Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(551)

Side by Side Diff: tools/pathops_visualizer.htm

Issue 2018513003: fix security bug (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: remove extra spaces Created 4 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « tests/PathOpsSimplifyTest.cpp ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 <html> 1 <html>
2 <head> 2 <head>
3 <div height="0" hidden="true"> 3 <div height="0" hidden="true">
4 4
5 Skia UnitTests: --match PathOpsSkp$ --resourcePath resources\ SK_DEBUG 5 Skia UnitTests: --match Simplify$ --resourcePath resources\ SK_DEBUG
6 6
7 <div id="reduced"> 7 <div id="fuzz763_4713_b">
8 seg=1 {{{{377.218994f, -141.981003f}, {40.578701f, -201.339996f}, {23.1854992f, -102.697998f}}}, 0.707107008f} 8 seg=1 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}}
9 seg=2 {{{23.1854992f, -102.697998f}, {377.218994f, -141.981003f}}} 9 seg=2 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
10 seg=3 {{{{306.588013f, -227.983994f}, {212.464996f, -262.242004f}, {95.5512009f, 58.9763985f}}}, 0.707107008f} 10 seg=3 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
11 seg=4 {{{95.5512009f, 58.9763985f}, {306.588013f, -227.983994f}}} 11 seg=4 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
12 debugShowConicLineIntersection wtTs[0]=0 {{{{306.588013,-227.983994}, {212.46499 6,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{306.588013,-227.983994 }} wtTs[1]=1 {{95.5512009,58.9763985}} wnTs[0]=1 {{{95.5512009,58.9763985}, {306 .588013,-227.983994}}} wnTs[1]=0 12 seg=5 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
13 debugShowConicIntersection no intersect {{{{306.588013,-227.983994}, {212.464996 ,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{{{377.218994,-141.98100 3}, {40.578701,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} 13 seg=6 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}}
14 debugShowConicLineIntersection wtTs[0]=0.602960898 {{{{306.588013,-227.983994}, {212.464996,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{180.284241,- 120.129433}} wnTs[0]=0.44374 {{{23.1854992,-102.697998}, {377.218994,-141.981003 }}} 14 seg=7 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}}
15 addT insert t=0.602960898 segID=3 spanID=9 15 seg=8 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}}
16 addT insert t=0.443739761 segID=2 spanID=10 16 seg=9 {{{33.2413864f, 24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26. 966198f}}}
17 debugShowConicLineIntersection wtTs[0]=0.245788566 {{{{377.218994,-141.981003}, {40.578701,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} {{254.22023,-1 56.776138}} wnTs[0]=0.751855 {{{95.5512009,58.9763985}, {306.588013,-227.983994} }} 17 seg=10 {{{38.920742f, 26.966198f}, {41.2865486f, 29.2864628f}, {41.3187523f, 32. 6000175f}}}
18 addT insert t=0.751854746 segID=4 spanID=11 18 seg=11 {{{41.3187523f, 32.6000175f}, {41.3509521f, 35.9135704f}, {39.0306854f, 3 8.2793732f}}}
19 addT insert t=0.245788566 segID=1 spanID=12 19 seg=12 {{{39.0306854f, 38.2793732f}, {38.9995995f, 38.3110695f}, {38.9681816f, 3 8.3424988f}}}
20 debugShowLineIntersection wtTs[0]=0.64393017 {{{95.5512009,58.9763985}, {306.588 013,-227.983994}}} {{231.444168,-125.806053}} wnTs[0]=0.588246 {{{23.1854992,-10 2.697998}, {377.218994,-141.981003}}} 20 seg=13 {{{38.9681816f, 38.3424988f}, {38.9374619f, 38.3742142f}, {38.9064751f, 3 8.4056053f}}}
21 addT insert t=0.64393017 segID=4 spanID=13 21 seg=14 {{{38.9064751f, 38.4056053f}, {38.8441086f, 38.4687881f}, {38.7809143f, 3 8.5304031f}}}
22 addT insert t=0.588245674 segID=2 spanID=14 22 seg=15 {{{38.7809143f, 38.5304031f}, {38.7196693f, 38.5940361f}, {38.6568527f, 3 8.6568527f}}}
23 debugShowConicLineIntersection wtTs[0]=0 {{{{377.218994,-141.981003}, {40.578701 ,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} {{377.218994,-141.981003 }} wtTs[1]=1 {{23.1854992,-102.697998}} wnTs[0]=1 {{{23.1854992,-102.697998}, {3 77.218994,-141.981003}}} wnTs[1]=0 23 seg=16 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
24 sortAngles [3] tStart=0.602960898 [9] 24 seg=17 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
25 after [3/1] 5/1 tStart=0.602960898 tEnd=0 < [2/9] 17/17 tStart=0.443739761 tEnd= 0 < [3/2] 21/21 tStart=0.602960898 tEnd=1 T 4 25 seg=18 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
26 afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-22 7.983994}}}, 1.02163982} id=3 26 seg=19 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
27 afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2 27 seg=20 {{{27.3431454f, 27.3431454f}, {27.3875446f, 27.2987461f}, {27.4323025f, 2 7.2551785f}}}
28 afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9 763985}}}, 0.497736931} id=3 28 seg=21 {{{27.4323025f, 27.2551785f}, {27.4755878f, 27.2101307f}, {27.5197105f, 2 7.165432f}}}
29 after [3/1] 5/1 tStart=0.602960898 tEnd=0 < [2/10] 1/1 tStart=0.443739761 tEnd=0 .588245674 < [2/9] 17/17 tStart=0.443739761 tEnd=0 F 12 29 seg=22 {{{27.5197105f, 27.165432f}, {27.541851f, 27.1430035f}, {27.5638676f, 27. 1209965f}}}
30 afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-22 7.983994}}}, 1.02163982} id=3 30 seg=23 {{{27.5638676f, 27.1209965f}, {27.5855064f, 27.0986347f}, {27.6075668f, 2 7.0761414f}}}
31 afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2 31 seg=24 {{{27.6075668f, 27.0761414f}, {29.9278316f, 24.7103367f}, {33.2413864f, 2 4.6781349f}}}
32 afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2 32 debugShowQuadIntersection wtTs[0]=1 {{{33.2413864,24.6781349}, {36.5549393,24.64 59332}, {38.920742,26.966198}}} {{38.920742,26.966198}} wnTs[0]=0 {{{38.920742,2 6.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}}
33 after [2/9] 17/17 tStart=0.443739761 tEnd=0 < [2/10] 1/1 tStart=0.443739761 tEnd =0.588245674 < [3/2] 21/21 tStart=0.602960898 tEnd=1 F 4 33 debugShowQuadIntersection wtTs[0]=0 {{{33.2413864,24.6781349}, {36.5549393,24.64 59332}, {38.920742,26.966198}}} {{33.2413864,24.6781349}} wnTs[0]=1 {{{27.607566 8,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}}
34 afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2 34 debugShowQuadIntersection wtTs[0]=1 {{{38.920742,26.966198}, {41.2865486,29.2864 628}, {41.3187523,32.6000175}}} {{41.3187523,32.6000175}} wnTs[0]=0 {{{41.318752 3,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}}
35 afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2 35 debugShowQuadIntersection wtTs[0]=1 {{{41.3187523,32.6000175}, {41.3509521,35.91 35704}, {39.0306854,38.2793732}}} {{39.0306854,38.2793732}} wnTs[0]=0 {{{39.0306 854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}}
36 afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9 763985}}}, 0.497736931} id=3 36 debugShowQuadIntersection wtTs[0]=1 {{{39.0306854,38.2793732}, {38.9995995,38.31 10695}, {38.9681816,38.3424988}}} {{38.9681816,38.3424988}} wnTs[0]=0 {{{38.9681 816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}}
37 after [3/2] 21/21 tStart=0.602960898 tEnd=1 < [2/10] 1/1 tStart=0.443739761 tEnd =0.588245674 < [3/1] 5/1 tStart=0.602960898 tEnd=0 T 11 37 debugShowQuadIntersection wtTs[0]=1 {{{38.9681816,38.3424988}, {38.9374619,38.37 42142}, {38.9064751,38.4056053}}} {{38.9064751,38.4056053}} wnTs[0]=0 {{{38.9064 751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}}
38 afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9 763985}}}, 0.497736931} id=3 38 debugShowQuadIntersection wtTs[0]=1 {{{38.9064751,38.4056053}, {38.8441086,38.46 87881}, {38.7809143,38.5304031}}} {{38.7809143,38.5304031}} wnTs[0]=0 {{{38.7809 143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}}
39 afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2 39 debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.59 40361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568 527,38.6568527}, {36.3137093,41}, {33,41}}}
40 afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-22 7.983994}}}, 1.02163982} id=3 40 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527 }}}
41 sortAngles [4] tStart=0.64393017 [13] 41 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6 568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36. 3137093}, {25,33}}}
42 after [4/3] 21/21 tStart=0.64393017 tEnd=0 < [2/11] 17/17 tStart=0.588245674 tEn d=0.443739761 < [4/4] 5/5 tStart=0.64393017 tEnd=0.751854746 F 4 42 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454 }}}
43 afterPart {{{231.444168,-125.806053}, {95.5512009,58.9763985}}} id=4 43 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3 431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {27.387 5446,27.2987461}, {27.4323025,27.2551785}}}
44 afterPart {{{231.444168,-125.806053}, {180.284241,-120.129433}}} id=2 44 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {27.3875446,27.29 87461}, {27.4323025,27.2551785}}} {{27.4323025,27.2551785}} wnTs[0]=0 {{{27.4323 025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}}
45 afterPart {{{231.444168,-125.806053}, {254.22023,-156.776138}}} id=4 45 debugShowQuadIntersection wtTs[0]=1 {{{27.4323025,27.2551785}, {27.4755878,27.21 01307}, {27.5197105,27.165432}}} {{27.5197105,27.165432}} wnTs[0]=0 {{{27.519710 5,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}}
46 after [4/3] 21/21 tStart=0.64393017 tEnd=0 < [2/12] 1/1 tStart=0.588245674 tEnd= 1 < [4/4] 5/5 tStart=0.64393017 tEnd=0.751854746 T 4 46 debugShowQuadIntersection wtTs[0]=1 {{{27.5197105,27.165432}, {27.541851,27.1430 035}, {27.5638676,27.1209965}}} {{27.5638676,27.1209965}} wnTs[0]=0 {{{27.563867 6,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}}
47 afterPart {{{231.444168,-125.806053}, {95.5512009,58.9763985}}} id=4 47 debugShowQuadIntersection wtTs[0]=1 {{{27.5638676,27.1209965}, {27.5855064,27.09 86347}, {27.6075668,27.0761414}}} {{27.6075668,27.0761414}} wnTs[0]=0 {{{27.6075 668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}}
48 afterPart {{{231.444168,-125.806053}, {377.218994,-141.981003}}} id=2 48 id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1]
49 afterPart {{{231.444168,-125.806053}, {254.22023,-156.776138}}} id=4 49 id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3]
50 sortAngles [4] tStart=0.751854746 [11] 50 id=1 3=(0.5,1) [4] id=2 4=(0.5,1) [3]
51 after [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 < [1/7] 29/29 tStart=0.2457 88566 tEnd=0 < [4/6] 5/5 tStart=0.751854746 tEnd=1 T 4 51 id=1 (empty) id=2 (empty)
52 afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4 52 debugShowQuadIntersection no intersect {{{33.2413864,24.6781349}, {36.5549393,24 .6459332}, {38.920742,26.966198}}} {{{33,25}, {36.3137093,25}, {38.6568527,27.34 31454}}}
53 afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141 .981003}}}, 0.580018938} id=1 53 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
54 afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4 54 id=1 (empty) id=2 (empty)
55 after [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 < [1/8] 13/17 tStart=0.2457 88566 tEnd=1 < [1/7] 29/29 tStart=0.245788566 tEnd=0 F 4 55 debugShowQuadIntersection no intersect {{{38.920742,26.966198}, {41.2865486,29.2 864628}, {41.3187523,32.6000175}}} {{{38.6568527,27.3431454}, {41,29.6862907}, { 41,33}}}
56 afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4 56 id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1]
57 afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102. 697998}}}, 0.920844734} id=1 57 id=1 1=(0,0.5) [2] 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3]
58 afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141 .981003}}}, 0.580018938} id=1 58 id=1 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3] 4=(0.5,1) [3]
59 after [1/7] 29/29 tStart=0.245788566 tEnd=0 < [1/8] 13/17 tStart=0.245788566 tEn d=1 < [4/6] 5/5 tStart=0.751854746 tEnd=1 F 4 59 id=1 3=(0.5,1) [6,4] id=2 6=(0.25,0.5) [3] 4=(0.5,1) [3]
60 afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141 .981003}}}, 0.580018938} id=1 60 id=1 3=(0.5,0.75) [4] 7=(0.75,1) [4] id=2 4=(0.5,1) [7,3]
61 afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102. 697998}}}, 0.920844734} id=1 61 id=1 7=(0.75,1) [8,4] id=2 4=(0.5,0.75) [7] 8=(0.75,1) [7]
62 afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4 62 id=1 7=(0.75,1) [10,8] id=2 10=(0.625,0.75) [7] 8=(0.75,1) [7]
63 after [4/6] 5/5 tStart=0.751854746 tEnd=1 < [1/8] 13/17 tStart=0.245788566 tEnd= 1 < [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 T 4 63 id=1 9=(0.875,1) [8] id=2 8=(0.75,1) [9]
64 afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4 64 id=1 (empty) id=2 (empty)
65 afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102. 697998}}}, 0.920844734} id=1 65 debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35 .9135704}, {39.0306854,38.2793732}}} {{{41,33}, {41,36.3137093}, {38.6568527,38. 6568527}}}
66 afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4 66 debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35 .9135704}, {39.0306854,38.2793732}}} {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33}}}
67 sortAngles [1] tStart=0.245788566 [12] 67 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
68 sortAngles [2] tStart=0.443739761 [10] 68 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
69 sortAngles [2] tStart=0.588245674 [14] 69 id=1 (empty) id=2 (empty)
70 sortableTop dir=kTop seg=3 t=0.301480449 pt=(252.731339,-209.870193) 70 debugShowQuadIntersection no intersect {{{39.0306854,38.2793732}, {38.9995995,38 .3110695}, {38.9681816,38.3424988}}} {{{41,33}, {41,36.3137093}, {38.6568527,38. 6568527}}}
71 sortableTop [0] valid=1 operand=0 span=5 ccw=0 seg=3 {{{{306.588013f, -227.98399 4f}, {212.464996f, -262.242004f}, {95.5512009f, 58.9763985f}}}, 0.707107008f} t= 0.301480449 pt=(252.731339,-209.870193) slope=(-84.4303791,69.255817) 71 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
72 markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97 63985) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum= 0 oppSum=0 windSum=1 windValue=1 oppValue=0 72 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
