Index: src/objects.cc |
diff --git a/src/objects.cc b/src/objects.cc |
index 1c37e50cd0ae4c264df2782362704fc8072b9aa5..9fb630c0b0ca16a795eb543c91313f74ff596ee4 100644 |
--- a/src/objects.cc |
+++ b/src/objects.cc |
@@ -9981,6 +9981,306 @@ bool DescriptorArray::IsEqualTo(DescriptorArray* other) { |
} |
#endif |
+namespace { |
+ |
+bool ToUpperOverflows(uc32 character) { |
+ // y with umlauts and the micro sign are the only characters that stop |
+ // fitting into one-byte when converting to uppercase. |
+ static const uc32 yuml_code = 0xff; |
+ static const uc32 micro_code = 0xb5; |
+ return (character == yuml_code || character == micro_code); |
+} |
+ |
+template <class Converter> |
+MaybeHandle<Object> ConvertCaseHelper( |
+ Isolate* isolate, Handle<String> string, Handle<SeqString> result, |
+ int result_length, unibrow::Mapping<Converter, 128>* mapping) { |
+ DisallowHeapAllocation no_gc; |
+ // We try this twice, once with the assumption that the result is no longer |
+ // than the input and, if that assumption breaks, again with the exact |
+ // length. This may not be pretty, but it is nicer than what was here before |
+ // and I hereby claim my vaffel-is. |
+ // |
+ // NOTE: This assumes that the upper/lower case of an ASCII |
+ // character is also ASCII. This is currently the case, but it |
+ // might break in the future if we implement more context and locale |
+ // dependent upper/lower conversions. |
+ bool has_changed_character = false; |
+ |
+ // Convert all characters to upper case, assuming that they will fit |
+ // in the buffer |
+ StringCharacterStream stream(*string); |
+ unibrow::uchar chars[Converter::kMaxWidth]; |
+ // We can assume that the string is not empty |
+ uc32 current = stream.GetNext(); |
+ bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString(); |
+ for (int i = 0; i < result_length;) { |
+ bool has_next = stream.HasMore(); |
+ uc32 next = has_next ? stream.GetNext() : 0; |
+ int char_length = mapping->get(current, next, chars); |
+ if (char_length == 0) { |
+ // The case conversion of this character is the character itself. |
+ result->Set(i, current); |
+ i++; |
+ } else if (char_length == 1 && |
+ (ignore_overflow || !ToUpperOverflows(current))) { |
+ // Common case: converting the letter resulted in one character. |
+ DCHECK(static_cast<uc32>(chars[0]) != current); |
+ result->Set(i, chars[0]); |
+ has_changed_character = true; |
+ i++; |
+ } else if (result_length == string->length()) { |
+ bool overflows = ToUpperOverflows(current); |
+ // We've assumed that the result would be as long as the |
+ // input but here is a character that converts to several |
+ // characters. No matter, we calculate the exact length |
+ // of the result and try the whole thing again. |
+ // |
+ // Note that this leaves room for optimization. We could just |
+ // memcpy what we already have to the result string. Also, |
+ // the result string is the last object allocated we could |
+ // "realloc" it and probably, in the vast majority of cases, |
+ // extend the existing string to be able to hold the full |
+ // result. |
+ int next_length = 0; |
+ if (has_next) { |
+ next_length = mapping->get(next, 0, chars); |
+ if (next_length == 0) next_length = 1; |
+ } |
+ int current_length = i + char_length + next_length; |
+ while (stream.HasMore()) { |
+ current = stream.GetNext(); |
+ overflows |= ToUpperOverflows(current); |
+ // NOTE: we use 0 as the next character here because, while |
+ // the next character may affect what a character converts to, |
+ // it does not in any case affect the length of what it convert |
+ // to. |
+ int char_length = mapping->get(current, 0, chars); |
+ if (char_length == 0) char_length = 1; |
+ current_length += char_length; |
+ if (current_length > String::kMaxLength) { |
+ AllowHeapAllocation allocate_error_and_return; |
+ THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), Object); |
