| Index: src/runtime/runtime-strings.cc
|
| diff --git a/src/runtime/runtime-strings.cc b/src/runtime/runtime-strings.cc
|
| index 8df345313698e197ae3384456f321c989e096f86..eb7f65aabff6ba22e8baf1703cfbc0d9a9540aa7 100644
|
| --- a/src/runtime/runtime-strings.cc
|
| +++ b/src/runtime/runtime-strings.cc
|
| @@ -796,298 +796,6 @@ RUNTIME_FUNCTION(Runtime_StringToArray) {
|
| }
|
|
|
|
|
| -static inline bool ToUpperOverflows(uc32 character) {
|
| - // y with umlauts and the micro sign are the only characters that stop
|
| - // fitting into one-byte when converting to uppercase.
|
| - static const uc32 yuml_code = 0xff;
|
| - static const uc32 micro_code = 0xb5;
|
| - return (character == yuml_code || character == micro_code);
|
| -}
|
| -
|
| -
|
| -template <class Converter>
|
| -MUST_USE_RESULT static Object* ConvertCaseHelper(
|
| - Isolate* isolate, String* string, SeqString* result, int result_length,
|
| - unibrow::Mapping<Converter, 128>* mapping) {
|
| - DisallowHeapAllocation no_gc;
|
| - // We try this twice, once with the assumption that the result is no longer
|
| - // than the input and, if that assumption breaks, again with the exact
|
| - // length. This may not be pretty, but it is nicer than what was here before
|
| - // and I hereby claim my vaffel-is.
|
| - //
|
| - // NOTE: This assumes that the upper/lower case of an ASCII
|
| - // character is also ASCII. This is currently the case, but it
|
| - // might break in the future if we implement more context and locale
|
| - // dependent upper/lower conversions.
|
| - bool has_changed_character = false;
|
| -
|
| - // Convert all characters to upper case, assuming that they will fit
|
| - // in the buffer
|
| - StringCharacterStream stream(string);
|
| - unibrow::uchar chars[Converter::kMaxWidth];
|
| - // We can assume that the string is not empty
|
| - uc32 current = stream.GetNext();
|
| - bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
|
| - for (int i = 0; i < result_length;) {
|
| - bool has_next = stream.HasMore();
|
| - uc32 next = has_next ? stream.GetNext() : 0;
|
| - int char_length = mapping->get(current, next, chars);
|
| - if (char_length == 0) {
|
| - // The case conversion of this character is the character itself.
|
| - result->Set(i, current);
|
| - i++;
|
| - } else if (char_length == 1 &&
|
| - (ignore_overflow || !ToUpperOverflows(current))) {
|
| - // Common case: converting the letter resulted in one character.
|
| - DCHECK(static_cast<uc32>(chars[0]) != current);
|
| - result->Set(i, chars[0]);
|
| - has_changed_character = true;
|
| - i++;
|
| - } else if (result_length == string->length()) {
|
| - bool overflows = ToUpperOverflows(current);
|
| - // We've assumed that the result would be as long as the
|
| - // input but here is a character that converts to several
|
| - // characters. No matter, we calculate the exact length
|
| - // of the result and try the whole thing again.
|
| - //
|
| - // Note that this leaves room for optimization. We could just
|
| - // memcpy what we already have to the result string. Also,
|
| - // the result string is the last object allocated we could
|
| - // "realloc" it and probably, in the vast majority of cases,
|
| - // extend the existing string to be able to hold the full
|
| - // result.
|
| - int next_length = 0;
|
| - if (has_next) {
|
| - next_length = mapping->get(next, 0, chars);
|
| - if (next_length == 0) next_length = 1;
|
| - }
|
| - int current_length = i + char_length + next_length;
|
| - while (stream.HasMore()) {
|
| - current = stream.GetNext();
|
| - overflows |= ToUpperOverflows(current);
|
| - // NOTE: we use 0 as the next character here because, while
|
| - // the next character may affect what a character converts to,
|
| - // it does not in any case affect the length of what it convert
|
| - // to.