73 markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97 63985) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum= 0 oppSum=0 windSum=1 windValue=1 oppValue=0 73 id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
74 markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.751854746 [1 1] (254.22023,-156.776138) tEnd=1 newWindSum=1 newOppSum=0 oppSum=? windSum=? wi ndValue=1 oppValue=0 74 id=1 (empty) id=2 (empty)
75 findNextWinding simple 75 debugShowQuadIntersection no intersect {{{38.9681816,38.3424988}, {38.9374619,38 .3742142}, {38.9064751,38.4056053}}} {{{41,33}, {41,36.3137093}, {38.6568527,38. 6568527}}}
76 markDone id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97639 85) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum=0 o ppSum=0 windSum=1 windValue=1 oppValue=0 76 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
77 bridgeWinding current id=3 from=(180.284241,-120.129433) to=(306.588013,-227.983 994) 77 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
78 path.moveTo(180.284241,-120.129433); 78 id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
79 path.conicTo(257.850769,-245.722916, 306.588013,-227.983994, 1.02163982); 79 id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1]
80 markWinding id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6 97998) t=0.245788566 [12] (254.22023,-156.776138) tEnd=1 newWindSum=2 windSum=? windValue=1 80 id=1 1=(0,1) [12,10] id=2 10=(0.9375,0.96875) [1] 12=(0.96875,1) [1]
81 markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0 [3] (23.185 4992,-102.697998) tEnd=0.443739761 newWindSum=2 windSum=? windValue=1 81 id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1] 12=(0.96875,1) [1]
82 markAngle last seg=2 span=10 windSum=? 82 id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1] 12=(0.96875,0.984375) [1]
83 markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.64393017 [13 ] (231.444168,-125.806053) tEnd=0.751854746 newWindSum=2 windSum=? windValue=1 83 id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.984375) [3]
84 markAngle last seg=4 span=13 windSum=2 84 id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.976563) [3]
85 markWinding id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6 97998) t=0 [1] (377.218994,-141.981003) tEnd=0.245788566 newWindSum=1 windSum=? windValue=1 85 id=1 5=(0.75,1) [12] id=2 12=(0.96875,0.976563) [5]
86 markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.588245674 [ 14] (231.444168,-125.806053) tEnd=1 newWindSum=1 windSum=? windValue=1 86 id=1 5=(0.75,1) [20,12] id=2 12=(0.96875,0.972656) [5] 20=(0.972656,0.976563) [5 ]
87 markAngle last seg=2 span=14 windSum=1 87 id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.976563) [7]
88 findNextWinding 88 id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.974609) [7]
89 dumpOne [4/6] next=1/8 sect=5/5 s=0.751854746 [11] e=1 [8] sgn=-1 windVal=1 win dSum=1 oppVal=0 oppSum=0 89 id=1 (empty) id=2 (empty)
90 dumpOne [1/8] next=4/5 sect=13/17 s=0.245788566 [12] e=1 [2] sgn=-1 windVal=1 w indSum=2 90 debugShowQuadIntersection no intersect {{{38.9064751,38.4056053}, {38.8441086,38 .4687881}, {38.7809143,38.5304031}}} {{{41,33}, {41,36.3137093}, {38.6568527,38. 6568527}}}
91 dumpOne [4/5] next=1/7 sect=21/21 s=0.751854746 [11] e=0.64393017 [13] sgn=1 wi ndVal=1 windSum=2 91 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1]
92 dumpOne [1/7] next=4/6 sect=29/29 s=0.245788566 [12] e=0 [1] sgn=1 windVal=1 wi ndSum=1 92 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1]
93 markDone id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6979 98) t=0.245788566 [12] (254.22023,-156.776138) tEnd=1 newWindSum=2 newOppSum=? o ppSum=? windSum=2 windValue=1 oppValue=0 93 id=1 1=(0,1) [8] id=2 8=(0.875,1) [1]
94 markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0 [3] (23.185499 2,-102.697998) tEnd=0.443739761 newWindSum=2 newOppSum=? oppSum=? windSum=2 wind Value=1 oppValue=0 94 id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1]
95 findNextWinding chase.append segment=2 span=10 windSum=-2147483647 95 id=1 1=(0,1) [12] id=2 12=(0.96875,1) [1]
96 markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.64393017 [13] ( 231.444168,-125.806053) tEnd=0.751854746 newWindSum=2 newOppSum=? oppSum=? windS um=2 windValue=1 oppValue=0 96 id=1 1=(0,1) [14,12] id=2 12=(0.96875,0.984375) [1] 14=(0.984375,1) [1]
97 findNextWinding chase.append segment=4 span=13 windSum=2 97 id=1 1=(0,0.5) [14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.984375) [1] 14=(0.98437 5,1) [3,1]
98 findNextWinding chase.append segment=2 span=14 windSum=1 98 id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.976563) [1] 16=(0.97 6563,0.984375) [1] 14=(0.984375,1) [3,1]
99 markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.751854746 [11] (254.22023,-156.776138) tEnd=1 newWindSum=1 newOppSum=0 oppSum=0 windSum=1 windV alue=1 oppValue=0 99 id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [18,14] id=2 12=(0.96875,0.976563) [1] 16=(0 .976563,0.984375) [1] 14=(0.984375,0.992188) [3,1] 18=(0.992188,1) [3]
100 findNextWinding from:[4] to:[1] start=50334624 end=1606415336 100 id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,1) [18,14] id=2 12=(0.96875, 0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.99 2188,1) [3]
101 bridgeWinding current id=4 from=(306.588013,-227.983994) to=(254.22023,-156.7761 38) 101 id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18 ] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992 188) [5,3] 18=(0.992188,1) [7,3]
102 findNextWinding simple 102 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18 ] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.99 2188) [5,3] 18=(0.992188,1) [7,3]
103 markDone id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6979 98) t=0 [1] (377.218994,-141.981003) tEnd=0.245788566 newWindSum=1 newOppSum=? o ppSum=? windSum=1 windValue=1 oppValue=0 103 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0 .984375) [5] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3]
104 bridgeWinding current id=1 from=(254.22023,-156.776138) to=(377.218994,-141.9810 03) 104 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75, 1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.98046 9,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.99 2188,1) [7,3]
105 path.lineTo(254.22023,-156.776138); 105 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75, 1) [26,18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.98 0469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0 .992188,0.996094) [7,3] 26=(0.996094,1) [7]
106 path.conicTo(314.172607,-153.097824, 377.218994,-141.981003, 0.580018938); 106 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75 ) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0 .980469) [9,5] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988 281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7]
107 markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.443739761 [ 10] (180.284241,-120.129433) tEnd=0.588245674 newWindSum=2 windSum=? windValue=1 107 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0. 5) [14,22] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563 ) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375, 0.988281) [11,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.9 96094,1) [7]
108 markAngle last seg=2 span=10 windSum=2 108 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0. 5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375 ) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.99218 8,0.996094) [13,7] 26=(0.996094,1) [7]
109 markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0 [7] (95.5512 009,58.9763985) tEnd=0.64393017 newWindSum=1 windSum=? windValue=1 109 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0. 5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.9921 88) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
110 markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97 63985) t=0.602960898 [9] (180.284241,-120.129433) tEnd=1 newWindSum=1 windSum=? windValue=1 110 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [28,16] 5=(0.25,0.375) [22,16] 11=(0.375 ,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,1 8] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9 ] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.9882 81) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996 094,1) [15,7]
111 markAngle last seg=3 span=9 windSum=1 111 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [30,22] 11=(0. 375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [2 6,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [ 1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.9843 75) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992 188,0.996094) [13,7] 26=(0.996094,1) [15,7]
112 findNextWinding 112 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11= (0.375,0.5) [32,14] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563 ) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.9 82422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.988281) [11,3] 24=(0.988 281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
113 dumpOne [2/12] next=4/4 sect=1/1 s=0.588245674 [14] e=1 [4] sgn=-1 windVal=1 wi ndSum=1 113 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11= (0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [18,24] 7=(0.75,0.8 75) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976 563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469, 0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.98 6328,0.988281) [3,11] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7 ] 26=(0.996094,1) [15,7]
114 dumpOne [4/4] next=2/11 sect=5/5 s=0.64393017 [13] e=0.751854746 [11] sgn=-1 wi ndVal=1 windSum=2 done 114 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11= (0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75, 0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0. 976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.9804 69,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0 .986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [1 3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7]
115 dumpOne [2/11] next=4/3 sect=17/17 s=0.588245674 [14] e=0.443739761 [10] sgn=1 windVal=1 windSum=2 115 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11= (0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75, 0.875) [38,26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609 ,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.9 80469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34 =(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,1) [ 15,7]
116 dumpOne [4/3] next=2/12 sect=21/21 s=0.64393017 [13] e=0 [7] sgn=1 windVal=1 wi ndSum=1 116 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11= (0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75, 0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 20=(0.972656,0.974609) [1] 28=(0.974 609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=( 0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.9921 88) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0 .998047) [15,7] 40=(0.998047,1) [15]
117 markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.443739761 [10] (180.284241,-120.129433) tEnd=0.588245674 newWindSum=2 newOppSum=? oppSum=? win dSum=2 windValue=1 oppValue=0 117 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=( 38.774329,38.5372382)
118 findNextWinding chase.append segment=3 span=9 windSum=1 118 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38. 7653995,38.5464837)
119 markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.588245674 [14] (231.444168,-125.806053) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 win dValue=1 oppValue=0 119 setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.773 2537,38.5383551)
120 findNextWinding from:[2] to:[4] start=50334760 end=50333904 120 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=( 38.774329,38.5372382)
121 bridgeWinding current id=2 from=(377.218994,-141.981003) to=(231.444168,-125.806 053) 121 setPerp t=0 cPt=(38.7809143,38.5304031) == oppT=0.973166462 fPerpPt=(38.7809154, 38.5304042)
122 findNextWinding simple 122 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=( 38.774329,38.5372382)
123 markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0 [7] (95.5512009 ,58.9763985) tEnd=0.64393017 newWindSum=1 newOppSum=? oppSum=? windSum=1 windVal ue=1 oppValue=0 123 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38. 7653995,38.5464837)
124 bridgeWinding current id=4 from=(231.444168,-125.806053) to=(95.5512009,58.97639 85) 124 setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.773 2537,38.5383551)
125 path.lineTo(231.444168,-125.806053); 125 setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655 796,38.5462997)
126 findNextWinding 126 id=1 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,1 4] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15 =(0.875,1) [40,26] id=2 28=(0.974609,0.976563) [9] 16=(0.976563,0.978516) [9] 30 =(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5, 11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990 234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.9941 41,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
127 dumpOne [3/2] next=2/10 sect=21/21 s=0.602960898 [9] e=1 [6] sgn=-1 windVal=1 w indSum=1 127 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=( 38.774329,38.5372382)
128 dumpOne [2/10] next=3/1 sect=1/1 s=0.443739761 [10] e=0.588245674 [14] sgn=-1 w indVal=1 windSum=2 done 128 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38. 7653995,38.5464837)
129 dumpOne [3/1] next=2/9 sect=5/1 s=0.602960898 [9] e=0 [5] sgn=1 windVal=1 windS um=1 oppVal=0 oppSum=0 done 129 setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655 796,38.5462997)