+ } |
+ } |
+ // Try again with the real length. Return signed if we need |
+ // to allocate a two-byte string for to uppercase. |
+ if (overflows && !ignore_overflow) { |
+ return handle(Smi::FromInt(-current_length), isolate); |
+ } |
+ return handle(Smi::FromInt(current_length), isolate); |
+ } else { |
+ for (int j = 0; j < char_length; j++) { |
+ result->Set(i, chars[j]); |
+ i++; |
+ } |
+ has_changed_character = true; |
+ } |
+ current = next; |
+ } |
+ if (has_changed_character) { |
+ return result; |
+ } else { |
+ // If we didn't actually change anything in doing the conversion |
+ // we simple return the result and let the converted string |
+ // become garbage; there is no reason to keep two identical strings |
+ // alive. |
+ return string; |
+ } |
+} |
+ |
+const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; |
+const uintptr_t kAsciiMask = kOneInEveryByte << 7; |
+ |
+// Given a word and two range boundaries returns a word with high bit |
+// set in every byte iff the corresponding input byte was strictly in |
+// the range (m, n). All the other bits in the result are cleared. |
+// This function is only useful when it can be inlined and the |
+// boundaries are statically known. |
+// Requires: all bytes in the input word and the boundaries must be |
+// ASCII (less than 0x7F). |
+uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { |
+ // Use strict inequalities since in edge cases the function could be |
+ // further simplified. |
+ DCHECK(0 < m && m < n); |
+ // Has high bit set in every w byte less than n. |
+ uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; |
+ // Has high bit set in every w byte greater than m. |
+ uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); |
+ return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); |
+} |
+ |
+#ifdef DEBUG |
+bool CheckFastAsciiConvert(char* dst, const char* src, int length, bool changed, |
+ bool is_to_lower) { |
+ bool expected_changed = false; |
+ for (int i = 0; i < length; i++) { |
+ if (dst[i] == src[i]) continue; |
+ expected_changed = true; |
+ if (is_to_lower) { |
+ DCHECK('A' <= src[i] && src[i] <= 'Z'); |
+ DCHECK(dst[i] == src[i] + ('a' - 'A')); |
+ } else { |
+ DCHECK('a' <= src[i] && src[i] <= 'z'); |
+ DCHECK(dst[i] == src[i] - ('a' - 'A')); |
+ } |
+ } |
+ return (expected_changed == changed); |
+} |
+#endif |
+ |
+template <class Converter> |
+bool FastAsciiConvert(char* dst, const char* src, int length, |
+ bool* changed_out) { |
+#ifdef DEBUG |
+ char* saved_dst = dst; |
+ const char* saved_src = src; |
+#endif |
+ DisallowHeapAllocation no_gc; |
+ // We rely on the distance between upper and lower case letters |
+ // being a known power of 2. |
+ DCHECK('a' - 'A' == (1 << 5)); |
+ // Boundaries for the range of input characters than require conversion. |
+ static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1; |
+ static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1; |
+ bool changed = false; |
+ uintptr_t or_acc = 0; |
+ const char* const limit = src + length; |
+ |
+ // dst is newly allocated and always aligned. |
+ DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t))); |
+ // Only attempt processing one word at a time if src is also aligned. |
+ if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) { |
+ // Process the prefix of the input that requires no conversion one aligned |
+ // (machine) word at a time. |
+ while (src <= limit - sizeof(uintptr_t)) { |
+ const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); |
+ or_acc |= w; |
+ if (AsciiRangeMask(w, lo, hi) != 0) { |
+ changed = true; |
+ break; |
+ } |
+ *reinterpret_cast<uintptr_t*>(dst) = w; |
+ src += sizeof(uintptr_t); |
+ dst += sizeof(uintptr_t); |
+ } |
+ // Process the remainder of the input performing conversion when |
+ // required one word at a time. |
+ while (src <= limit - sizeof(uintptr_t)) { |
