OLD | NEW |
1 <html> | 1 <html> |
2 <head> | 2 <head> |
3 <div height="0" hidden="true"> | 3 <div height="0" hidden="true"> |
4 | 4 |
5 Skia UnitTests: --match PathOpsSkp$ --resourcePath resources\ SK_DEBUG | 5 Skia UnitTests: --match Simplify$ --resourcePath resources\ SK_DEBUG |
6 | 6 |
7 <div id="reduced"> | 7 <div id="fuzz763_4713_b"> |
8 seg=1 {{{{377.218994f, -141.981003f}, {40.578701f, -201.339996f}, {23.1854992f,
-102.697998f}}}, 0.707107008f} | 8 seg=1 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}} |
9 seg=2 {{{23.1854992f, -102.697998f}, {377.218994f, -141.981003f}}} | 9 seg=2 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}} |
10 seg=3 {{{{306.588013f, -227.983994f}, {212.464996f, -262.242004f}, {95.5512009f,
58.9763985f}}}, 0.707107008f} | 10 seg=3 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}} |
11 seg=4 {{{95.5512009f, 58.9763985f}, {306.588013f, -227.983994f}}} | 11 seg=4 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}} |
12 debugShowConicLineIntersection wtTs[0]=0 {{{{306.588013,-227.983994}, {212.46499
6,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{306.588013,-227.983994
}} wtTs[1]=1 {{95.5512009,58.9763985}} wnTs[0]=1 {{{95.5512009,58.9763985}, {306
.588013,-227.983994}}} wnTs[1]=0 | 12 seg=5 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}} |
13 debugShowConicIntersection no intersect {{{{306.588013,-227.983994}, {212.464996
,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{{{377.218994,-141.98100
3}, {40.578701,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} | 13 seg=6 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}} |
14 debugShowConicLineIntersection wtTs[0]=0.602960898 {{{{306.588013,-227.983994},
{212.464996,-262.242004}, {95.5512009,58.9763985}}}, 0.707107008} {{180.284241,-
120.129433}} wnTs[0]=0.44374 {{{23.1854992,-102.697998}, {377.218994,-141.981003
}}} | 14 seg=7 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}} |
15 addT insert t=0.602960898 segID=3 spanID=9 | 15 seg=8 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}} |
16 addT insert t=0.443739761 segID=2 spanID=10 | 16 seg=9 {{{33.2413864f, 24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26.
966198f}}} |
17 debugShowConicLineIntersection wtTs[0]=0.245788566 {{{{377.218994,-141.981003},
{40.578701,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} {{254.22023,-1
56.776138}} wnTs[0]=0.751855 {{{95.5512009,58.9763985}, {306.588013,-227.983994}
}} | 17 seg=10 {{{38.920742f, 26.966198f}, {41.2865486f, 29.2864628f}, {41.3187523f, 32.
6000175f}}} |
18 addT insert t=0.751854746 segID=4 spanID=11 | 18 seg=11 {{{41.3187523f, 32.6000175f}, {41.3509521f, 35.9135704f}, {39.0306854f, 3
8.2793732f}}} |
19 addT insert t=0.245788566 segID=1 spanID=12 | 19 seg=12 {{{39.0306854f, 38.2793732f}, {38.9995995f, 38.3110695f}, {38.9681816f, 3
8.3424988f}}} |
20 debugShowLineIntersection wtTs[0]=0.64393017 {{{95.5512009,58.9763985}, {306.588
013,-227.983994}}} {{231.444168,-125.806053}} wnTs[0]=0.588246 {{{23.1854992,-10
2.697998}, {377.218994,-141.981003}}} | 20 seg=13 {{{38.9681816f, 38.3424988f}, {38.9374619f, 38.3742142f}, {38.9064751f, 3
8.4056053f}}} |
21 addT insert t=0.64393017 segID=4 spanID=13 | 21 seg=14 {{{38.9064751f, 38.4056053f}, {38.8441086f, 38.4687881f}, {38.7809143f, 3
8.5304031f}}} |
22 addT insert t=0.588245674 segID=2 spanID=14 | 22 seg=15 {{{38.7809143f, 38.5304031f}, {38.7196693f, 38.5940361f}, {38.6568527f, 3
8.6568527f}}} |
23 debugShowConicLineIntersection wtTs[0]=0 {{{{377.218994,-141.981003}, {40.578701
,-201.339996}, {23.1854992,-102.697998}}}, 0.707107008} {{377.218994,-141.981003
}} wtTs[1]=1 {{23.1854992,-102.697998}} wnTs[0]=1 {{{23.1854992,-102.697998}, {3
77.218994,-141.981003}}} wnTs[1]=0 | 23 seg=16 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}} |
24 sortAngles [3] tStart=0.602960898 [9] | 24 seg=17 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}} |
25 after [3/1] 5/1 tStart=0.602960898 tEnd=0 < [2/9] 17/17 tStart=0.443739761 tEnd=
0 < [3/2] 21/21 tStart=0.602960898 tEnd=1 T 4 | 25 seg=18 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}} |