|
| - int char_length = mapping->get(current, 0, chars);
|
| - if (char_length == 0) char_length = 1;
|
| - current_length += char_length;
|
| - if (current_length > String::kMaxLength) {
|
| - AllowHeapAllocation allocate_error_and_return;
|
| - THROW_NEW_ERROR_RETURN_FAILURE(isolate,
|
| - NewInvalidStringLengthError());
|
| - }
|
| - }
|
| - // Try again with the real length. Return signed if we need
|
| - // to allocate a two-byte string for to uppercase.
|
| - return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
|
| - : Smi::FromInt(current_length);
|
| - } else {
|
| - for (int j = 0; j < char_length; j++) {
|
| - result->Set(i, chars[j]);
|
| - i++;
|
| - }
|
| - has_changed_character = true;
|
| - }
|
| - current = next;
|
| - }
|
| - if (has_changed_character) {
|
| - return result;
|
| - } else {
|
| - // If we didn't actually change anything in doing the conversion
|
| - // we simple return the result and let the converted string
|
| - // become garbage; there is no reason to keep two identical strings
|
| - // alive.
|
| - return string;
|
| - }
|
| -}
|
| -
|
| -
|
| -static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
|
| -static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
|
| -
|
| -// Given a word and two range boundaries returns a word with high bit
|
| -// set in every byte iff the corresponding input byte was strictly in
|
| -// the range (m, n). All the other bits in the result are cleared.
|
| -// This function is only useful when it can be inlined and the
|
| -// boundaries are statically known.
|
| -// Requires: all bytes in the input word and the boundaries must be
|
| -// ASCII (less than 0x7F).
|
| -static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
|
| - // Use strict inequalities since in edge cases the function could be
|
| - // further simplified.
|
| - DCHECK(0 < m && m < n);
|
| - // Has high bit set in every w byte less than n.
|
| - uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
|
| - // Has high bit set in every w byte greater than m.
|
| - uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
|
| - return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
|
| - bool changed, bool is_to_lower) {
|
| - bool expected_changed = false;
|
| - for (int i = 0; i < length; i++) {
|
| - if (dst[i] == src[i]) continue;
|
| - expected_changed = true;
|
| - if (is_to_lower) {
|
| - DCHECK('A' <= src[i] && src[i] <= 'Z');
|
| - DCHECK(dst[i] == src[i] + ('a' - 'A'));
|
| - } else {
|
| - DCHECK('a' <= src[i] && src[i] <= 'z');
|
| - DCHECK(dst[i] == src[i] - ('a' - 'A'));
|
| - }
|
| - }
|
| - return (expected_changed == changed);
|
| -}
|
| -#endif
|
| -
|
| -
|
| -template <class Converter>
|
| -static bool FastAsciiConvert(char* dst, const char* src, int length,
|
| - bool* changed_out) {
|
| -#ifdef DEBUG
|
| - char* saved_dst = dst;
|
| - const char* saved_src = src;
|
| -#endif
|
| - DisallowHeapAllocation no_gc;
|
| - // We rely on the distance between upper and lower case letters
|
| - // being a known power of 2.
|
| - DCHECK('a' - 'A' == (1 << 5));
|
| - // Boundaries for the range of input characters than require conversion.
|
| - static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
|
| - static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
|
| - bool changed = false;
|
| - uintptr_t or_acc = 0;
|
| - const char* const limit = src + length;
|
| -
|
| - // dst is newly allocated and always aligned.
|
| - DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
|
| - // Only attempt processing one word at a time if src is also aligned.
|
| - if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
|
| - // Process the prefix of the input that requires no conversion one aligned
|
| - // (machine) word at a time.
|
| - while (src <= limit - sizeof(uintptr_t)) {
|
| - const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
|
| - or_acc |= w;
|
| - if (AsciiRangeMask(w, lo, hi) != 0) {
|
| - changed = true;
|
| - break;
|
| - }
|
| - *reinterpret_cast<uintptr_t*>(dst) = w;
|
| - src += sizeof(uintptr_t);
|
| - dst += sizeof(uintptr_t);
|
| - }
|
| - // Process the remainder of the input performing conversion when
|
| - // required one word at a time.