+ const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); |
+ or_acc |= w; |
+ uintptr_t m = AsciiRangeMask(w, lo, hi); |
+ // The mask has high (7th) bit set in every byte that needs |
+ // conversion and we know that the distance between cases is |
+ // 1 << 5. |
+ *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); |
+ src += sizeof(uintptr_t); |
+ dst += sizeof(uintptr_t); |
+ } |
+ } |
+ // Process the last few bytes of the input (or the whole input if |
+ // unaligned access is not supported). |
+ while (src < limit) { |
+ char c = *src; |
+ or_acc |= c; |
+ if (lo < c && c < hi) { |
+ c ^= (1 << 5); |
+ changed = true; |
+ } |
+ *dst = c; |
+ ++src; |
+ ++dst; |
+ } |
+ |
+ if ((or_acc & kAsciiMask) != 0) return false; |
+ |
+ DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed, |
+ Converter::kIsToLower)); |
+ |
+ *changed_out = changed; |
+ return true; |
+} |
+ |
+template <class Converter> |
+MaybeHandle<String> ConvertCase(Handle<String> s, Isolate* isolate, |
+ unibrow::Mapping<Converter, 128>* mapping) { |
+ s = String::Flatten(s); |
+ int length = s->length(); |
+ // Assume that the string is not empty; we need this assumption later |
+ if (length == 0) return s; |
+ |
+ // Simpler handling of ASCII strings. |
+ // |
+ // NOTE: This assumes that the upper/lower case of an ASCII |
+ // character is also ASCII. This is currently the case, but it |
+ // might break in the future if we implement more context and locale |
+ // dependent upper/lower conversions. |
+ if (s->IsOneByteRepresentationUnderneath()) { |
+ // Same length as input. |
+ Handle<SeqOneByteString> result = |
+ isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); |
+ DisallowHeapAllocation no_gc; |
+ String::FlatContent flat_content = s->GetFlatContent(); |
+ DCHECK(flat_content.IsFlat()); |
+ bool has_changed_character = false; |
+ bool is_ascii = FastAsciiConvert<Converter>( |
+ reinterpret_cast<char*>(result->GetChars()), |
+ reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()), |
+ length, &has_changed_character); |
+ // If not ASCII, we discard the result and take the 2 byte path. |
+ if (is_ascii) { |
+ if (has_changed_character) return result; |
+ return s; |
+ } |
+ } |
+ |
+ Handle<SeqString> result; // Same length as input. |
+ if (s->IsOneByteRepresentation()) { |
+ result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); |
+ } else { |
+ result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked(); |
+ } |
+ |
+ Handle<Object> answer; |
+ ASSIGN_RETURN_ON_EXCEPTION( |
+ isolate, answer, ConvertCaseHelper(isolate, s, result, length, mapping), |
+ String); |
+ if (!answer->IsString()) { |
+ DCHECK(answer->IsSmi()); |
+ length = Handle<Smi>::cast(answer)->value(); |
+ if (s->IsOneByteRepresentation() && length > 0) { |
+ ASSIGN_RETURN_ON_EXCEPTION( |
+ isolate, result, isolate->factory()->NewRawOneByteString(length), |
+ String); |
+ } else { |
+ if (length < 0) length = -length; |
+ ASSIGN_RETURN_ON_EXCEPTION( |
+ isolate, result, isolate->factory()->NewRawTwoByteString(length), |
+ String); |
+ } |
+ ASSIGN_RETURN_ON_EXCEPTION( |
+ isolate, answer, ConvertCaseHelper(isolate, s, result, length, mapping), |
+ String); |
+ } |
+ return Handle<String>::cast(answer); |
+} |
+ |
+} // namespace |
+ |
+// static |
+MaybeHandle<String> String::ToLowerCase(Handle<String> string) { |
+ Isolate* const isolate = string->GetIsolate(); |
+ return ConvertCase(string, isolate, |
+ isolate->runtime_state()->to_lower_mapping()); |
+} |
+ |
+// static |
+MaybeHandle<String> String::ToUpperCase(Handle<String> string) { |
+ Isolate* const isolate = string->GetIsolate(); |
+ return ConvertCase(string, isolate, |
+ isolate->runtime_state()->to_upper_mapping()); |
+} |
+ |
// static |
Handle<String> String::Trim(Handle<String> string, TrimMode mode) { |
Isolate* const isolate = string->GetIsolate(); |