Index: src/objects.cc |
diff --git a/src/objects.cc b/src/objects.cc |
index 9fb630c0b0ca16a795eb543c91313f74ff596ee4..1c37e50cd0ae4c264df2782362704fc8072b9aa5 100644 |
--- a/src/objects.cc |
+++ b/src/objects.cc |
@@ -9981,306 +9981,6 @@ |
} |
#endif |
-namespace { |
- |
-bool ToUpperOverflows(uc32 character) { |
- // y with umlauts and the micro sign are the only characters that stop |
- // fitting into one-byte when converting to uppercase. |
- static const uc32 yuml_code = 0xff; |
- static const uc32 micro_code = 0xb5; |
- return (character == yuml_code || character == micro_code); |
-} |
- |
-template <class Converter> |
-MaybeHandle<Object> ConvertCaseHelper( |
- Isolate* isolate, Handle<String> string, Handle<SeqString> result, |
- int result_length, unibrow::Mapping<Converter, 128>* mapping) { |
- DisallowHeapAllocation no_gc; |
- // We try this twice, once with the assumption that the result is no longer |
- // than the input and, if that assumption breaks, again with the exact |
- // length. This may not be pretty, but it is nicer than what was here before |
- // and I hereby claim my vaffel-is. |
- // |
- // NOTE: This assumes that the upper/lower case of an ASCII |
- // character is also ASCII. This is currently the case, but it |
- // might break in the future if we implement more context and locale |
- // dependent upper/lower conversions. |
- bool has_changed_character = false; |
- |
- // Convert all characters to upper case, assuming that they will fit |
- // in the buffer |
- StringCharacterStream stream(*string); |
- unibrow::uchar chars[Converter::kMaxWidth]; |
- // We can assume that the string is not empty |
- uc32 current = stream.GetNext(); |
- bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString(); |
- for (int i = 0; i < result_length;) { |
- bool has_next = stream.HasMore(); |
- uc32 next = has_next ? stream.GetNext() : 0; |
- int char_length = mapping->get(current, next, chars); |
- if (char_length == 0) { |
- // The case conversion of this character is the character itself. |
- result->Set(i, current); |
- i++; |
- } else if (char_length == 1 && |
- (ignore_overflow || !ToUpperOverflows(current))) { |
- // Common case: converting the letter resulted in one character. |
- DCHECK(static_cast<uc32>(chars[0]) != current); |
- result->Set(i, chars[0]); |
- has_changed_character = true; |
- i++; |
- } else if (result_length == string->length()) { |
- bool overflows = ToUpperOverflows(current); |
- // We've assumed that the result would be as long as the |
- // input but here is a character that converts to several |
- // characters. No matter, we calculate the exact length |
- // of the result and try the whole thing again. |
- // |
- // Note that this leaves room for optimization. We could just |
- // memcpy what we already have to the result string. Also, |
- // the result string is the last object allocated we could |
- // "realloc" it and probably, in the vast majority of cases, |
- // extend the existing string to be able to hold the full |
- // result. |
- int next_length = 0; |
- if (has_next) { |
- next_length = mapping->get(next, 0, chars); |
- if (next_length == 0) next_length = 1; |
- } |
- int current_length = i + char_length + next_length; |
- while (stream.HasMore()) { |
- current = stream.GetNext(); |
- overflows |= ToUpperOverflows(current); |
- // NOTE: we use 0 as the next character here because, while |
- // the next character may affect what a character converts to, |
- // it does not in any case affect the length of what it convert |
- // to. |
- int char_length = mapping->get(current, 0, chars); |
- if (char_length == 0) char_length = 1; |
- current_length += char_length; |
- if (current_length > String::kMaxLength) { |
- AllowHeapAllocation allocate_error_and_return; |
- THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), Object); |
- } |
- } |
- // Try again with the real length. Return signed if we need |
- // to allocate a two-byte string for to uppercase. |
- if (overflows && !ignore_overflow) { |
- return handle(Smi::FromInt(-current_length), isolate); |
- } |
- return handle(Smi::FromInt(current_length), isolate); |
- } else { |
- for (int j = 0; j < char_length; j++) { |
- result->Set(i, chars[j]); |
- i++; |
- } |
- has_changed_character = true; |
- } |
- current = next; |
- } |
- if (has_changed_character) { |
- return result; |
- } else { |
- // If we didn't actually change anything in doing the conversion |
- // we simple return the result and let the converted string |
- // become garbage; there is no reason to keep two identical strings |
- // alive. |
- return string; |
- } |
-} |
- |
-const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; |
-const uintptr_t kAsciiMask = kOneInEveryByte << 7; |
- |
-// Given a word and two range boundaries returns a word with high bit |
-// set in every byte iff the corresponding input byte was strictly in |
-// the range (m, n). All the other bits in the result are cleared. |
-// This function is only useful when it can be inlined and the |
-// boundaries are statically known. |
-// Requires: all bytes in the input word and the boundaries must be |
-// ASCII (less than 0x7F). |
-uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { |
- // Use strict inequalities since in edge cases the function could be |
- // further simplified. |
- DCHECK(0 < m && m < n); |
- // Has high bit set in every w byte less than n. |
- uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; |
- // Has high bit set in every w byte greater than m. |
- uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); |
- return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); |
-} |
- |
-#ifdef DEBUG |
-bool CheckFastAsciiConvert(char* dst, const char* src, int length, bool changed, |
- bool is_to_lower) { |
