OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "GrVkMemory.h" | 8 #include "GrVkMemory.h" |
9 | 9 |
10 #include "GrVkGpu.h" | 10 #include "GrVkGpu.h" |
(...skipping 11 matching lines...) Expand all Loading... | |
22 if (supportedFlags == requestedMemFlags) { | 22 if (supportedFlags == requestedMemFlags) { |
23 *typeIndex = i; | 23 *typeIndex = i; |
24 return true; | 24 return true; |
25 } | 25 } |
26 } | 26 } |
27 checkBit <<= 1; | 27 checkBit <<= 1; |
28 } | 28 } |
29 return false; | 29 return false; |
30 } | 30 } |
31 | 31 |
32 static bool alloc_device_memory(const GrVkGpu* gpu, | 32 static GrVkGpu::Heap buffer_type_to_heap(GrVkBuffer::Type type) { |
33 VkMemoryRequirements* memReqs, | 33 const GrVkGpu::Heap kBufferToHeap[]{ |
bsalomon
2016/06/10 15:14:53
Should we have some static asserts somewhere that
jvanverth1
2016/06/10 15:41:20
Ok, I'll add those.
jvanverth1
2016/06/13 19:59:22
Done.
| |
34 const VkMemoryPropertyFlags flags, | 34 GrVkGpu::kVertexBuffer_Heap, |
35 VkDeviceMemory* memory) { | 35 GrVkGpu::kIndexBuffer_Heap, |
36 uint32_t typeIndex; | 36 GrVkGpu::kUniformBuffer_Heap, |
37 if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), | 37 GrVkGpu::kCopyReadBuffer_Heap, |
38 memReqs->memoryTypeBits, | 38 GrVkGpu::kCopyWriteBuffer_Heap, |
39 flags, | |
40 &typeIndex)) { | |
41 return false; | |
42 } | |
43 | |
44 VkMemoryAllocateInfo allocInfo = { | |
45 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // sType | |
46 NULL, // pNext | |
47 memReqs->size, // allocationSize | |
48 typeIndex, // memoryTypeIndex | |
49 }; | 39 }; |
50 | 40 |
51 VkResult err = GR_VK_CALL(gpu->vkInterface(), AllocateMemory(gpu->device(), | 41 return kBufferToHeap[type]; |
52 &allocInfo, | |
53 nullptr, | |
54 memory)); | |
55 if (err) { | |
56 return false; | |
57 } | |
58 return true; | |
59 } | 42 } |
60 | 43 |
61 bool GrVkMemory::AllocAndBindBufferMemory(const GrVkGpu* gpu, | 44 bool GrVkMemory::AllocAndBindBufferMemory(const GrVkGpu* gpu, |
62 VkBuffer buffer, | 45 VkBuffer buffer, |
63 const VkMemoryPropertyFlags flags, | 46 GrVkBuffer::Type type, |
64 GrVkAlloc* alloc) { | 47 GrVkAlloc* alloc) { |
65 const GrVkInterface* iface = gpu->vkInterface(); | 48 const GrVkInterface* iface = gpu->vkInterface(); |
66 VkDevice device = gpu->device(); | 49 VkDevice device = gpu->device(); |
67 | 50 |
68 VkMemoryRequirements memReqs; | 51 VkMemoryRequirements memReqs; |
69 GR_VK_CALL(iface, GetBufferMemoryRequirements(device, buffer, &memReqs)); | 52 GR_VK_CALL(iface, GetBufferMemoryRequirements(device, buffer, &memReqs)); |
70 | 53 |
71 if (!alloc_device_memory(gpu, &memReqs, flags, &alloc->fMemory)) { | 54 VkMemoryPropertyFlags desiredMemProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | |
55 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | | |
56 VK_MEMORY_PROPERTY_HOST_CACHED_BIT; | |
57 uint32_t typeIndex; | |
58 if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), | |
59 memReqs.memoryTypeBits, | |
60 desiredMemProps, | |
61 &typeIndex)) { | |
62 // this memory type should always be available | |
63 SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryPr operties(), | |