130 dumpOne [2/9] next=3/2 sect=17/17 s=0.443739761 [10] e=0 [3] sgn=1 windVal=1 wi ndSum=2 done 130 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38. 7653995,38.5464837)
131 markDone id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97639 85) t=0.602960898 [9] (180.284241,-120.129433) tEnd=1 newWindSum=1 newOppSum=? o ppSum=? windSum=1 windValue=1 oppValue=0 131 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3 8.7564523,38.5557218)
132 findNextWinding from:[3] to:[2] start=50334352 end=50333208 132 setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.757 8932,38.5542378)
133 bridgeWinding current id=3 from=(95.5512009,58.9763985) to=(180.284241,-120.1294 33) 133 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38. 7653995,38.5464837)
134 path.lineTo(95.5512009,58.9763985); 134 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3 8.7564523,38.5557218)
135 path.conicTo(132.693985,-43.0726738, 180.284241,-120.129433, 0.497736931); 135 setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.757 8932,38.5542378)
136 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3 8.7564523,38.5557218)
137 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38 .7474871,38.5649525)
138 setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.75019 46,38.5621695)
139 id=1 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 1 3=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 30 =(0.978516,0.980469) [5] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11 ] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.99023 4) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141 ,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
140 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3 8.7564523,38.5557218)
141 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38 .7474871,38.5649525)
142 setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.75019 46,38.5621695)
143 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38 .7474871,38.5649525)
144 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38 .7385041,38.5741759)
145 setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424 836,38.5700949)
146 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38 .7474871,38.5649525)
147 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38 .7385041,38.5741759)
148 setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424 836,38.5700949)
149 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38 .7385041,38.5741759)
150 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72 95033,38.5833918)
151 setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347 604,38.5780138)
152 id=1 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 32=(0.982422,0.984375) [11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0 .996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
153 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38 .7385041,38.5741759)
154 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72 95033,38.5833918)
155 setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347 604,38.5780138)
156 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72 95033,38.5833918)
157 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38 .7204846,38.5926004)
158 setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.727 0248,38.5859264)
159 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72 95033,38.5833918)
160 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38 .7204846,38.5926004)
161 setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.727 0248,38.5859264)
162 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38 .7204846,38.5926004)
163 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38. 711448,38.6018015)
164 setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277, 38.5938326)
165 id=1 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 34=(0.986328,0.988281) [3] 24=(0.988281,0.990234) [13, 3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.9960 94) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15]
166 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38 .7204846,38.5926004)
167 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38. 711448,38.6018015)
168 setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277, 38.5938326)
169 setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.711 5169,38.6017324)
170 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38. 711448,38.6018015)
171 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3 8.7023935,38.6109953)
172 setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037 445,38.6096258)
173 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38 .7204846,38.5926004)
174 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38. 711448,38.6018015)
175 setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.711 5169,38.6017324)
176 id=1 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] i d=2 24=(0.988281,0.990234) [13] 36=(0.990234,0.992188) [13] 18=(0.992188,0.99414 1) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047, 1) [15]
177 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3 8.7023935,38.6109953)
178 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38. 6933211,38.6201816)
179 setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.695 9599,38.6175129)
180 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38. 711448,38.6018015)
181 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3 8.7023935,38.6109953)
182 setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037 445,38.6096258)
183 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38. 6933211,38.6201816)
184 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38 .6842309,38.6293605)
185 setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.68816 3,38.6253936)
186 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3 8.7023935,38.6109953)
187 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38. 6933211,38.6201816)
188 setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.695 9599,38.6175129)
189 id=1 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 18=(0.992188,0.994141) [7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15 ]
190 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38 .6842309,38.6293605)
191 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38 .6751227,38.638532)
192 setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.680 3538,38.6332679)
193 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38. 6933211,38.6201816)
194 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38 .6842309,38.6293605)
195 setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.68816 3,38.6253936)
196 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38 .6751227,38.638532)
197 setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(3 8.6659967,38.6476961)
198 setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.67253 24,38.6411359)
199 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38 .6842309,38.6293605)
200 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38 .6751227,38.638532)
201 setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.680 3538,38.6332679)
202 id=1 15=(0.875,1) [40,26] id=2 26=(0.996094,0.998047) [15] 40=(0.998047,1) [15]
203 setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(3 8.6659967,38.6476961)
204 setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527 )
205 setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.664 6987,38.6489975)
206 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38 .6751227,38.638532)
207 setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(3 8.6659967,38.6476961)
208 setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.67253 24,38.6411359)
209 id=1 31=(0.9375,1) [40] id=2 40=(0.998047,1) [31]
210 setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.664 6987,38.6489975)
211 setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527 )
212 setPerp t=0.999023438 cPt=(38.6614269,38.6522753) == oppT=0.963574111 fPerpPt=(3 8.6614269,38.6522753)
213 id=1 31=(1,1) [42] id=2 42=(1,1) [31]
214 debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.59 40361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6568527}}}
215 debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.59 40361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568 527,38.6568527}, {36.3137093,41}, {33,41}}}
216 debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33}, {41,36.3137093}, {38.65 68527,38.6568527}}}
217 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
218 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
219 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6 =(0.75,1) [3]
220 id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
221 id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
222 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3 ]
223 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4 ,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.87 5) [5,3] 10=(0.875,1) [5]
224 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [ 10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.7 5) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
225 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875 ) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5 ,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
226 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75 ) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=( 0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
227 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625, 0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75 ) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
228 id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.6 25) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,1 0] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5, 0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [ 9,5]
229 id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5 ,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0. 375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875 ) [11,9,5] 10=(0.875,1) [9,5]
230 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0. 375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875 ) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.6 25,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
231 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0. 375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875 ) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1, 7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=( 0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375, 1) [9]
232 setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527 )
233 setPerp t=0.125 cPt=(38.0559018,39.2060279) == oppT=0.125 fPerpPt=(38.0559018,39 .2060279)
234 setPerp t=0.25 cPt=(37.4246206,39.6819797) == oppT=0.25 fPerpPt=(37.4246206,39.6 819797)
235 setPerp t=0.375 cPt=(36.7630093,40.0847081) == oppT=0.375 fPerpPt=(36.7630093,40 .0847081)
236 setPerp t=0.5 cPt=(36.0710678,40.4142132) == oppT=0.5 fPerpPt=(36.0710678,40.414 2132)
237 setPerp t=0.625 cPt=(35.3487961,40.6704949) == oppT=0.625 fPerpPt=(35.3487961,40 .6704949)
238 setPerp t=0.75 cPt=(34.5961943,40.8535533) == oppT=0.75 fPerpPt=(34.5961943,40.8 535533)
239 setPerp t=0.875 cPt=(33.8132622,40.9633883) == oppT=0.875 fPerpPt=(33.8132622,40 .9633883)
240 setPerp t=0.9375 cPt=(33.4104224,40.9908471) == oppT=0.9375 fPerpPt=(33.4104224, 40.9908471)
241 setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41)
242 setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527 )
243 setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41)
244 id=1 (empty) id=2 (empty)
245 debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{38.6568527,38.6568527}} wtTs[1]=1 {{33,41}} wnTs[0]=0 {{{38.6568527, 38.6568527}, {36.3137093,41}, {33,41}}} wnTs[1]=1
246 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527 }}}
247 debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6 568527}}} {{33,41}} wnTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41 }}}
248 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
249 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
250 id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4= (0.5,1) [3,1]
251 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3]
252 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5, 1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3]
253 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3 ]
254 id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [ 4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75 ) [7,5,3] 8=(0.75,1) [7,3]
255 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.7 5) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0. 25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
256 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5, 0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6 =(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
257 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 1 0=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0. 75) [11,7,3] 8=(0.75,1) [7,3]
258 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9, 1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0. 5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3]
259 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14 ,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0 .375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [ 13,7]
260 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16 ,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12 =(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0 .875) [13,7] 16=(0.875,1) [7]
261 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6= (0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625, 0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
262 id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11= (0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0. 875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5, 0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