26 afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-22
7.983994}}}, 1.02163982} id=3 | 26 seg=19 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}} |
27 afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2 | 27 seg=20 {{{27.3431454f, 27.3431454f}, {27.3875446f, 27.2987461f}, {27.4323025f, 2
7.2551785f}}} |
28 afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9
763985}}}, 0.497736931} id=3 | 28 seg=21 {{{27.4323025f, 27.2551785f}, {27.4755878f, 27.2101307f}, {27.5197105f, 2
7.165432f}}} |
29 after [3/1] 5/1 tStart=0.602960898 tEnd=0 < [2/10] 1/1 tStart=0.443739761 tEnd=0
.588245674 < [2/9] 17/17 tStart=0.443739761 tEnd=0 F 12 | 29 seg=22 {{{27.5197105f, 27.165432f}, {27.541851f, 27.1430035f}, {27.5638676f, 27.
1209965f}}} |
30 afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-22
7.983994}}}, 1.02163982} id=3 | 30 seg=23 {{{27.5638676f, 27.1209965f}, {27.5855064f, 27.0986347f}, {27.6075668f, 2
7.0761414f}}} |
31 afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2 | 31 seg=24 {{{27.6075668f, 27.0761414f}, {29.9278316f, 24.7103367f}, {33.2413864f, 2
4.6781349f}}} |
32 afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2 | 32 debugShowQuadIntersection wtTs[0]=1 {{{33.2413864,24.6781349}, {36.5549393,24.64
59332}, {38.920742,26.966198}}} {{38.920742,26.966198}} wnTs[0]=0 {{{38.920742,2
6.966198}, {41.2865486,29.2864628}, {41.3187523,32.6000175}}} |
33 after [2/9] 17/17 tStart=0.443739761 tEnd=0 < [2/10] 1/1 tStart=0.443739761 tEnd
=0.588245674 < [3/2] 21/21 tStart=0.602960898 tEnd=1 F 4 | 33 debugShowQuadIntersection wtTs[0]=0 {{{33.2413864,24.6781349}, {36.5549393,24.64
59332}, {38.920742,26.966198}}} {{33.2413864,24.6781349}} wnTs[0]=1 {{{27.607566
8,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}} |
34 afterPart {{{180.284241,-120.129433}, {23.1854992,-102.697998}}} id=2 | 34 debugShowQuadIntersection wtTs[0]=1 {{{38.920742,26.966198}, {41.2865486,29.2864
628}, {41.3187523,32.6000175}}} {{41.3187523,32.6000175}} wnTs[0]=0 {{{41.318752
3,32.6000175}, {41.3509521,35.9135704}, {39.0306854,38.2793732}}} |
35 afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2 | 35 debugShowQuadIntersection wtTs[0]=1 {{{41.3187523,32.6000175}, {41.3509521,35.91
35704}, {39.0306854,38.2793732}}} {{39.0306854,38.2793732}} wnTs[0]=0 {{{39.0306
854,38.2793732}, {38.9995995,38.3110695}, {38.9681816,38.3424988}}} |
36 afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9
763985}}}, 0.497736931} id=3 | 36 debugShowQuadIntersection wtTs[0]=1 {{{39.0306854,38.2793732}, {38.9995995,38.31
10695}, {38.9681816,38.3424988}}} {{38.9681816,38.3424988}} wnTs[0]=0 {{{38.9681
816,38.3424988}, {38.9374619,38.3742142}, {38.9064751,38.4056053}}} |
37 after [3/2] 21/21 tStart=0.602960898 tEnd=1 < [2/10] 1/1 tStart=0.443739761 tEnd
=0.588245674 < [3/1] 5/1 tStart=0.602960898 tEnd=0 T 11 | 37 debugShowQuadIntersection wtTs[0]=1 {{{38.9681816,38.3424988}, {38.9374619,38.37
42142}, {38.9064751,38.4056053}}} {{38.9064751,38.4056053}} wnTs[0]=0 {{{38.9064
751,38.4056053}, {38.8441086,38.4687881}, {38.7809143,38.5304031}}} |
38 afterPart {{{{180.284241,-120.129433}, {132.69398,-43.0726727}, {95.5512009,58.9
763985}}}, 0.497736931} id=3 | 38 debugShowQuadIntersection wtTs[0]=1 {{{38.9064751,38.4056053}, {38.8441086,38.46
87881}, {38.7809143,38.5304031}}} {{38.7809143,38.5304031}} wnTs[0]=0 {{{38.7809
143,38.5304031}, {38.7196693,38.5940361}, {38.6568527,38.6568527}}} |
39 afterPart {{{180.284241,-120.129433}, {231.444168,-125.806053}}} id=2 | 39 debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.59
40361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568
527,38.6568527}, {36.3137093,41}, {33,41}}} |
40 afterPart {{{{180.284241,-120.129433}, {257.850781,-245.722913}, {306.588013,-22
7.983994}}}, 1.02163982} id=3 | 40 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41},
{33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527
}}} |
41 sortAngles [4] tStart=0.64393017 [13] | 41 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6
568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.