64 memReqs.memoryTypeBits, | |
65 VK_MEMORY_PROPERTY_HOST_VIS IBLE_BIT | | |
66 VK_MEMORY_PROPERTY_HOST_COH ERENT_BIT, | |
67 &typeIndex)); | |
68 } | |
69 | |
70 GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type)); | |
71 | |
72 if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, alloc)) { | |
73 SkDebugf("Failed to alloc buffer\n"); | |
72 return false; | 74 return false; |
73 } | 75 } |
74 // for now, offset is always 0 | |
75 alloc->fOffset = 0; | |
76 | 76 |
77 // Bind Memory to device | 77 // Bind Memory to device |
78 VkResult err = GR_VK_CALL(iface, BindBufferMemory(device, buffer, | 78 VkResult err = GR_VK_CALL(iface, BindBufferMemory(device, buffer, |
79 alloc->fMemory, alloc->fOf fset)); | 79 alloc->fMemory, alloc->fOf fset)); |
80 if (err) { | 80 if (err) { |
81 GR_VK_CALL(iface, FreeMemory(device, alloc->fMemory, nullptr)); | 81 SkASSERT_RELEASE(heap->free(*alloc)); |
82 return false; | 82 return false; |
83 } | 83 } |
84 | |
84 return true; | 85 return true; |
85 } | 86 } |
86 | 87 |
87 void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, const GrVkAlloc& alloc) { | 88 void GrVkMemory::FreeBufferMemory(const GrVkGpu* gpu, GrVkBuffer::Type type, |
88 const GrVkInterface* iface = gpu->vkInterface(); | 89 const GrVkAlloc& alloc) { |
89 GR_VK_CALL(iface, FreeMemory(gpu->device(), alloc.fMemory, nullptr)); | 90 |
91 GrVkHeap* heap = gpu->getHeap(buffer_type_to_heap(type)); | |
92 SkASSERT_RELEASE(heap->free(alloc)); | |
90 } | 93 } |
91 | 94 |
95 static uint64_t gTotalImageMemory = 0; | |
bsalomon
2016/06/10 15:14:53
Is this for debugging?
jvanverth1
2016/06/10 15:41:20
Yes, I'd rather leave it in for now.
jvanverth1
2016/06/13 19:59:22
Added comment.
| |
96 static uint64_t gTotalImageMemoryFullPage = 0; | |
97 | |
92 bool GrVkMemory::AllocAndBindImageMemory(const GrVkGpu* gpu, | 98 bool GrVkMemory::AllocAndBindImageMemory(const GrVkGpu* gpu, |
93 VkImage image, | 99 VkImage image, |
94 const VkMemoryPropertyFlags flags, | 100 bool linearTiling, |
95 GrVkAlloc* alloc) { | 101 GrVkAlloc* alloc) { |
96 const GrVkInterface* iface = gpu->vkInterface(); | 102 const GrVkInterface* iface = gpu->vkInterface(); |
97 VkDevice device = gpu->device(); | 103 VkDevice device = gpu->device(); |
98 | 104 |
99 VkMemoryRequirements memReqs; | 105 VkMemoryRequirements memReqs; |
100 GR_VK_CALL(iface, GetImageMemoryRequirements(device, image, &memReqs)); | 106 GR_VK_CALL(iface, GetImageMemoryRequirements(device, image, &memReqs)); |
101 | 107 |
102 if (!alloc_device_memory(gpu, &memReqs, flags, &alloc->fMemory)) { | 108 uint32_t typeIndex; |
109 GrVkHeap* heap; | |
110 if (linearTiling) { | |
111 VkMemoryPropertyFlags desiredMemProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_ BIT | | |
112 VK_MEMORY_PROPERTY_HOST_COHERENT _BIT | | |
113 VK_MEMORY_PROPERTY_HOST_CACHED_B IT; | |
114 if (!get_valid_memory_type_index(gpu->physicalDeviceMemoryProperties(), | |
115 memReqs.memoryTypeBits, | |
116 desiredMemProps, | |
117 &typeIndex)) { | |
118 // this memory type should always be available | |
119 SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemo ryProperties(), | |