263 setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41)
264 setPerp t=0.0625 cPt=(32.5895776,40.9908471) == oppT=0.0625 fPerpPt=(32.5895776, 40.9908471)
265 setPerp t=0.125 cPt=(32.1867377,40.9633883) == oppT=0.125 fPerpPt=(32.1867377,40 .9633883)
266 setPerp t=0.25 cPt=(31.4038056,40.8535533) == oppT=0.25 fPerpPt=(31.4038056,40.8 535533)
267 setPerp t=0.375 cPt=(30.6512036,40.6704949) == oppT=0.375 fPerpPt=(30.6512036,40 .6704949)
268 setPerp t=0.5 cPt=(29.9289317,40.4142132) == oppT=0.5 fPerpPt=(29.9289317,40.414 2132)
269 setPerp t=0.625 cPt=(29.2369899,40.0847081) == oppT=0.625 fPerpPt=(29.2369899,40 .0847081)
270 setPerp t=0.75 cPt=(28.5753783,39.6819797) == oppT=0.75 fPerpPt=(28.5753783,39.6 819797)
271 setPerp t=0.875 cPt=(27.9440968,39.2060279) == oppT=0.875 fPerpPt=(27.9440968,39 .2060279)
272 setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527 )
273 setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41)
274 setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527 )
275 id=1 (empty) id=2 (empty)
276 debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6 568527}}} {{33,41}} wtTs[1]=1 {{27.3431454,38.6568527}} wnTs[0]=0 {{{33,41}, {29 .6862907,41}, {27.3431454,38.6568527}}} wnTs[1]=1
277 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6 568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36. 3137093}, {25,33}}}
278 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{27.3431454,38.6568527}} wnTs[0]=1 {{{33,41}, {29.6862907,41}, {27.34 31454,38.6568527}}}
279 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
280 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
281 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6 =(0.75,1) [3]
282 id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
283 id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3]
284 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3 ]
285 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4 ,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.87 5) [5,3] 10=(0.875,1) [5]
286 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [ 10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.7 5) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
287 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875 ) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5 ,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5]
288 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75 ) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=( 0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
289 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625, 0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75 ) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
290 id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.6 25) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,1 0] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5, 0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [ 9,5]
291 id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5 ,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0. 375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875 ) [11,9,5] 10=(0.875,1) [9,5]
292 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0. 375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875 ) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.6 25,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5]
293 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0. 375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875 ) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1, 7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=( 0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375, 1) [9]
294 setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527 )
295 setPerp t=0.125 cPt=(26.7939707,38.0559018) == oppT=0.125 fPerpPt=(26.7939707,38 .0559018)
296 setPerp t=0.25 cPt=(26.3180193,37.4246206) == oppT=0.25 fPerpPt=(26.3180193,37.4 246206)
297 setPerp t=0.375 cPt=(25.9152912,36.7630093) == oppT=0.375 fPerpPt=(25.9152912,36 .7630093)
298 setPerp t=0.5 cPt=(25.5857863,36.0710678) == oppT=0.5 fPerpPt=(25.5857863,36.071 0678)
299 setPerp t=0.625 cPt=(25.3295048,35.3487961) == oppT=0.625 fPerpPt=(25.3295048,35 .3487961)
300 setPerp t=0.75 cPt=(25.1464466,34.5961943) == oppT=0.75 fPerpPt=(25.1464466,34.5 961943)
301 setPerp t=0.875 cPt=(25.0366116,33.8132622) == oppT=0.875 fPerpPt=(25.0366116,33 .8132622)
302 setPerp t=0.9375 cPt=(25.0091529,33.4104224) == oppT=0.9375 fPerpPt=(25.0091529, 33.4104224)
303 setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33)
304 setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527 )
305 setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33)
306 id=1 (empty) id=2 (empty)
307 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{27.3431454,38.6568527}} wtTs[1]=1 {{25,33}} wnTs[0]=0 {{{27.3431454, 38.6568527}, {25,36.3137093}, {25,33}}} wnTs[1]=1
308 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454 }}}
309 debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3 431454}}} {{25,33}} wnTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33 }}}
310 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
311 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1]
312 id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4= (0.5,1) [3,1]
313 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3]
314 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5, 1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3]
315 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3 ]
316 id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [ 4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75 ) [7,5,3] 8=(0.75,1) [7,3]
317 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.7 5) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0. 25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
318 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5, 0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6 =(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3]
319 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 1 0=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0. 75) [11,7,3] 8=(0.75,1) [7,3]
320 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9, 1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0. 5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3]
321 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14 ,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0 .375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [ 13,7]
322 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16 ,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12 =(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0 .875) [13,7] 16=(0.875,1) [7]
323 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3 75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6= (0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625, 0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
324 id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11= (0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0. 875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5, 0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7]
325 setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33)
326 setPerp t=0.0625 cPt=(25.0091529,32.5895776) == oppT=0.0625 fPerpPt=(25.0091529, 32.5895776)
327 setPerp t=0.125 cPt=(25.0366116,32.1867377) == oppT=0.125 fPerpPt=(25.0366116,32 .1867377)
328 setPerp t=0.25 cPt=(25.1464466,31.4038056) == oppT=0.25 fPerpPt=(25.1464466,31.4 038056)
329 setPerp t=0.375 cPt=(25.3295048,30.6512036) == oppT=0.375 fPerpPt=(25.3295048,30 .6512036)
330 setPerp t=0.5 cPt=(25.5857863,29.9289317) == oppT=0.5 fPerpPt=(25.5857863,29.928 9317)
331 setPerp t=0.625 cPt=(25.9152912,29.2369899) == oppT=0.625 fPerpPt=(25.9152912,29 .2369899)
332 setPerp t=0.75 cPt=(26.3180193,28.5753783) == oppT=0.75 fPerpPt=(26.3180193,28.5 753783)
333 setPerp t=0.875 cPt=(26.7939707,27.9440968) == oppT=0.875 fPerpPt=(26.7939707,27 .9440968)
334 setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454 )
335 setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33)
336 setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454 )
337 id=1 (empty) id=2 (empty)
338 debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3 431454}}} {{25,33}} wtTs[1]=1 {{27.3431454,27.3431454}} wnTs[0]=0 {{{25,33}, {25 ,29.6862907}, {27.3431454,27.3431454}}} wnTs[1]=1
339 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3 431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.686 2907,25}, {33,25}}}
340 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.29 87461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wnTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454}}}
341 id=1 1=(0,1) [2] id=2 2=(0,0.5) [1]
342 id=1 1=(0,1) [2] id=2 2=(0,0.25) [1]
343 id=1 1=(0,1) [2] id=2 2=(0,0.125) [1]
344 id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1]
345 id=1 1=(0,1) [2] id=2 2=(0,0.03125) [1]
346 id=1 1=(0,1) [14,2] id=2 2=(0,0.015625) [1] 14=(0.015625,0.03125) [1]
347 id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.031 25) [3]
348 id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.023 4375) [3]
349 id=1 1=(0,0.5) [18,2] 3=(0.5,1) [18,14] id=2 2=(0,0.0078125) [1] 18=(0.0078125,0 .015625) [1,3] 14=(0.015625,0.0234375) [3]
350 id=1 1=(0,0.5) [18,2] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125) [1] 18=(0.0078125,0.015625) [5,1,3] 14=(0.015625,0.0234375) [5]
351 id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id= 2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0234375) [5]
352 id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id= 2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0195313) [5]
353 id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22,14] id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625 ) [3,5] 14=(0.015625,0.0195313) [5]
354 id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22, 14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.01 17188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [5]
355 id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1, 7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0 195313) [9,5]
356 id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.625) [22,18] 11=(0.625,0.75 ) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.0 0390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
357 id=1 1=(0,0.25) [24,2] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0 .00390625) [1] 24=(0.00390625,0.0078125) [13,1,7] 18=(0.0078125,0.0117188) [13,3 ] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5]
358 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [ 18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.87 5,1) [14] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0 .0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.01953 13) [9,5]
359 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421 1186,27.2660833)
360 setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024 ,27.2551784)
361 setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(2 7.4258215,27.2614932)
362 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994 59,27.2770142)
363 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421 1186,27.2660833)
364 setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4 166057,27.2704942)
365 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421 1186,27.2660833)
366 setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024 ,27.2551784)
367 setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(2 7.4258215,27.2614932)
368 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [ 18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22] id=2 2=(0, 0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5]
369 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398 7845,27.2879711)
370 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994 59,27.2770142)
371 setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27 .4073972,27.279513)
372 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763 42,27.298954)
373 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398 7845,27.2879711)
374 setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27 .3981962,27.2885497)
375 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994 59,27.2770142)
376 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421 1186,27.2660833)
377 setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4 166057,27.2704942)
378 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398 7845,27.2879711)
379 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994 59,27.2770142)
380 setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27 .4073972,27.279513)
381 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [ 18,24] 3=(0.5,0.625) [18] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188) [13,3]
382 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37 64952,27.3099628)
383 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763 42,27.298954)
384 setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27. 3798163,27.3066768)
385 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763 42,27.298954)
386 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398 7845,27.2879711)
387 setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(2 7.3890025,27.2976043)
388 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763 42,27.298954)
389 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398 7845,27.2879711)
390 setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(2 7.3890025,27.2976043)
391 setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27 .3981962,27.2885497)
392 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [ 24] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7]
393 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35 42508,27.3320585)
