| Index: src/objects.cc
|
| diff --git a/src/objects.cc b/src/objects.cc
|
| index 1c37e50cd0ae4c264df2782362704fc8072b9aa5..9fb630c0b0ca16a795eb543c91313f74ff596ee4 100644
|
| --- a/src/objects.cc
|
| +++ b/src/objects.cc
|
| @@ -9981,6 +9981,306 @@ bool DescriptorArray::IsEqualTo(DescriptorArray* other) {
|
| }
|
| #endif
|
|
|
| +namespace {
|
| +
|
| +bool ToUpperOverflows(uc32 character) {
|
| + // y with umlauts and the micro sign are the only characters that stop
|
| + // fitting into one-byte when converting to uppercase.
|
| + static const uc32 yuml_code = 0xff;
|
| + static const uc32 micro_code = 0xb5;
|
| + return (character == yuml_code || character == micro_code);
|
| +}
|
| +
|
| +template <class Converter>
|
| +MaybeHandle<Object> ConvertCaseHelper(
|
| + Isolate* isolate, Handle<String> string, Handle<SeqString> result,
|
| + int result_length, unibrow::Mapping<Converter, 128>* mapping) {
|
| + DisallowHeapAllocation no_gc;
|
| + // We try this twice, once with the assumption that the result is no longer
|
| + // than the input and, if that assumption breaks, again with the exact
|
| + // length. This may not be pretty, but it is nicer than what was here before
|
| + // and I hereby claim my vaffel-is.
|
| + //
|
| + // NOTE: This assumes that the upper/lower case of an ASCII
|
| + // character is also ASCII. This is currently the case, but it
|
| + // might break in the future if we implement more context and locale
|
| + // dependent upper/lower conversions.
|
| + bool has_changed_character = false;
|
| +
|
| + // Convert all characters to upper case, assuming that they will fit
|
| + // in the buffer
|
| + StringCharacterStream stream(*string);
|
| + unibrow::uchar chars[Converter::kMaxWidth];
|
| + // We can assume that the string is not empty
|
| + uc32 current = stream.GetNext();
|
| + bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
|
| + for (int i = 0; i < result_length;) {
|
| + bool has_next = stream.HasMore();
|
| + uc32 next = has_next ? stream.GetNext() : 0;
|
| + int char_length = mapping->get(current, next, chars);
|
| + if (char_length == 0) {
|
| + // The case conversion of this character is the character itself.
|
| + result->Set(i, current);
|
| + i++;
|
| + } else if (char_length == 1 &&
|
| + (ignore_overflow || !ToUpperOverflows(current))) {
|
| + // Common case: converting the letter resulted in one character.
|
| + DCHECK(static_cast<uc32>(chars[0]) != current);
|
| + result->Set(i, chars[0]);
|
| + has_changed_character = true;
|
| + i++;
|
| + } else if (result_length == string->length()) {
|
| + bool overflows = ToUpperOverflows(current);
|
| + // We've assumed that the result would be as long as the
|
| + // input but here is a character that converts to several
|
| + // characters. No matter, we calculate the exact length
|
| + // of the result and try the whole thing again.
|
| + //
|
| + // Note that this leaves room for optimization. We could just
|
| + // memcpy what we already have to the result string. Also,
|
| + // the result string is the last object allocated we could
|
| + // "realloc" it and probably, in the vast majority of cases,
|
| + // extend the existing string to be able to hold the full
|
| + // result.
|
| + int next_length = 0;
|
| + if (has_next) {
|
| + next_length = mapping->get(next, 0, chars);
|
| + if (next_length == 0) next_length = 1;
|
| + }
|
| + int current_length = i + char_length + next_length;
|
| + while (stream.HasMore()) {
|
| + current = stream.GetNext();
|
| + overflows |= ToUpperOverflows(current);
|
| + // NOTE: we use 0 as the next character here because, while
|
| + // the next character may affect what a character converts to,
|
| + // it does not in any case affect the length of what it convert
|
| + // to.
|
| + int char_length = mapping->get(current, 0, chars);
|
| + if (char_length == 0) char_length = 1;
|
| + current_length += char_length;
|
| + if (current_length > String::kMaxLength) {
|
| + AllowHeapAllocation allocate_error_and_return;
|
| + THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), Object);
|
| + }
|
| + }
|
| + // Try again with the real length. Return signed if we need
|
| + // to allocate a two-byte string for to uppercase.