120 memReqs.memoryTypeBits, | |
121 VK_MEMORY_PROPERTY_HOST _VISIBLE_BIT | | |
122 VK_MEMORY_PROPERTY_HOST _COHERENT_BIT, | |
123 &typeIndex)); | |
124 } | |
125 heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap); | |
126 } else { | |
127 // this memory type should always be available | |
128 SkASSERT_RELEASE(get_valid_memory_type_index(gpu->physicalDeviceMemoryPr operties(), | |
129 memReqs.memoryTypeBits, | |
130 VK_MEMORY_PROPERTY_DEVICE_L OCAL_BIT, | |
131 &typeIndex)); | |
132 if (memReqs.size < 16 * 1024) { | |
133 heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap); | |
134 } else { | |
135 heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap); | |
136 } | |
137 } | |
138 | |
139 if (!heap->alloc(memReqs.size, memReqs.alignment, typeIndex, alloc)) { | |
140 SkDebugf("Failed to alloc image\n"); | |
103 return false; | 141 return false; |
104 } | 142 } |
105 // for now, offset is always 0 | |
106 alloc->fOffset = 0; | |
107 | 143 |
108 // Bind Memory to device | 144 // Bind Memory to device |
109 VkResult err = GR_VK_CALL(iface, BindImageMemory(device, image, | 145 VkResult err = GR_VK_CALL(iface, BindImageMemory(device, image, |
110 alloc->fMemory, alloc->fOffset)); | 146 alloc->fMemory, alloc->fOffset)); |
111 if (err) { | 147 if (err) { |
112 GR_VK_CALL(iface, FreeMemory(device, alloc->fMemory, nullptr)); | 148 SkASSERT_RELEASE(heap->free(*alloc)); |
113 return false; | 149 return false; |
114 } | 150 } |
151 | |
152 gTotalImageMemory += alloc->fSize; | |
153 | |
154 VkDeviceSize alignedSize = (alloc->fSize + 16*1024 - 1) & ~(16*1024 - 1); | |
155 gTotalImageMemoryFullPage += alignedSize; | |
156 | |
115 return true; | 157 return true; |
116 } | 158 } |
117 | 159 |
118 void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, const GrVkAlloc& alloc) { | 160 void GrVkMemory::FreeImageMemory(const GrVkGpu* gpu, bool linearTiling, |
119 const GrVkInterface* iface = gpu->vkInterface(); | 161 const GrVkAlloc& alloc) { |
120 GR_VK_CALL(iface, FreeMemory(gpu->device(), alloc.fMemory, nullptr)); | 162 GrVkHeap* heap; |
163 if (linearTiling) { | |
164 heap = gpu->getHeap(GrVkGpu::kLinearImage_Heap); | |
165 } else if (alloc.fSize < 16 * 1024) { | |
166 heap = gpu->getHeap(GrVkGpu::kSmallOptimalImage_Heap); | |
167 } else { | |
168 heap = gpu->getHeap(GrVkGpu::kOptimalImage_Heap); | |
169 } | |
170 if (!heap->free(alloc)) { | |
171 // must be an adopted allocation | |
172 GR_VK_CALL(gpu->vkInterface(), FreeMemory(gpu->device(), alloc.fMemory, nullptr)); | |
173 } else { | |
174 gTotalImageMemory -= alloc.fSize; | |
175 VkDeviceSize alignedSize = (alloc.fSize + 16 * 1024 - 1) & ~(16 * 1024 - 1); | |
176 gTotalImageMemoryFullPage -= alignedSize; | |
177 } | |
121 } | 178 } |
122 | 179 |
123 VkPipelineStageFlags GrVkMemory::LayoutToPipelineStageFlags(const VkImageLayout layout) { | 180 VkPipelineStageFlags GrVkMemory::LayoutToPipelineStageFlags(const VkImageLayout layout) { |
124 if (VK_IMAGE_LAYOUT_GENERAL == layout) { | 181 if (VK_IMAGE_LAYOUT_GENERAL == layout) { |
125 return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; | 182 return VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; |