394 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365 3674,27.3209977)
395 setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27. 361466,27.3248753)
396 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365 3674,27.3209977)
397 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37 64952,27.3099628)
398 setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(2 7.3706374,27.3157671)
399 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365 3674,27.3209977)
400 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37 64952,27.3099628)
401 setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(2 7.3706374,27.3157671)
402 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37 64952,27.3099628)
403 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763 42,27.298954)
404 setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27. 3798163,27.3066768)
405 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2] id=2 2=(0,0.00390625) [15,1]
406 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35 42508,27.3320585)
407 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365 3674,27.3209977)
408 setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27. 361466,27.3248753)
409 id=1 1=(0,0.125) [34,2] id=2 2=(0,0.00195313) [1] 34=(0.00195313,0.00390625) [1]
410 id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=( 0.00195313,0.00390625) [17]
411 id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=( 0.00195313,0.00292969) [17]
412 id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.125) [38,34] id=2 2=(0,0.000976563) [1] 38 =(0.000976563,0.00195313) [1,17] 34=(0.00195313,0.00292969) [17]
413 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27 .352302,27.3340014)
414 setPerp t=0.0029296875 cPt=(27.3568831,27.3294361) == oppT=0.154609898 fPerpPt=( 27.3568831,27.3294361)
415 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35 42508,27.3320585)
416 id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.09375) [38] 19=(0.09375,0.125) [38] id=2 2 =(0,0.000976563) [1] 38=(0.000976563,0.00195313) [19,1,17]
417 id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [38] 19=(0 .09375,0.125) [38] id=2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00195313) [21 ,19,17]
418 setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27. 3514734,27.3348278)
419 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35 42508,27.3320585)
420 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27 .352302,27.3340014)
421 id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [40,38] id =2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00146484) [21,17] 40=(0.00146484,0 .00195313) [17]
422 id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.09375) [40,38 ] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563 ,0.00146484) [21,17] 40=(0.00146484,0.00195313) [17]
423 setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt =(27.3500121,27.3362857)
424 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27 .352302,27.3340014)
425 setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27 .3500849,27.3362131)
426 setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt =(27.3500121,27.3362857)
427 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27 .352302,27.3340014)
428 setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27 .3500849,27.3362131)
429 setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27. 3514734,27.3348278)
430 id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563,0 .00146484) [21,17]
431 id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42 ] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.0009765 63) [25,1,21] 38=(0.000976563,0.00146484) [25,17]
432 id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [2 7,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.00146484) [25,17]
433 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3 486967,27.3375987)
434 setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27 .3500849,27.3362131)
435 setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt =(27.3488674,27.3374283)
436 setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt =(27.3500121,27.3362857)
437 id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [2 7,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.0012207) [25,17]
438 id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [46,4 2] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [27,1] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25 ] 38=(0.000976563,0.0012207) [25,17]
439 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [ 46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000244 141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21 ] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
440 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [ 46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.00024 4141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,2 1] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17]
441 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [ 46,42] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0 703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=( 0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.0009 76563,0.0012207) [31,25,17]
442 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.05468 75,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.0002 44141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0 .000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17]
443 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [ 42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875, 0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2= (0,0.000244141) [1] 48=(0.000244141,0.000488281) [35,1,27] 42=(0.000488281,0.000 732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.001220 7) [31,25,17]
444 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625 ,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0 .0625,0.0703125) [38] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [3 3,21,25] 38=(0.000976563,0.0012207) [31,25,17]
445 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2 7.3480026,27.3382917)
446 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3 486967,27.3375987)
447 setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt= (27.3482951,27.3379997)
448 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27 .3473086,27.3389848)
449 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2 7.3480026,27.3382917)
450 setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt= (27.3477228,27.3385711)
451 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3 486967,27.3375987)
452 setPerp t=0.0703125 cPt=(27.3493908,27.3369058) == oppT=0.001332332 fPerpPt=(27. 3493908,27.3369058)
453 setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt =(27.3488674,27.3374283)
454 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2 7.3480026,27.3382917)
455 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3 486967,27.3375987)
456 setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt= (27.3482951,27.3379997)
457 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625 ,0.046875) [46] 25=(0.046875,0.0546875) [46] id=2 2=(0,0.000244141) [37,1] 48=(0 .000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.00 0732422,0.000976563) [33,21,25]
458 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27 .3473086,27.3389848)
459 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2 7.3480026,27.3382917)
460 setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt= (27.3477228,27.3385711)
461 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625 ,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [3 7,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000854492) [33,2 1] 52=(0.000854492,0.000976563) [33]
462 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390 625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [2 1] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
463 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0 390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.0003662 11) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [3 5,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52= (0.000854492,0.000976563) [33]
464 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343 75) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33= (0.0390625,0.046875) [52,46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.00024414 1) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27, 35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0 .000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33]
465 setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpP t=(27.3471505,27.3391427)
466 setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt= (27.3477228,27.3385711)
467 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27 .3473086,27.3389848)
468 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343 75) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33= (0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1 ] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0. 000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610 352,0.000732422) [21] 46=(0.000732422,0.000854492) [39,33,21]
469 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343 75) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0351563) [54,42] 41=(0. 0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.0002441 41,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.0 00610352) [35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.0008544 92) [41,39,33]
470 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343 75) [56,48] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.0 3125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688 ) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.0 00244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.00048828 1) [27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
471 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.01953 13) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0 .0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [ 46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00 012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37, 27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35, 21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
472 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625 ) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.02 34375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54, 42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688 ,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [47,1,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42= (0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0. 000732422,0.000854492) [41,39,33]
473 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171 88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0 195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [ 42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.039062 5,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [49,1] 58=( 0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.00 0366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.00 0610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33]
474 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt= (27.3462676,27.3400246)
475 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=( 27.3466146,27.3396779)
476 setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpP t=(27.3465782,27.3397143)
477 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=( 27.3466146,27.3396779)
478 setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt= (27.3469616,27.3393313)
479 setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpP t=(27.3468644,27.3394285)
480 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=( 27.3466146,27.3396779)
481 setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt= (27.3469616,27.3393313)
482 setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpP t=(27.3468644,27.3394285)
483 setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt= (27.3469616,27.3393313)
484 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27 .3473086,27.3389848)
485 setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpP t=(27.3471505,27.3391427)
486 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171 88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0 195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [ 42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [54] id=2 2=(0,0.000 12207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211 ) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [ 43,35,21] 54=(0.000610352,0.000732422) [41,21]
487 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt= (27.3462676,27.3400246)
488 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=( 27.3466146,27.3396779)
489 setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpP t=(27.3462921,27.3400001)
490 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt= (27.3462676,27.3400246)
491 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=( 27.3466146,27.3396779)
492 setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpP t=(27.3462921,27.3400001)
493 setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpP t=(27.3465782,27.3397143)
494 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171 88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0 195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [ 42] 21=(0.03125,0.0351563) [54,42] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0 .000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.00 0488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.00 0671387) [21]
495 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171 88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0 195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [ 64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.0001220 7,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0 .000488281) [45,27,35] 42=(0.000488281,0.000549316) [43,35] 64=(0.000549316,0.00 0610352) [21,43] 54=(0.000610352,0.000671387) [21]