|
| + if (overflows && !ignore_overflow) {
|
| + return handle(Smi::FromInt(-current_length), isolate);
|
| + }
|
| + return handle(Smi::FromInt(current_length), isolate);
|
| + } else {
|
| + for (int j = 0; j < char_length; j++) {
|
| + result->Set(i, chars[j]);
|
| + i++;
|
| + }
|
| + has_changed_character = true;
|
| + }
|
| + current = next;
|
| + }
|
| + if (has_changed_character) {
|
| + return result;
|
| + } else {
|
| + // If we didn't actually change anything in doing the conversion
|
| + // we simple return the result and let the converted string
|
| + // become garbage; there is no reason to keep two identical strings
|
| + // alive.
|
| + return string;
|
| + }
|
| +}
|
| +
|
| +const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
|
| +const uintptr_t kAsciiMask = kOneInEveryByte << 7;
|
| +
|
| +// Given a word and two range boundaries returns a word with high bit
|
| +// set in every byte iff the corresponding input byte was strictly in
|
| +// the range (m, n). All the other bits in the result are cleared.
|
| +// This function is only useful when it can be inlined and the
|
| +// boundaries are statically known.
|
| +// Requires: all bytes in the input word and the boundaries must be
|
| +// ASCII (less than 0x7F).
|
| +uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
|
| + // Use strict inequalities since in edge cases the function could be
|
| + // further simplified.
|
| + DCHECK(0 < m && m < n);
|
| + // Has high bit set in every w byte less than n.
|
| + uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
|
| + // Has high bit set in every w byte greater than m.
|
| + uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
|
| + return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
|
| +}
|
| +
|
| +#ifdef DEBUG
|
| +bool CheckFastAsciiConvert(char* dst, const char* src, int length, bool changed,
|
| + bool is_to_lower) {
|
| + bool expected_changed = false;
|
| + for (int i = 0; i < length; i++) {
|
| + if (dst[i] == src[i]) continue;
|
| + expected_changed = true;
|
| + if (is_to_lower) {
|
| + DCHECK('A' <= src[i] && src[i] <= 'Z');
|
| + DCHECK(dst[i] == src[i] + ('a' - 'A'));
|
| + } else {
|
| + DCHECK('a' <= src[i] && src[i] <= 'z');
|
| + DCHECK(dst[i] == src[i] - ('a' - 'A'));
|
| + }
|
| + }
|
| + return (expected_changed == changed);
|
| +}
|
| +#endif
|
| +
|
| +template <class Converter>
|
| +bool FastAsciiConvert(char* dst, const char* src, int length,
|
| + bool* changed_out) {
|
| +#ifdef DEBUG
|
| + char* saved_dst = dst;
|
| + const char* saved_src = src;
|
| +#endif
|
| + DisallowHeapAllocation no_gc;
|
| + // We rely on the distance between upper and lower case letters
|
| + // being a known power of 2.
|
| + DCHECK('a' - 'A' == (1 << 5));
|
| + // Boundaries for the range of input characters than require conversion.
|
| + static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
|
| + static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
|
| + bool changed = false;
|
| + uintptr_t or_acc = 0;
|
| + const char* const limit = src + length;
|
| +
|
| + // dst is newly allocated and always aligned.
|
| + DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
|
| + // Only attempt processing one word at a time if src is also aligned.
|
| + if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
|
| + // Process the prefix of the input that requires no conversion one aligned
|
| + // (machine) word at a time.
|
| + while (src <= limit - sizeof(uintptr_t)) {
|
| + const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
|
| + or_acc |= w;
|
| + if (AsciiRangeMask(w, lo, hi) != 0) {
|
| + changed = true;
|
| + break;
|
| + }
|
| + *reinterpret_cast<uintptr_t*>(dst) = w;
|
| + src += sizeof(uintptr_t);
|
| + dst += sizeof(uintptr_t);
|
| + }
|
| + // Process the remainder of the input performing conversion when
|
| + // required one word at a time.
|
| + while (src <= limit - sizeof(uintptr_t)) {
|
| + const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
|
| + or_acc |= w;
|
| + uintptr_t m = AsciiRangeMask(w, lo, hi);
|
| + // The mask has high (7th) bit set in every byte that needs
|
| + // conversion and we know that the distance between cases is
|
| + // 1 << 5.