126 } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout || | 183 } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout || |
127 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { | 184 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
128 return VK_PIPELINE_STAGE_TRANSFER_BIT; | 185 return VK_PIPELINE_STAGE_TRANSFER_BIT; |
129 } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout || | 186 } else if (VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout || |
130 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout || | 187 VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL == layout || |
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
162 flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; | 219 flags = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; |
163 } else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { | 220 } else if (VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL == layout) { |
164 flags = VK_ACCESS_TRANSFER_WRITE_BIT; | 221 flags = VK_ACCESS_TRANSFER_WRITE_BIT; |
165 } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) { | 222 } else if (VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL == layout) { |
166 flags = VK_ACCESS_TRANSFER_READ_BIT; | 223 flags = VK_ACCESS_TRANSFER_READ_BIT; |
167 } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { | 224 } else if (VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL == layout) { |
168 flags = VK_ACCESS_SHADER_READ_BIT; | 225 flags = VK_ACCESS_SHADER_READ_BIT; |
169 } | 226 } |
170 return flags; | 227 return flags; |
171 } | 228 } |
229 | |
230 GrVkSubHeap::GrVkSubHeap(const GrVkGpu* gpu, uint32_t memoryTypeIndex, VkDeviceS ize size) | |
231 : fGpu(gpu) | |
232 , fMemoryTypeIndex(memoryTypeIndex) { | |
233 | |
234 VkMemoryAllocateInfo allocInfo = { | |
235 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // sType | |
236 NULL, // pNext | |
237 size, // allocationSize | |
238 memoryTypeIndex, // memoryTypeIndex | |
239 }; | |
240 | |
241 VkResult err = GR_VK_CALL(gpu->vkInterface(), AllocateMemory(gpu->device(), | |
242 &allocInfo, | |
egdaniel
2016/06/13 16:44:44
align these will allocate memory?
jvanverth1
2016/06/13 19:59:22
Done.
| |
243 nullptr, | |
244 &fAlloc)); | |
245 | |
246 if (VK_SUCCESS == err) { | |
247 fSize = size; | |
248 fFreeSize = size; | |
249 fLargestBlockSize = size; | |
250 fLargestBlockOffset = 0; | |
251 | |
252 Block* block = fFreeList.addToTail(); | |
253 block->fOffset = 0; | |
254 block->fSize = fSize; | |
255 } else { | |
256 fSize = 0; | |
257 fFreeSize = 0; | |
258 fLargestBlockSize = 0; | |
259 } | |
260 } | |
261 | |
262 GrVkSubHeap::~GrVkSubHeap() { | |
263 const GrVkInterface* iface = fGpu->vkInterface(); | |
264 GR_VK_CALL(iface, FreeMemory(fGpu->device(), fAlloc, nullptr)); | |
265 | |
266 fFreeList.reset(); | |
267 } | |
268 | |
269 static VkDeviceSize align_size(VkDeviceSize size, VkDeviceSize alignment) { | |
270 return (size + alignment - 1) & ~(alignment - 1); | |
271 } | |
272 | |
273 bool GrVkSubHeap::alloc(VkDeviceSize size, VkDeviceSize alignment, GrVkAlloc* al loc) { | |