496 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171 88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0 195313,0.0234375) [66,56] 35=(0.0234375,0.0273438) [66,42] 43=(0.0273438,0.03125 ) [64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.0001 2207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.00036621 1,0.000427246) [45,27] 66=(0.000427246,0.000488281) [35,45] 42=(0.000488281,0.00 0549316) [43,35] 64=(0.000549316,0.000610352) [21,43] 54=(0.000610352,0.00067138 7) [21]
497 setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454 )
498 setPerp t=0.00390625 cPt=(27.3434922,27.3427985) == oppT=7.40178961e-05 fPerpPt= (27.3434922,27.3427985)
499 setPerp t=0.0078125 cPt=(27.3438391,27.3424517) == oppT=0.000148035857 fPerpPt=( 27.3438391,27.3424517)
500 setPerp t=0.01171875 cPt=(27.344186,27.3421049) == oppT=0.000222053882 fPerpPt=( 27.344186,27.3421049)
501 setPerp t=0.015625 cPt=(27.3445329,27.3417581) == oppT=0.000296071971 fPerpPt=(2 7.3445329,27.3417581)
502 setPerp t=0.01953125 cPt=(27.3448799,27.3414113) == oppT=0.000370090126 fPerpPt= (27.3448799,27.3414113)
503 setPerp t=0.0234375 cPt=(27.3452268,27.3410646) == oppT=0.000444108344 fPerpPt=( 27.3452268,27.3410646)
504 setPerp t=0.02734375 cPt=(27.3455737,27.3407179) == oppT=0.000518126627 fPerpPt= (27.3455737,27.3407179)
505 setPerp t=0.03125 cPt=(27.3459207,27.3403712) == oppT=0.000592144975 fPerpPt=(27 .3459207,27.3403712)
506 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt= (27.3462676,27.3400246)
507 setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454 )
508 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt= (27.3462676,27.3400246)
509 id=1 (empty) id=2 (empty)
510 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.29 87461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wtTs[1]=0.03515625 { {27.3462677,27.3400249}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, { 33,25}}} wnTs[1]=0.000666163387
511 SkOpSegment::addT insert t=0.03515625 segID=20 spanID=49
512 SkOpSegment::addT insert t=0.000666163387 segID=6 spanID=50
513 id=1 1=(0,1) [2] id=2 2=(0,0.5) [1]
514 id=1 1=(0,1) [2] id=2 2=(0,0.25) [1]
515 id=1 1=(0,1) [2] id=2 2=(0,0.125) [1]
516 id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1]
517 id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.0625) [1]
518 id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.046875) [1]
519 id=1 1=(0,1) [16,12] id=2 16=(0.015625,0.03125) [1] 12=(0.03125,0.046875) [1]
520 id=1 1=(0,0.5) [16] 3=(0.5,1) [16] id=2 16=(0.015625,0.03125) [3,1]
521 id=1 1=(0,0.5) [18,16] id=2 16=(0.015625,0.0234375) [1] 18=(0.0234375,0.03125) [ 1]
522 id=1 1=(0,0.25) [16] id=2 16=(0.015625,0.0234375) [1]
523 id=1 1=(0,0.25) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.0234375 ) [1]
524 id=1 1=(0,0.125) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.023437 5) [1]
525 setPerp t=0 cPt=(27.4323025,27.2551785) == oppT=0.0189506973 fPerpPt=(27.4323024 ,27.2551784)
526 setPerp t=0.125 cPt=(27.4431369,27.243922) != oppT=0.0213231007 fPerpPt=(27.4435 129,27.2442845)
527 setPerp t=0.01953125 cPt=(27.4350447,27.2525101) != oppT=0.0306377854 fPerpPt=(2 7.4349556,27.2524185)
528 id=1 1=(0,0.125) [16] id=2 16=(0.015625,0.0195313) [1]
529 id=1 (empty) id=2 (empty)
530 debugShowQuadIntersection no intersect {{{27.4323025,27.2551785}, {27.4755878,27 .2101307}, {27.5197105,27.165432}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
531 debugShowQuadIntersection no intersect {{{27.5197105,27.165432}, {27.541851,27.1 430035}, {27.5638676,27.1209965}}} {{{27.3431454,27.3431454}, {29.6862907,25}, { 33,25}}}
532 id=1 (empty) id=2 (empty)
533 debugShowQuadIntersection no intersect {{{27.5638676,27.1209965}, {27.5855064,27 .0986347}, {27.6075668,27.0761414}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
534 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1]
535 id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3]
536 id=1 1=(0,0.5) [2] id=2 2=(0,0.5) [1]
537 id=1 1=(0,0.5) [8,2] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1]
538 id=1 1=(0,0.25) [2] id=2 2=(0,0.25) [1]
539 id=1 1=(0,0.25) [10,2] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1]
540 id=1 (empty) id=2 (empty)
541 debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24 .7103367}, {33.2413864,24.6781349}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}}
542 debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24 .7103367}, {33.2413864,24.6781349}}} {{{33,25}, {36.3137093,25}, {38.6568527,27. 3431454}}}
543 debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6 568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.313 7093,41}, {33,41}}}
544 debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6 568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33 }}}
545 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527 }}}
546 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6 568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36. 3137093}, {25,33}}}
547 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454 }}}
548 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3 431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.686 2907,25}, {33,25}}}
549 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454 }}}
550 debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3 431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29. 6862907}, {41,33}}}
551 SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [11] (27.3431454,27.3431454) tEnd=0.000666163387 newWindSum=? newOppSum=? oppSum=? wi ndSum=? windValue=0 oppValue=0
552 SkOpSegment::markDone id=5 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [9] ( 25,33) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
553 SkOpSegment::markDone id=4 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [7] ( 27.3431454,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windVa lue=0 oppValue=0
554 SkOpSegment::markDone id=3 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [5] ( 33,41) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0
555 SkOpSegment::markDone id=2 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [3] ( 38.6568527,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windVa lue=0 oppValue=0
556 SkOpSegment::sortAngles [15] tStart=1 [30]
557 SkOpAngle::after [15/1] 4/5 tStart=1 tEnd=0 < [16/2] 21/17 tStart=0 tEnd=1 < [1/ 13] 1/5 tStart=1 tEnd=0 T 5
558 SkOpAngle::afterPart {{{38.6568527,38.6568527}, {38.7196693,38.5940361}, {38.780 9143,38.5304031}}} id=15
559 SkOpAngle::afterPart {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} id=16
560 SkOpAngle::afterPart {{{38.6568527,38.6568527}, {41,36.3137093}, {41,33}}} id=1
561 SkOpSegment::sortAngles [16] tStart=0 [31]
562 SkOpSegment::sortAngles [16] tStart=1 [32]
563 SkOpSegment::sortAngles [17] tStart=0 [33]
564 SkOpSegment::sortAngles [17] tStart=1 [34]
565 SkOpSegment::sortAngles [18] tStart=0 [35]
566 SkOpSegment::sortAngles [18] tStart=1 [36]
567 SkOpSegment::sortAngles [19] tStart=0 [37]
568 SkOpSegment::sortAngles [19] tStart=1 [38]
569 SkOpSegment::sortAngles [20] tStart=0 [39]
570 SkOpSegment::sortAngles [20] tStart=0.03515625 [49]
571 SkOpAngle::after [20/11] 17/17 tStart=0.03515625 tEnd=0 < [6/14] 1/1 tStart=0.00 0666163387 tEnd=1 < [20/12] 1/1 tStart=0.03515625 tEnd=1 F 11
572 SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3447063,27.3415846}, {27.343 1454,27.3431454}}} id=20
573 SkOpAngle::afterPart {{{27.3462677,27.3400249}, {29.6884986,25}, {33,25}}} id=6
574 SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3891352,27.2971979}, {27.432 3025,27.2551785}}} id=20
575 SkOpSegment::sortAngles [1] tStart=1 [2]
576 SkOpSegment::sortAngles [6] tStart=0.000666163387 [50]
577 SkOpCoincidence::debugShowCoincidence - id=20 t=0 tEnd=0.03515625
578 SkOpCoincidence::debugShowCoincidence + id=6 t=0 tEnd=0.000666163387
579 SkOpCoincidence::debugShowCoincidence - id=19 t=0 tEnd=1
580 SkOpCoincidence::debugShowCoincidence + id=5 t=0 tEnd=1
581 SkOpCoincidence::debugShowCoincidence - id=18 t=0 tEnd=1
582 SkOpCoincidence::debugShowCoincidence + id=4 t=0 tEnd=1
583 SkOpCoincidence::debugShowCoincidence - id=17 t=0 tEnd=1
584 SkOpCoincidence::debugShowCoincidence + id=3 t=0 tEnd=1
585 SkOpCoincidence::debugShowCoincidence - id=16 t=0 tEnd=1
586 SkOpCoincidence::debugShowCoincidence + id=2 t=0 tEnd=1
587 SkOpSegment::debugShowActiveSpans id=9 (33.2413864,24.6781349 36.5549393,24.6459 332 38.920742,26.966198) t=0 (33.2413864,24.6781349) tEnd=1 windSum=? windValue= 1
588 SkOpSegment::debugShowActiveSpans id=10 (38.920742,26.966198 41.2865486,29.28646 28 41.3187523,32.6000175) t=0 (38.920742,26.966198) tEnd=1 windSum=? windValue=1
589 SkOpSegment::debugShowActiveSpans id=11 (41.3187523,32.6000175 41.3509521,35.913 5704 39.0306854,38.2793732) t=0 (41.3187523,32.6000175) tEnd=1 windSum=? windVal ue=1
590 SkOpSegment::debugShowActiveSpans id=12 (39.0306854,38.2793732 38.9995995,38.311 0695 38.9681816,38.3424988) t=0 (39.0306854,38.2793732) tEnd=1 windSum=? windVal ue=1
591 SkOpSegment::debugShowActiveSpans id=13 (38.9681816,38.3424988 38.9374619,38.374 2142 38.9064751,38.4056053) t=0 (38.9681816,38.3424988) tEnd=1 windSum=? windVal ue=1
592 SkOpSegment::debugShowActiveSpans id=14 (38.9064751,38.4056053 38.8441086,38.468 7881 38.7809143,38.5304031) t=0 (38.9064751,38.4056053) tEnd=1 windSum=? windVal ue=1
593 SkOpSegment::debugShowActiveSpans id=15 (38.7809143,38.5304031 38.7196693,38.594 0361 38.6568527,38.6568527) t=0 (38.7809143,38.5304031) tEnd=1 windSum=? windVal ue=1
594 SkOpSegment::debugShowActiveSpans id=16 (38.6568527,38.6568527 36.3137093,41 33, 41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=2
595 SkOpSegment::debugShowActiveSpans id=17 (33,41 29.6862907,41 27.3431454,38.65685 27) t=0 (33,41) tEnd=1 windSum=? windValue=2
596 SkOpSegment::debugShowActiveSpans id=18 (27.3431454,38.6568527 25,36.3137093 25, 33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=2
597 SkOpSegment::debugShowActiveSpans id=19 (25,33 25,29.6862907 27.3431454,27.34314 54) t=0 (25,33) tEnd=1 windSum=? windValue=2
598 SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.298 7461 27.4323025,27.2551785) t=0 (27.3431454,27.3431454) tEnd=0.03515625 windSum= ? windValue=2
599 SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.298 7461 27.4323025,27.2551785) t=0.03515625 (27.3462677,27.3400249) tEnd=1 windSum= ? windValue=1
600 SkOpSegment::debugShowActiveSpans id=21 (27.4323025,27.2551785 27.4755878,27.210 1307 27.5197105,27.165432) t=0 (27.4323025,27.2551785) tEnd=1 windSum=? windValu e=1
601 SkOpSegment::debugShowActiveSpans id=22 (27.5197105,27.165432 27.541851,27.14300 35 27.5638676,27.1209965) t=0 (27.5197105,27.165432) tEnd=1 windSum=? windValue= 1
602 SkOpSegment::debugShowActiveSpans id=23 (27.5638676,27.1209965 27.5855064,27.098 6347 27.6075668,27.0761414) t=0 (27.5638676,27.1209965) tEnd=1 windSum=? windVal ue=1
603 SkOpSegment::debugShowActiveSpans id=24 (27.6075668,27.0761414 29.9278316,24.710 3367 33.2413864,24.6781349) t=0 (27.6075668,27.0761414) tEnd=1 windSum=? windVal ue=1
604 SkOpSegment::debugShowActiveSpans id=1 (41,33 41,36.3137093 38.6568527,38.656852 7) t=0 (41,33) tEnd=1 windSum=? windValue=1
605 SkOpSegment::debugShowActiveSpans id=6 (27.3431454,27.3431454 29.6862907,25 33,2 5) t=0.000666163387 (27.3462677,27.3400249) tEnd=1 windSum=? windValue=1
606 SkOpSegment::debugShowActiveSpans id=7 (33,25 36.3137093,25 38.6568527,27.343145 4) t=0 (33,25) tEnd=1 windSum=? windValue=1
607 SkOpSegment::debugShowActiveSpans id=8 (38.6568527,27.3431454 41,29.6862907 41,3 3) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
608 SkOpSpan::sortableTop dir=kTop seg=9 t=0.5 pt=(36.3180008,25.2340508)
609 SkOpSpan::sortableTop [0] valid=1 operand=0 span=17 ccw=1 seg=9 {{{33.2413864f, 24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26.966198f}}} t=0.5 pt=(3 6.3180008,25.2340508) slope=(2.83967781,1.14403152)
610 SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.92 0742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
611 SkOpSegment::markWinding id=10 (38.920742,26.966198 41.2865486,29.2864628 41.318 7523,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
612 SkOpSegment::markWinding id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0 306854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppS um=0 oppSum=? windSum=? windValue=1 oppValue=0
613 SkOpSegment::markWinding id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9 681816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppS um=0 oppSum=? windSum=? windValue=1 oppValue=0
614 SkOpSegment::markWinding id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9 064751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppS um=0 oppSum=? windSum=? windValue=1 oppValue=0
615 SkOpSegment::markWinding id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7 809143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppS um=0 oppSum=? windSum=? windValue=1 oppValue=0
616 SkOpSegment::markWinding id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6 568527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppS um=0 oppSum=? windSum=? windValue=1 oppValue=0
617 SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.92 0742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
618 SkOpSegment::markWinding id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2 413864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppS um=0 oppSum=? windSum=? windValue=1 oppValue=0
619 SkOpSegment::markWinding id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6 075668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppS um=0 oppSum=? windSum=? windValue=1 oppValue=0
620 SkOpSegment::markWinding id=22 (27.5197105,27.165432 27.541851,27.1430035 27.563 8676,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=? windSum=? windValue=1 oppValue=0