|
| + *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
|
| + src += sizeof(uintptr_t);
|
| + dst += sizeof(uintptr_t);
|
| + }
|
| + }
|
| + // Process the last few bytes of the input (or the whole input if
|
| + // unaligned access is not supported).
|
| + while (src < limit) {
|
| + char c = *src;
|
| + or_acc |= c;
|
| + if (lo < c && c < hi) {
|
| + c ^= (1 << 5);
|
| + changed = true;
|
| + }
|
| + *dst = c;
|
| + ++src;
|
| + ++dst;
|
| + }
|
| +
|
| + if ((or_acc & kAsciiMask) != 0) return false;
|
| +
|
| + DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
|
| + Converter::kIsToLower));
|
| +
|
| + *changed_out = changed;
|
| + return true;
|
| +}
|
| +
|
| +template <class Converter>
|
| +MaybeHandle<String> ConvertCase(Handle<String> s, Isolate* isolate,
|
| + unibrow::Mapping<Converter, 128>* mapping) {
|
| + s = String::Flatten(s);
|
| + int length = s->length();
|
| + // Assume that the string is not empty; we need this assumption later
|
| + if (length == 0) return s;
|
| +
|
| + // Simpler handling of ASCII strings.
|
| + //
|
| + // NOTE: This assumes that the upper/lower case of an ASCII
|
| + // character is also ASCII. This is currently the case, but it
|
| + // might break in the future if we implement more context and locale
|
| + // dependent upper/lower conversions.
|
| + if (s->IsOneByteRepresentationUnderneath()) {
|
| + // Same length as input.
|
| + Handle<SeqOneByteString> result =
|
| + isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
|
| + DisallowHeapAllocation no_gc;
|
| + String::FlatContent flat_content = s->GetFlatContent();
|
| + DCHECK(flat_content.IsFlat());
|
| + bool has_changed_character = false;
|
| + bool is_ascii = FastAsciiConvert<Converter>(
|
| + reinterpret_cast<char*>(result->GetChars()),
|
| + reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
|
| + length, &has_changed_character);
|
| + // If not ASCII, we discard the result and take the 2 byte path.
|
| + if (is_ascii) {
|
| + if (has_changed_character) return result;
|
| + return s;
|
| + }
|
| + }
|
| +
|
| + Handle<SeqString> result; // Same length as input.
|
| + if (s->IsOneByteRepresentation()) {
|
| + result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
|
| + } else {
|
| + result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
|
| + }
|
| +
|
| + Handle<Object> answer;
|
| + ASSIGN_RETURN_ON_EXCEPTION(
|
| + isolate, answer, ConvertCaseHelper(isolate, s, result, length, mapping),
|
| + String);
|
| + if (!answer->IsString()) {
|
| + DCHECK(answer->IsSmi());
|
| + length = Handle<Smi>::cast(answer)->value();
|
| + if (s->IsOneByteRepresentation() && length > 0) {
|
| + ASSIGN_RETURN_ON_EXCEPTION(
|
| + isolate, result, isolate->factory()->NewRawOneByteString(length),
|
| + String);
|
| + } else {
|
| + if (length < 0) length = -length;
|
| + ASSIGN_RETURN_ON_EXCEPTION(
|
| + isolate, result, isolate->factory()->NewRawTwoByteString(length),
|
| + String);
|
| + }
|
| + ASSIGN_RETURN_ON_EXCEPTION(
|
| + isolate, answer, ConvertCaseHelper(isolate, s, result, length, mapping),
|
| + String);
|
| + }
|
| + return Handle<String>::cast(answer);
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +// static
|
| +MaybeHandle<String> String::ToLowerCase(Handle<String> string) {
|
| + Isolate* const isolate = string->GetIsolate();
|
| + return ConvertCase(string, isolate,
|
| + isolate->runtime_state()->to_lower_mapping());
|
| +}
|
| +
|
| +// static
|
| +MaybeHandle<String> String::ToUpperCase(Handle<String> string) {
|
| + Isolate* const isolate = string->GetIsolate();
|
| + return ConvertCase(string, isolate,
|
| + isolate->runtime_state()->to_upper_mapping());
|
| +}
|
| +
|
| // static
|
| Handle<String> String::Trim(Handle<String> string, TrimMode mode) {
|
| Isolate* const isolate = string->GetIsolate();
|
|
|