274 VkDeviceSize alignedSize = align_size(size, alignment); | |
275 | |
276 // find the smallest block big enough for our allocation | |
277 FreeList::Iter iter = fFreeList.headIter(); | |
278 FreeList::Iter bestFitIter; | |
279 VkDeviceSize bestFitSize = fSize + 1; | |
280 VkDeviceSize secondLargestSize = 0; | |
281 VkDeviceSize secondLargestOffset = 0; | |
282 while (iter.get()) { | |
283 Block* block = iter.get(); | |
284 // need to adjust size to match desired alignment | |
285 VkDeviceSize alignedDiff = align_size(block->fOffset, alignment) - block ->fOffset; | |
286 VkDeviceSize blockAlignedSize = block->fSize - alignedDiff; | |
287 if (blockAlignedSize >= alignedSize && blockAlignedSize < bestFitSize) { | |
egdaniel
2016/06/13 16:44:44
from our conversation, I think a better criteria f
jvanverth1
2016/06/13 19:59:22
I've modified it to have a fixed alignment for a g
| |
288 bestFitIter = iter; | |
289 bestFitSize = blockAlignedSize; | |
290 } | |
291 if (secondLargestSize < block->fSize && block->fOffset != fLargestBlockO ffset) { | |
292 secondLargestSize = block->fSize; | |
293 secondLargestOffset = block->fOffset; | |
294 } | |
295 iter.next(); | |
296 } | |
297 SkASSERT(secondLargestSize <= fLargestBlockSize); | |
298 | |
299 Block* bestFit = bestFitIter.get(); | |
300 if (bestFit) { | |
301 alloc->fMemory = fAlloc; | |
302 alloc->fOffset = align_size(bestFit->fOffset, alignment); | |
303 alloc->fSize = alignedSize; | |
304 VkDeviceSize originalBestFitOffset = bestFit->fOffset; | |
305 // if there's an unaligned area at the start of the block, | |
306 // we need to add a new block to hold it | |
307 VkDeviceSize padSize = 0; | |
308 if (alloc->fOffset != bestFit->fOffset) { | |
309 Block* pad = fFreeList.addBefore(bestFitIter); | |
310 pad->fOffset = bestFit->fOffset; | |
311 pad->fSize = alloc->fOffset - bestFit->fOffset; | |
312 padSize = pad->fSize; | |
313 bestFit->fOffset += padSize; | |
314 bestFit->fSize -= padSize; | |
315 } | |
316 // adjust or remove current block | |
317 if (bestFit->fSize > alignedSize) { | |
318 bestFit->fOffset += alignedSize; | |
319 bestFit->fSize -= alignedSize; | |
320 if (fLargestBlockOffset == originalBestFitOffset) { | |
321 if (bestFit->fSize >= secondLargestSize) { | |
322 fLargestBlockSize = bestFit->fSize; | |
323 fLargestBlockOffset = bestFit->fOffset; | |
324 } else { | |
325 fLargestBlockSize = secondLargestSize; | |
326 fLargestBlockOffset = secondLargestOffset; | |
327 } | |
328 } | |
329 #ifdef SK_DEBUG | |
330 VkDeviceSize largestSize = 0; | |
331 iter = fFreeList.headIter(); | |
332 while (iter.get()) { | |
333 Block* block = iter.get(); | |
334 if (largestSize < block->fSize) { | |
335 largestSize = block->fSize; | |
336 } | |
337 iter.next(); | |
338 } | |
339 SkASSERT(largestSize == fLargestBlockSize) | |
340 #endif | |
341 } else { | |
342 SkASSERT(bestFit->fSize == alignedSize); | |
343 if (fLargestBlockOffset == originalBestFitOffset) { | |
344 fLargestBlockSize = secondLargestSize; | |
345 fLargestBlockOffset = secondLargestOffset; | |
346 } | |
347 fFreeList.remove(bestFit); | |
348 #ifdef SK_DEBUG | |