621 SkOpSegment::markWinding id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5 197105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSu m=0 oppSum=? windSum=? windValue=1 oppValue=0
622 SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4 323025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=- 1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
623 SkOpSegment::findNextWinding simple
624 SkOpSegment::markDone id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.92074 2,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 o ppSum=0 windSum=-1 windValue=1 oppValue=0
625 bridgeWinding current id=9 from=(38.920742,26.966198) to=(33.2413864,24.6781349)
626 path.moveTo(38.920742,26.966198);
627 path.quadTo(36.5549393,24.6459332, 33.2413864,24.6781349);
628 SkOpSegment::findNextWinding simple
629 SkOpSegment::markDone id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413 864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
630 bridgeWinding current id=24 from=(33.2413864,24.6781349) to=(27.6075668,27.07614 14)
631 path.quadTo(29.9278316,24.7103367, 27.6075668,27.0761414);
632 SkOpSegment::findNextWinding simple
633 SkOpSegment::markDone id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075 668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
634 bridgeWinding current id=23 from=(27.6075668,27.0761414) to=(27.5638676,27.12099 65)
635 path.quadTo(27.5855064,27.0986347, 27.5638676,27.1209965);
636 SkOpSegment::findNextWinding simple
637 SkOpSegment::markDone id=22 (27.5197105,27.165432 27.541851,27.1430035 27.563867 6,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum=0 o ppSum=0 windSum=-1 windValue=1 oppValue=0
638 bridgeWinding current id=22 from=(27.5638676,27.1209965) to=(27.5197105,27.16543 2)
639 path.quadTo(27.541851,27.1430035, 27.5197105,27.165432);
640 SkOpSegment::findNextWinding simple
641 SkOpSegment::markDone id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197 105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
642 bridgeWinding current id=21 from=(27.5197105,27.165432) to=(27.4323025,27.255178 5)
643 path.quadTo(27.4755878,27.2101307, 27.4323025,27.2551785);
644 SkOpSegment::markWinding id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.00 0666163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 windSum=? windValue= 1
645 SkOpSegment::markWinding id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [1 3] (33,25) tEnd=1 newWindSum=1 windSum=? windValue=1
646 SkOpSegment::markWinding id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [1 5] (38.6568527,27.3431454) tEnd=1 newWindSum=1 windSum=? windValue=1
647 SkOpSegment::markWinding id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1 ] (41,33) tEnd=1 newWindSum=1 windSum=? windValue=1
648 SkOpSegment::markAngle last seg=1 span=2
649 SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4 323025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1 windSum=? windValue=2
650 SkOpSegment::nextChase mismatched signs
651 SkOpSegment::markWinding id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [ 37] (25,33) tEnd=1 newWindSum=1 windSum=? windValue=2
652 SkOpSegment::nextChase mismatched signs
653 SkOpSegment::markWinding id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [ 35] (27.3431454,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2
654 SkOpSegment::nextChase mismatched signs
655 SkOpSegment::markWinding id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [ 33] (33,41) tEnd=1 newWindSum=1 windSum=? windValue=2
656 SkOpSegment::nextChase mismatched signs
657 SkOpSegment::markWinding id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [ 31] (38.6568527,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2
658 SkOpSegment::markAngle last seg=16 span=31 windSum=1
659 SkOpSegment::findNextWinding
660 SkOpAngle::dumpOne [20/12] next=6/14 sect=1/1 s=0.03515625 [49] e=1 [40] sgn=-1 windVal=1 windSum=-1 oppVal=0 oppSum=0
661 SkOpAngle::dumpOne [6/14] next=20/11 sect=1/1 s=0.000666163387 [50] e=1 [12] sg n=-1 windVal=1 windSum=1
662 SkOpAngle::dumpOne [20/11] next=20/12 sect=17/17 s=0.03515625 [49] e=0 [39] sgn =1 windVal=2 windSum=1
663 SkOpSegment::findNextWinding chase.append segment=1 span=2
664 SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323 025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1 ne wOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0
665 SkOpSegment::nextChase mismatched signs
666 SkOpSegment::markDone id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [37] (25,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue =0
667 SkOpSegment::nextChase mismatched signs
668 SkOpSegment::markDone id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [35] (27.3431454,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 wind Value=2 oppValue=0
669 SkOpSegment::nextChase mismatched signs
670 SkOpSegment::markDone id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [33] (33,41) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue =0
671 SkOpSegment::nextChase mismatched signs
672 SkOpSegment::markDone id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [31] (38.6568527,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 wind Value=2 oppValue=0
673 SkOpSegment::findNextWinding chase.append segment=16 span=31 windSum=1
674 SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323 025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=-1 n ewOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
675 SkOpSegment::findNextWinding from:[20] to:[6] start=5584652 end=5579668
676 bridgeWinding current id=20 from=(27.4323025,27.2551785) to=(27.3462677,27.34002 49)
677 path.quadTo(27.3891354,27.2971973, 27.3462677,27.3400249);
678 SkOpSegment::findNextWinding simple
679 SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.00066 6163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 newOppSum=? oppSum=? wi ndSum=1 windValue=1 oppValue=0
680 bridgeWinding current id=6 from=(27.3462677,27.3400249) to=(33,25)
681 path.quadTo(29.6884995,25, 33,25);
682 SkOpSegment::findNextWinding simple
683 SkOpSegment::markDone id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [13] (33,25) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue= 0
684 bridgeWinding current id=7 from=(33,25) to=(38.6568527,27.3431454)
685 path.quadTo(36.3137093,25, 38.6568527,27.3431454);
686 SkOpSegment::findNextWinding simple
687 SkOpSegment::markDone id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [15] (38.6568527,27.3431454) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windV alue=1 oppValue=0
688 bridgeWinding current id=8 from=(38.6568527,27.3431454) to=(41,33)
689 path.quadTo(41,29.6862907, 41,33);
690 SkOpSegment::findNextWinding
691 SkOpAngle::dumpOne [1/13] next=15/1 sect=1/5 s=1 [2] e=0 [1] sgn=1 windVal=1 wi ndSum=1
692 SkOpAngle::dumpOne [15/1] next=16/2 sect=4/5 s=1 [30] e=0 [29] sgn=1 windVal=1 windSum=-1 oppVal=0 oppSum=0
693 SkOpAngle::dumpOne [16/2] next=1/13 sect=21/17 s=0 [31] e=1 [32] sgn=-1 windVal =2 windSum=1 done
694 SkOpSegment::markDone id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1] ( 41,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0
695 SkOpSegment::findNextWinding from:[1] to:[15] start=5581892 end=5581788
696 bridgeWinding current id=1 from=(41,33) to=(38.6568527,38.6568527)
697 path.quadTo(41,36.3137093, 38.6568527,38.6568527);
698 SkOpSegment::findNextWinding simple
699 SkOpSegment::markDone id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568 527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
700 bridgeWinding current id=15 from=(38.6568527,38.6568527) to=(38.7809143,38.53040 31)
701 path.quadTo(38.7196693,38.5940361, 38.7809143,38.5304031);
702 SkOpSegment::findNextWinding simple
703 SkOpSegment::markDone id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809 143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
704 bridgeWinding current id=14 from=(38.7809143,38.5304031) to=(38.9064751,38.40560 53)
705 path.quadTo(38.8441086,38.4687881, 38.9064751,38.4056053);
706 SkOpSegment::findNextWinding simple
707 SkOpSegment::markDone id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064 751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
708 bridgeWinding current id=13 from=(38.9064751,38.4056053) to=(38.9681816,38.34249 88)
709 path.quadTo(38.9374619,38.3742142, 38.9681816,38.3424988);
710 SkOpSegment::findNextWinding simple
711 SkOpSegment::markDone id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681 816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
712 bridgeWinding current id=12 from=(38.9681816,38.3424988) to=(39.0306854,38.27937 32)
713 path.quadTo(38.9995995,38.3110695, 39.0306854,38.2793732);
714 SkOpSegment::findNextWinding simple
715 SkOpSegment::markDone id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306 854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppSum= 0 oppSum=0 windSum=-1 windValue=1 oppValue=0
716 bridgeWinding current id=11 from=(39.0306854,38.2793732) to=(41.3187523,32.60001 75)
717 path.quadTo(41.3509521,35.9135704, 41.3187523,32.6000175);
718 SkOpSegment::findNextWinding simple
719 SkOpSegment::markDone id=10 (38.920742,26.966198 41.2865486,29.2864628 41.318752 3,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0 op pSum=0 windSum=-1 windValue=1 oppValue=0
720 bridgeWinding current id=10 from=(41.3187523,32.6000175) to=(38.920742,26.966198 )
721 path.quadTo(41.2865486,29.2864628, 38.920742,26.966198);
722 path.close();
723 </div>
724
725 <div id="fuzz763_4713parts">
726 seg=1 {{{-33.1326447f, -40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293 f, -38.5680733f}}}
727 seg=2 {{{-27.4682293f, -38.5680733f}, {-25.117506f, -36.2325325f}, {-25.1067715f , -32.9188423f}}}
728 seg=3 {{{-25.1067715f, -32.9188423f}, {-25.0960369f, -29.6051483f}, {-27.4315796 f, -27.254425f}}}
729 seg=4 {{{-27.4315796f, -27.254425f}, {-29.7671204f, -24.9036999f}, {-33.0808144f , -24.8929653f}}}
730 seg=5 {{{-33.0808144f, -24.8929653f}, {-36.3945045f, -24.8822308f}, {-38.7452278 f, -27.2177753f}}}
731 seg=6 {{{-38.7452278f, -27.2177753f}, {-41.0959549f, -29.5533161f}, {-41.1066895 f, -32.867012f}}}
732 seg=7 {{{-41.1066895f, -32.867012f}, {-41.117424f, -36.1807022f}, {-38.7818794f, -38.5314217f}}}
733 seg=8 {{{-38.7818794f, -38.5314217f}, {-36.4463348f, -40.8821487f}, {-33.1326447 f, -40.8928833f}}}
734 op union
735 seg=9 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}}
736 seg=10 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}}
737 seg=11 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}}
738 seg=12 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}}
739 seg=13 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}}
740 seg=14 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}}
741 seg=15 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}}
742 seg=16 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}}
743 debugShowQuadIntersection wtTs[0]=1 {{{-33.1326447,-40.8928833}, {-29.8189526,-4 0.9036179}, {-27.4682293,-38.5680733}}} {{-27.4682293,-38.5680733}} wnTs[0]=0 {{ {-27.4682293,-38.5680733}, {-25.117506,-36.2325325}, {-25.1067715,-32.9188423}}}
744 debugShowQuadIntersection wtTs[0]=0 {{{-33.1326447,-40.8928833}, {-29.8189526,-4 0.9036179}, {-27.4682293,-38.5680733}}} {{-33.1326447,-40.8928833}} wnTs[0]=1 {{ {-38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}} }
745 debugShowQuadIntersection wtTs[0]=1 {{{-27.4682293,-38.5680733}, {-25.117506,-36 .2325325}, {-25.1067715,-32.9188423}}} {{-25.1067715,-32.9188423}} wnTs[0]=0 {{{ -25.1067715,-32.9188423}, {-25.0960369,-29.6051483}, {-27.4315796,-27.254425}}}
746 debugShowQuadIntersection wtTs[0]=1 {{{-25.1067715,-32.9188423}, {-25.0960369,-2 9.6051483}, {-27.4315796,-27.254425}}} {{-27.4315796,-27.254425}} wnTs[0]=0 {{{- 27.4315796,-27.254425}, {-29.7671204,-24.9036999}, {-33.0808144,-24.8929653}}}
747 debugShowQuadIntersection wtTs[0]=1 {{{-27.4315796,-27.254425}, {-29.7671204,-24 .9036999}, {-33.0808144,-24.8929653}}} {{-33.0808144,-24.8929653}} wnTs[0]=0 {{{ -33.0808144,-24.8929653}, {-36.3945045,-24.8822308}, {-38.7452278,-27.2177753}}}
748 debugShowQuadIntersection wtTs[0]=1 {{{-33.0808144,-24.8929653}, {-36.3945045,-2 4.8822308}, {-38.7452278,-27.2177753}}} {{-38.7452278,-27.2177753}} wnTs[0]=0 {{ {-38.7452278,-27.2177753}, {-41.0959549,-29.5533161}, {-41.1066895,-32.867012}}}
749 debugShowQuadIntersection wtTs[0]=1 {{{-38.7452278,-27.2177753}, {-41.0959549,-2 9.5533161}, {-41.1066895,-32.867012}}} {{-41.1066895,-32.867012}} wnTs[0]=0 {{{- 41.1066895,-32.867012}, {-41.117424,-36.1807022}, {-38.7818794,-38.5314217}}}
750 debugShowQuadIntersection wtTs[0]=1 {{{-41.1066895,-32.867012}, {-41.117424,-36. 1807022}, {-38.7818794,-38.5314217}}} {{-38.7818794,-38.5314217}} wnTs[0]=0 {{{- 38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}}}
751 debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6 568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.313 7093,41}, {33,41}}}
752 debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6 568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33 }}}
753 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527 }}}
754 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6 568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36. 3137093}, {25,33}}}
755 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454 }}}
756 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3 431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.686 2907,25}, {33,25}}}
757 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25}, {33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454 }}}
758 debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3 431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29. 6862907}, {41,33}}}
759 SkOpSegment::debugShowActiveSpans id=1 (-33.1326447,-40.8928833 -29.8189526,-40. 9036179 -27.4682293,-38.5680733) t=0 (-33.1326447,-40.8928833) tEnd=1 windSum=? windValue=1