|
| - while (src <= limit - sizeof(uintptr_t)) {
|
| - const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
|
| - or_acc |= w;
|
| - uintptr_t m = AsciiRangeMask(w, lo, hi);
|
| - // The mask has high (7th) bit set in every byte that needs
|
| - // conversion and we know that the distance between cases is
|
| - // 1 << 5.
|
| - *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
|
| - src += sizeof(uintptr_t);
|
| - dst += sizeof(uintptr_t);
|
| - }
|
| - }
|
| - // Process the last few bytes of the input (or the whole input if
|
| - // unaligned access is not supported).
|
| - while (src < limit) {
|
| - char c = *src;
|
| - or_acc |= c;
|
| - if (lo < c && c < hi) {
|
| - c ^= (1 << 5);
|
| - changed = true;
|
| - }
|
| - *dst = c;
|
| - ++src;
|
| - ++dst;
|
| - }
|
| -
|
| - if ((or_acc & kAsciiMask) != 0) return false;
|
| -
|
| - DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
|
| - Converter::kIsToLower));
|
| -
|
| - *changed_out = changed;
|
| - return true;
|
| -}
|
| -
|
| -
|
| -template <class Converter>
|
| -MUST_USE_RESULT static Object* ConvertCase(
|
| - Handle<String> s, Isolate* isolate,
|
| - unibrow::Mapping<Converter, 128>* mapping) {
|
| - s = String::Flatten(s);
|
| - int length = s->length();
|
| - // Assume that the string is not empty; we need this assumption later
|
| - if (length == 0) return *s;
|
| -
|
| - // Simpler handling of ASCII strings.
|
| - //
|
| - // NOTE: This assumes that the upper/lower case of an ASCII
|
| - // character is also ASCII. This is currently the case, but it
|
| - // might break in the future if we implement more context and locale
|
| - // dependent upper/lower conversions.
|
| - if (s->IsOneByteRepresentationUnderneath()) {
|
| - // Same length as input.
|
| - Handle<SeqOneByteString> result =
|
| - isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
|
| - DisallowHeapAllocation no_gc;
|
| - String::FlatContent flat_content = s->GetFlatContent();
|
| - DCHECK(flat_content.IsFlat());
|
| - bool has_changed_character = false;
|
| - bool is_ascii = FastAsciiConvert<Converter>(
|
| - reinterpret_cast<char*>(result->GetChars()),
|
| - reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
|
| - length, &has_changed_character);
|
| - // If not ASCII, we discard the result and take the 2 byte path.
|
| - if (is_ascii) return has_changed_character ? *result : *s;
|
| - }
|
| -
|
| - Handle<SeqString> result; // Same length as input.
|
| - if (s->IsOneByteRepresentation()) {
|
| - result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
|
| - } else {
|
| - result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
|
| - }
|
| -
|
| - Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
|
| - if (answer->IsException() || answer->IsString()) return answer;
|
| -
|
| - DCHECK(answer->IsSmi());
|
| - length = Smi::cast(answer)->value();
|
| - if (s->IsOneByteRepresentation() && length > 0) {
|
| - ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| - isolate, result, isolate->factory()->NewRawOneByteString(length));
|
| - } else {
|
| - if (length < 0) length = -length;
|
| - ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
|
| - isolate, result, isolate->factory()->NewRawTwoByteString(length));
|
| - }
|
| - return ConvertCaseHelper(isolate, *s, *result, length, mapping);
|
| -}
|
| -
|
| -
|
| -RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
|
| - HandleScope scope(isolate);
|
| - DCHECK_EQ(args.length(), 1);
|
| - CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
|
| - return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
|
| -}
|
| -
|
| -
|
| -RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
|
| - HandleScope scope(isolate);
|
| - DCHECK_EQ(args.length(), 1);
|
| - CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
|
| - return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
|
| -}
|
| -
|
| RUNTIME_FUNCTION(Runtime_StringLessThan) {
|
| HandleScope handle_scope(isolate);
|
| DCHECK_EQ(2, args.length());
|
|
|