349 VkDeviceSize largestSize = 0; | |
350 iter = fFreeList.headIter(); | |
351 while (iter.get()) { | |
352 Block* block = iter.get(); | |
353 if (largestSize < block->fSize) { | |
354 largestSize = block->fSize; | |
355 } | |
356 iter.next(); | |
357 } | |
358 SkASSERT(largestSize == fLargestBlockSize); | |
359 #endif | |
360 } | |
361 fFreeSize -= alignedSize; | |
362 | |
363 return true; | |
364 } | |
365 | |
366 SkDebugf("Can't allocate %d bytes, %d bytes available, largest free block %d \n", alignedSize, fFreeSize, fLargestBlockSize); | |
367 | |
368 return false; | |
369 } | |
370 | |
371 | |
372 void GrVkSubHeap::free(const GrVkAlloc& alloc) { | |
373 SkASSERT(alloc.fMemory == fAlloc); | |
374 | |
375 // find the block right after this allocation | |
376 FreeList::Iter iter = fFreeList.headIter(); | |
377 while (iter.get() && iter.get()->fOffset < alloc.fOffset) { | |
378 iter.next(); | |
379 } | |
380 FreeList::Iter prev = iter; | |
381 prev.prev(); | |
382 // we have four cases: | |
383 // we exactly follow the previous one | |
384 Block* block; | |
385 if (prev.get() && prev.get()->fOffset + prev.get()->fSize == alloc.fOffset) { | |
386 block = prev.get(); | |
387 block->fSize += alloc.fSize; | |
388 if (block->fOffset == fLargestBlockOffset) { | |
389 fLargestBlockSize = block->fSize; | |
390 } | |
391 // and additionally we may exactly precede the next one | |
392 if (iter.get() && iter.get()->fOffset == alloc.fOffset + alloc.fSize) { | |
393 block->fSize += iter.get()->fSize; | |
394 if (iter.get()->fOffset == fLargestBlockOffset) { | |
395 fLargestBlockOffset = block->fOffset; | |
396 fLargestBlockSize = block->fSize; | |
397 } | |
398 fFreeList.remove(iter.get()); | |
399 } | |
400 // or we only exactly proceed the next one | |
401 } else if (iter.get() && iter.get()->fOffset == alloc.fOffset + alloc.fSize) { | |
402 block = iter.get(); | |
403 block->fSize += alloc.fSize; | |
404 if (block->fOffset == fLargestBlockOffset) { | |
405 fLargestBlockOffset = alloc.fOffset; | |
406 fLargestBlockSize = block->fSize; | |
407 } | |
408 block->fOffset = alloc.fOffset; | |
409 // or we fall somewhere in between, with gaps | |
410 } else { | |
411 block = fFreeList.addBefore(iter); | |
412 block->fOffset = alloc.fOffset; | |
413 block->fSize = alloc.fSize; | |
414 } | |
415 fFreeSize += alloc.fSize; | |
416 if (block->fSize > fLargestBlockSize) { | |
417 fLargestBlockSize = block->fSize; | |
418 fLargestBlockOffset = block->fOffset; | |
419 } | |
420 | |
421 #ifdef SK_DEBUG | |
422 VkDeviceSize largestSize = 0; | |
423 iter = fFreeList.headIter(); | |
424 while (iter.get()) { | |
425 Block* block = iter.get(); | |
426 if (largestSize < block->fSize) { | |
427 largestSize = block->fSize; | |
428 } | |
429 iter.next(); | |
430 } | |
431 SkASSERT(fLargestBlockSize == largestSize); | |
432 #endif | |
433 } | |
434 | |
435 GrVkHeap::~GrVkHeap() { | |
436 // TODO: figure out auto delete | |
437 for (auto i = 0; i < fSubHeaps.count(); ++i) { | |
438 delete fSubHeaps[i]; | |
439 fSubHeaps[i] = nullptr; | |
440 } | |
441 } | |
442 | |
443 bool GrVkHeap::subAlloc(VkDeviceSize size, VkDeviceSize alignment, | |