760 SkOpSegment::debugShowActiveSpans id=2 (-27.4682293,-38.5680733 -25.117506,-36.2 325325 -25.1067715,-32.9188423) t=0 (-27.4682293,-38.5680733) tEnd=1 windSum=? w indValue=1
761 SkOpSegment::debugShowActiveSpans id=3 (-25.1067715,-32.9188423 -25.0960369,-29. 6051483 -27.4315796,-27.254425) t=0 (-25.1067715,-32.9188423) tEnd=1 windSum=? w indValue=1
762 SkOpSegment::debugShowActiveSpans id=4 (-27.4315796,-27.254425 -29.7671204,-24.9 036999 -33.0808144,-24.8929653) t=0 (-27.4315796,-27.254425) tEnd=1 windSum=? wi ndValue=1
763 SkOpSegment::debugShowActiveSpans id=5 (-33.0808144,-24.8929653 -36.3945045,-24. 8822308 -38.7452278,-27.2177753) t=0 (-33.0808144,-24.8929653) tEnd=1 windSum=? windValue=1
764 SkOpSegment::debugShowActiveSpans id=6 (-38.7452278,-27.2177753 -41.0959549,-29. 5533161 -41.1066895,-32.867012) t=0 (-38.7452278,-27.2177753) tEnd=1 windSum=? w indValue=1
765 SkOpSegment::debugShowActiveSpans id=7 (-41.1066895,-32.867012 -41.117424,-36.18 07022 -38.7818794,-38.5314217) t=0 (-41.1066895,-32.867012) tEnd=1 windSum=? win dValue=1
766 SkOpSegment::debugShowActiveSpans id=8 (-38.7818794,-38.5314217 -36.4463348,-40. 8821487 -33.1326447,-40.8928833) t=0 (-38.7818794,-38.5314217) tEnd=1 windSum=? windValue=1
767 SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.656852 7) t=0 (41,33) tEnd=1 windSum=? windValue=1
768 SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33, 41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1
769 SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.65685 27) t=0 (33,41) tEnd=1 windSum=? windValue=1
770 SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25, 33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1
771 SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.34314 54) t=0 (25,33) tEnd=1 windSum=? windValue=1
772 SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33, 25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1
773 SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.34314 54) t=0 (33,25) tEnd=1 windSum=? windValue=1
774 SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41, 33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
775 SkOpSpan::sortableTop dir=kTop seg=1 t=0.5 pt=(-30.0596943,-40.3170471)
776 SkOpSpan::sortableTop [0] valid=1 operand=0 span=1 ccw=1 seg=1 {{{-33.1326447f, -40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293f, -38.5680733f}}} t=0. 5 pt=(-30.0596943,-40.3170471) slope=(2.83220768,1.16240501)
777 SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 - 27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 n ewOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
778 SkOpSegment::markWinding id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -2 5.1067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 ne wOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
779 SkOpSegment::markWinding id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 - 27.4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 ne wOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
780 SkOpSegment::markWinding id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -3 3.0808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 new OppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
781 SkOpSegment::markWinding id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 - 38.7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 n ewOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
782 SkOpSegment::markWinding id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 - 41.1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 n ewOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
783 SkOpSegment::markWinding id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38 .7818794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 new OppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
784 SkOpSegment::markWinding id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 - 33.1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
785 SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 - 27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 n ewOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
786 SkOpSegment::activeOp id=1 t=1 tEnd=0 op=union miFrom=0 miTo=1 suFrom=0 suTo=0 r esult=1
787 SkOpSegment::findNextOp simple
788 SkOpSegment::markDone id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27. 4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newO ppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
789 bridgeOp current id=1 from=(-27.4682293,-38.5680733) to=(-33.1326447,-40.8928833 )
790 path.moveTo(-27.4682293,-38.5680733);
791 path.quadTo(-29.8189526,-40.9036179, -33.1326447,-40.8928833);
792 SkOpSegment::findNextOp simple
793 SkOpSegment::markDone id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33. 1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1 new OppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
794 bridgeOp current id=8 from=(-33.1326447,-40.8928833) to=(-38.7818794,-38.5314217 )
795 path.quadTo(-36.4463348,-40.8821487, -38.7818794,-38.5314217);
796 SkOpSegment::findNextOp simple
797 SkOpSegment::markDone id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.78 18794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 newOpp Sum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
798 bridgeOp current id=7 from=(-38.7818794,-38.5314217) to=(-41.1066895,-32.867012)
799 path.quadTo(-41.117424,-36.1807022, -41.1066895,-32.867012);
800 SkOpSegment::findNextOp simple
801 SkOpSegment::markDone id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41. 1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 newO ppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
802 bridgeOp current id=6 from=(-41.1066895,-32.867012) to=(-38.7452278,-27.2177753)
803 path.quadTo(-41.0959549,-29.5533161, -38.7452278,-27.2177753);
804 SkOpSegment::findNextOp simple
805 SkOpSegment::markDone id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38. 7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 newO ppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
806 bridgeOp current id=5 from=(-38.7452278,-27.2177753) to=(-33.0808144,-24.8929653 )
807 path.quadTo(-36.3945045,-24.8822308, -33.0808144,-24.8929653);
808 SkOpSegment::findNextOp simple
809 SkOpSegment::markDone id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0 808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 newOpp Sum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
810 bridgeOp current id=4 from=(-33.0808144,-24.8929653) to=(-27.4315796,-27.254425)
811 path.quadTo(-29.7671204,-24.9036999, -27.4315796,-27.254425);
812 SkOpSegment::findNextOp simple
813 SkOpSegment::markDone id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27. 4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 newOp pSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
814 bridgeOp current id=3 from=(-27.4315796,-27.254425) to=(-25.1067715,-32.9188423)
815 path.quadTo(-25.0960369,-29.6051483, -25.1067715,-32.9188423);
816 SkOpSegment::findNextOp simple
817 SkOpSegment::markDone id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1 067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 newOp pSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
818 bridgeOp current id=2 from=(-25.1067715,-32.9188423) to=(-27.4682293,-38.5680733 )
819 path.quadTo(-25.117506,-36.2325325, -27.4682293,-38.5680733);
820 path.close();
821 SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.656852 7) t=0 (41,33) tEnd=1 windSum=? windValue=1
822 SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33, 41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1
823 SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.65685 27) t=0 (33,41) tEnd=1 windSum=? windValue=1
824 SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25, 33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1
825 SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.34314 54) t=0 (25,33) tEnd=1 windSum=? windValue=1
826 SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33, 25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1
827 SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.34314 54) t=0 (33,25) tEnd=1 windSum=? windValue=1
828 SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41, 33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1
829 SkOpSpan::sortableTop dir=kLeft seg=9 t=0.5 pt=(40.4142151,36.0710678)
830 SkOpSpan::sortableTop [0] valid=1 operand=1 span=23 ccw=1 seg=12 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}} t=0.5 pt=(25.5857868,36.0710678) sl ope=(-1.17157269,-2.82842636)
831 SkOpSpan::sortableTop [1] valid=1 operand=1 span=17 ccw=0 seg=9 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}} t=0.5 pt=(40.4142151,36.0710678) slo pe=(-1.17157364,2.82842636)
832 SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [ 23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
833 SkOpSegment::markWinding id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [ 25] (25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppV alue=0
834 SkOpSegment::markWinding id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [ 27] (27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
835 SkOpSegment::markWinding id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [ 29] (33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppV alue=0
836 SkOpSegment::markWinding id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [ 31] (38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
837 SkOpSegment::markWinding id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1 7] (41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppVa lue=0
838 SkOpSegment::markWinding id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [ 19] (38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0
839 SkOpSegment::markWinding id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [ 21] (33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppV alue=0
840 SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [ 23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0
841 SkOpSegment::activeOp id=9 t=1 tEnd=0 op=union miFrom=0 miTo=0 suFrom=0 suTo=1 r esult=1
842 SkOpSegment::findNextOp simple
843 SkOpSegment::markDone id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [17] (41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValu e=0
844 bridgeOp current id=9 from=(38.6568527,38.6568527) to=(41,33)
845 path.moveTo(38.6568527,38.6568527);
846 path.quadTo(41,36.3137093, 41,33);
847 SkOpSegment::findNextOp simple
848 SkOpSegment::markDone id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [31] (38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi ndValue=1 oppValue=0
849 bridgeOp current id=16 from=(41,33) to=(38.6568527,27.3431454)
850 path.quadTo(41,29.6862907, 38.6568527,27.3431454);
851 SkOpSegment::findNextOp simple
852 SkOpSegment::markDone id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [29] (33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppVal ue=0
853 bridgeOp current id=15 from=(38.6568527,27.3431454) to=(33,25)
854 path.quadTo(36.3137093,25, 33,25);
855 SkOpSegment::findNextOp simple
856 SkOpSegment::markDone id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [27] (27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi ndValue=1 oppValue=0
857 bridgeOp current id=14 from=(33,25) to=(27.3431454,27.3431454)
858 path.quadTo(29.6862907,25, 27.3431454,27.3431454);
859 SkOpSegment::findNextOp simple
860 SkOpSegment::markDone id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [25] (25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppVal ue=0
861 bridgeOp current id=13 from=(27.3431454,27.3431454) to=(25,33)
862 path.quadTo(25,29.6862907, 25,33);
863 SkOpSegment::findNextOp simple
864 SkOpSegment::markDone id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi ndValue=1 oppValue=0
865 bridgeOp current id=12 from=(25,33) to=(27.3431454,38.6568527)
866 path.quadTo(25,36.3137093, 27.3431454,38.6568527);
867 SkOpSegment::findNextOp simple
868 SkOpSegment::markDone id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [21] (33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppVal ue=0
869 bridgeOp current id=11 from=(27.3431454,38.6568527) to=(33,41)
870 path.quadTo(29.6862907,41, 33,41);
871 SkOpSegment::findNextOp simple
872 SkOpSegment::markDone id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [19] (38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi ndValue=1 oppValue=0
873 bridgeOp current id=10 from=(33,41) to=(38.6568527,38.6568527)
874 path.quadTo(36.3137093,41, 38.6568527,38.6568527);
136 path.close(); 875 path.close();
137 </div> 876 </div>
138 877
139 </div> 878 </div>
140 879
141 <script type="text/javascript"> 880 <script type="text/javascript">
142 881
143 var testDivs = [ 882 var testDivs = [
144 reduced, 883 fuzz763_4713_b,
884 fuzz763_4713parts,
145 ]; 885 ];
146 886
147 var decimal_places = 3; // make this 3 to show more precision 887 var decimal_places = 3; // make this 3 to show more precision
148 888
149 var tests = []; 889 var tests = [];
150 var testLines = []; 890 var testLines = [];
151 var testTitles = []; 891 var testTitles = [];
152 var testIndex = 0; 892 var testIndex = 0;
153 var ctx; 893 var ctx;
154 894
(...skipping 3795 matching lines...) Expand 10 before | Expand all | Expand 10 after
3950 </script> 4690 </script>
3951 </head> 4691 </head>
3952 4692
3953 <body onLoad="start();"> 4693 <body onLoad="start();">
3954 <canvas id="canvas" width="750" height="500" 4694 <canvas id="canvas" width="750" height="500"
3955 onmousemove="handleMouseOver()" 4695 onmousemove="handleMouseOver()"
3956 onclick="handleMouseClick()" 4696 onclick="handleMouseClick()"
3957 ></canvas > 4697 ></canvas >
3958 </body> 4698 </body>
3959 </html> 4699 </html>
OLDNEW
« no previous file with comments | « tests/PathOpsSimplifyTest.cpp ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698