deal with pc) with 16-bit |
+ * intermediates. |
+ */ |
+ c = b; b = _mm_unpacklo_epi8(load4(prev), zero); |
+ a = d; d = _mm_unpacklo_epi8(load4(row ), zero); |
+ |
+ /* (p-a) == (a+b-c - a) == (b-c) */ |
+ __m128i pa = _mm_sub_epi16(b,c); |
+ |
+ /* (p-b) == (a+b-c - b) == (a-c) */ |
+ __m128i pb = _mm_sub_epi16(a,c); |
+ |
+ /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ |
+ __m128i pc = _mm_add_epi16(pa,pb); |
+ |
+ pa = abs_i16(pa); /* |p-a| */ |
+ pb = abs_i16(pb); /* |p-b| */ |
+ pc = abs_i16(pc); /* |p-c| */ |
+ |
+ __m128i smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); |
+ |
+ /* Paeth breaks ties favoring a over b over c. */ |
+ __m128i nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, |
+ if_then_else(_mm_cmpeq_epi16(smallest, pb), b, |
+ c)); |
+ |
+ /* Note `_epi8`: we need addition to wrap modulo 255. */ |
+ d = _mm_add_epi8(d, nearest); |
+ store4(row, _mm_packus_epi16(d,d)); |
+ |
+ prev += 4; |
+ row += 4; |
+ rb -= 4; |
+ } |
+} |
+ |
+#endif /* PNG_INTEL_SSE_IMPLEMENTATION > 0 */ |
+#endif /* READ */ |