444 uint32_t memoryTypeIndex, GrVkAlloc* alloc) { | |
445 VkDeviceSize alignedSize = align_size(size, alignment); | |
446 | |
447 // first try to find a subheap that fits our allocation request | |
448 int bestFitIndex = -1; | |
449 VkDeviceSize bestFitSize = 0x7FFFFFFF; | |
450 for (auto i = 0; i < fSubHeaps.count(); ++i) { | |
451 if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex) { | |
452 VkDeviceSize heapSize = fSubHeaps[i]->largestBlockSize(); | |
453 if (heapSize > alignedSize && heapSize < bestFitSize) { | |
454 bestFitIndex = i; | |
455 bestFitSize = heapSize; | |
456 } | |
457 } | |
458 } | |
459 | |
460 // TODO: how to make sure freesize == size of largest free block? | |
461 if (bestFitIndex >= 0) { | |
462 if (fSubHeaps[bestFitIndex]->alloc(size, alignment, alloc)) { | |
463 fUsedSize += alloc->fSize; | |
464 SkASSERT(fUsedSize < 256 * 1024 * 1024); | |
465 return true; | |
466 } | |
467 return false; | |
468 } | |
469 | |
470 // need to allocate a new subheap | |
471 GrVkSubHeap*& subHeap = fSubHeaps.push_back(); | |
472 subHeap = new GrVkSubHeap(fGpu, memoryTypeIndex, fSubHeapSize); | |
473 fAllocSize += fSubHeapSize; | |
474 if (subHeap->alloc(size, alignment, alloc)) { | |
475 fUsedSize += alloc->fSize; | |
476 SkASSERT(fUsedSize < 256 * 1024 * 1024); | |
477 return true; | |
478 } | |
479 | |
480 return false; | |
481 } | |
482 | |
483 bool GrVkHeap::singleAlloc(VkDeviceSize size, VkDeviceSize alignment, | |
484 uint32_t memoryTypeIndex, GrVkAlloc* alloc) { | |
485 VkDeviceSize alignedSize = align_size(size, alignment); | |
486 | |
487 // first try to find an unallocated subheap that fits our allocation request | |
488 int bestFitIndex = -1; | |
489 VkDeviceSize bestFitSize = 0x7FFFFFFF; | |
490 for (auto i = 0; i < fSubHeaps.count(); ++i) { | |
491 if (fSubHeaps[i]->memoryTypeIndex() == memoryTypeIndex && fSubHeaps[i]-> unallocated()) { | |
492 VkDeviceSize heapSize = fSubHeaps[i]->size(); | |
493 if (heapSize > alignedSize && heapSize < bestFitSize) { | |
494 bestFitIndex = i; | |
495 bestFitSize = heapSize; | |
496 } | |
497 } | |
498 } | |
499 | |
500 if (bestFitIndex >= 0) { | |
501 if (fSubHeaps[bestFitIndex]->alloc(size, alignment, alloc)) { | |
502 fUsedSize += alloc->fSize; | |
503 SkASSERT(fUsedSize < 256 * 1024 * 1024); | |
504 return true; | |
505 } | |
506 return false; | |
507 } | |
508 | |
509 // need to allocate a new subheap | |
510 GrVkSubHeap*& subHeap = fSubHeaps.push_back(); | |
511 subHeap = new GrVkSubHeap(fGpu, memoryTypeIndex, alignedSize); | |
512 fAllocSize += alignedSize; | |
513 if (subHeap->alloc(size, alignment, alloc)) { | |
514 fUsedSize += alloc->fSize; | |
515 SkASSERT(fUsedSize < 256 * 1024 * 1024); | |
516 return true; | |
517 } | |
518 | |
519 return false; | |
520 } | |
521 | |
522 bool GrVkHeap::free(const GrVkAlloc& alloc) { | |
523 for (auto i = 0; i < fSubHeaps.count(); ++i) { | |
524 if (fSubHeaps[i]->memory() == alloc.fMemory) { | |
525 fSubHeaps[i]->free(alloc); | |
526 fUsedSize -= alloc.fSize; | |
527 return true; | |
528 } | |
529 } | |
530 | |
531 return false; | |
532 } | |
533 | |
534 | |
OLD | NEW |