- bool expected_changed = false; |
- for (int i = 0; i < length; i++) { |
- if (dst[i] == src[i]) continue; |
- expected_changed = true; |
- if (is_to_lower) { |
- DCHECK('A' <= src[i] && src[i] <= 'Z'); |
- DCHECK(dst[i] == src[i] + ('a' - 'A')); |
- } else { |
- DCHECK('a' <= src[i] && src[i] <= 'z'); |
- DCHECK(dst[i] == src[i] - ('a' - 'A')); |
- } |
- } |
- return (expected_changed == changed); |
-} |
-#endif |
- |
-template <class Converter> |
-bool FastAsciiConvert(char* dst, const char* src, int length, |
- bool* changed_out) { |
-#ifdef DEBUG |
- char* saved_dst = dst; |
- const char* saved_src = src; |
-#endif |
- DisallowHeapAllocation no_gc; |
- // We rely on the distance between upper and lower case letters |
- // being a known power of 2. |
- DCHECK('a' - 'A' == (1 << 5)); |
- // Boundaries for the range of input characters than require conversion. |
- static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1; |
- static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1; |
- bool changed = false; |
- uintptr_t or_acc = 0; |
- const char* const limit = src + length; |
- |
- // dst is newly allocated and always aligned. |
- DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t))); |
- // Only attempt processing one word at a time if src is also aligned. |
- if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) { |
- // Process the prefix of the input that requires no conversion one aligned |
- // (machine) word at a time. |
- while (src <= limit - sizeof(uintptr_t)) { |
- const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); |
- or_acc |= w; |
- if (AsciiRangeMask(w, lo, hi) != 0) { |
- changed = true; |
- break; |
- } |
- *reinterpret_cast<uintptr_t*>(dst) = w; |
- src += sizeof(uintptr_t); |
- dst += sizeof(uintptr_t); |
- } |
- // Process the remainder of the input performing conversion when |
- // required one word at a time. |
- while (src <= limit - sizeof(uintptr_t)) { |
- const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); |
- or_acc |= w; |
- uintptr_t m = AsciiRangeMask(w, lo, hi); |
- // The mask has high (7th) bit set in every byte that needs |
- // conversion and we know that the distance between cases is |
- // 1 << 5. |
- *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); |
- src += sizeof(uintptr_t); |
- dst += sizeof(uintptr_t); |
- } |
- } |
- // Process the last few bytes of the input (or the whole input if |
- // unaligned access is not supported). |
- while (src < limit) { |
- char c = *src; |
- or_acc |= c; |
- if (lo < c && c < hi) { |
- c ^= (1 << 5); |
- changed = true; |
- } |
- *dst = c; |
- ++src; |
- ++dst; |
- } |
- |
- if ((or_acc & kAsciiMask) != 0) return false; |
- |
- DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed, |
- Converter::kIsToLower)); |
- |
- *changed_out = changed; |
- return true; |
-} |
- |
-template <class Converter> |
-MaybeHandle<String> ConvertCase(Handle<String> s, Isolate* isolate, |
- unibrow::Mapping<Converter, 128>* mapping) { |
- s = String::Flatten(s); |
- int length = s->length(); |
- // Assume that the string is not empty; we need this assumption later |
- if (length == 0) return s; |
- |
- // Simpler handling of ASCII strings. |
- // |
- // NOTE: This assumes that the upper/lower case of an ASCII |
- // character is also ASCII. This is currently the case, but it |
- // might break in the future if we implement more context and locale |
- // dependent upper/lower conversions. |
- if (s->IsOneByteRepresentationUnderneath()) { |
- // Same length as input. |
- Handle<SeqOneByteString> result = |
- isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); |
- DisallowHeapAllocation no_gc; |
- String::FlatContent flat_content = s->GetFlatContent(); |
- DCHECK(flat_content.IsFlat()); |
- bool has_changed_character = false; |
- bool is_ascii = FastAsciiConvert<Converter>( |
- reinterpret_cast<char*>(result->GetChars()), |
- reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()), |
- length, &has_changed_character); |
- // If not ASCII, we discard the result and take the 2 byte path. |
- if (is_ascii) { |
- if (has_changed_character) return result; |
- return s; |
- } |
- } |
- |
- Handle<SeqString> result; // Same length as input. |
- if (s->IsOneByteRepresentation()) { |
- result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); |
- } else { |
- result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked(); |
- } |
- |
- Handle<Object> answer; |
- ASSIGN_RETURN_ON_EXCEPTION( |
- isolate, answer, ConvertCaseHelper(isolate, s, result, length, mapping), |
- String); |
- if (!answer->IsString()) { |
- DCHECK(answer->IsSmi()); |
- length = Handle<Smi>::cast(answer)->value(); |
- if (s->IsOneByteRepresentation() && length > 0) { |
- ASSIGN_RETURN_ON_EXCEPTION( |
- isolate, result, isolate->factory()->NewRawOneByteString(length), |
- String); |
- } else { |
- if (length < 0) length = -length; |
- ASSIGN_RETURN_ON_EXCEPTION( |
- isolate, result, isolate->factory()->NewRawTwoByteString(length), |
- String); |
- } |
- ASSIGN_RETURN_ON_EXCEPTION( |
- isolate, answer, ConvertCaseHelper(isolate, s, result, length, mapping), |
- String); |
- } |
- return Handle<String>::cast(answer); |
-} |
- |
-} // namespace |
- |
-// static |
-MaybeHandle<String> String::ToLowerCase(Handle<String> string) { |
- Isolate* const isolate = string->GetIsolate(); |
- return ConvertCase(string, isolate, |
- isolate->runtime_state()->to_lower_mapping()); |
-} |
- |
-// static |
-MaybeHandle<String> String::ToUpperCase(Handle<String> string) { |
- Isolate* const isolate = string->GetIsolate(); |
- return ConvertCase(string, isolate, |
- isolate->runtime_state()->to_upper_mapping()); |
-} |
- |
// static |
Handle<String> String::Trim(Handle<String> string, TrimMode mode) { |
Isolate* const isolate = string->GetIsolate(); |