3137093}, {25,33}}} |
42 after [4/3] 21/21 tStart=0.64393017 tEnd=0 < [2/11] 17/17 tStart=0.588245674 tEn
d=0.443739761 < [4/4] 5/5 tStart=0.64393017 tEnd=0.751854746 F 4 | 42 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093},
{25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454
}}} |
43 afterPart {{{231.444168,-125.806053}, {95.5512009,58.9763985}}} id=4 | 43 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3
431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {27.387
5446,27.2987461}, {27.4323025,27.2551785}}} |
44 afterPart {{{231.444168,-125.806053}, {180.284241,-120.129433}}} id=2 | 44 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {27.3875446,27.29
87461}, {27.4323025,27.2551785}}} {{27.4323025,27.2551785}} wnTs[0]=0 {{{27.4323
025,27.2551785}, {27.4755878,27.2101307}, {27.5197105,27.165432}}} |
45 afterPart {{{231.444168,-125.806053}, {254.22023,-156.776138}}} id=4 | 45 debugShowQuadIntersection wtTs[0]=1 {{{27.4323025,27.2551785}, {27.4755878,27.21
01307}, {27.5197105,27.165432}}} {{27.5197105,27.165432}} wnTs[0]=0 {{{27.519710
5,27.165432}, {27.541851,27.1430035}, {27.5638676,27.1209965}}} |
46 after [4/3] 21/21 tStart=0.64393017 tEnd=0 < [2/12] 1/1 tStart=0.588245674 tEnd=
1 < [4/4] 5/5 tStart=0.64393017 tEnd=0.751854746 T 4 | 46 debugShowQuadIntersection wtTs[0]=1 {{{27.5197105,27.165432}, {27.541851,27.1430
035}, {27.5638676,27.1209965}}} {{27.5638676,27.1209965}} wnTs[0]=0 {{{27.563867
6,27.1209965}, {27.5855064,27.0986347}, {27.6075668,27.0761414}}} |
47 afterPart {{{231.444168,-125.806053}, {95.5512009,58.9763985}}} id=4 | 47 debugShowQuadIntersection wtTs[0]=1 {{{27.5638676,27.1209965}, {27.5855064,27.09
86347}, {27.6075668,27.0761414}}} {{27.6075668,27.0761414}} wnTs[0]=0 {{{27.6075
668,27.0761414}, {29.9278316,24.7103367}, {33.2413864,24.6781349}}} |
48 afterPart {{{231.444168,-125.806053}, {377.218994,-141.981003}}} id=2 | 48 id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1] |
49 afterPart {{{231.444168,-125.806053}, {254.22023,-156.776138}}} id=4 | 49 id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3] |
50 sortAngles [4] tStart=0.751854746 [11] | 50 id=1 3=(0.5,1) [4] id=2 4=(0.5,1) [3] |
51 after [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 < [1/7] 29/29 tStart=0.2457
88566 tEnd=0 < [4/6] 5/5 tStart=0.751854746 tEnd=1 T 4 | 51 id=1 (empty) id=2 (empty) |
52 afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4 | 52 debugShowQuadIntersection no intersect {{{33.2413864,24.6781349}, {36.5549393,24
.6459332}, {38.920742,26.966198}}} {{{33,25}, {36.3137093,25}, {38.6568527,27.34
31454}}} |
53 afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141
.981003}}}, 0.580018938} id=1 | 53 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1] |
54 afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4 | 54 id=1 (empty) id=2 (empty) |
55 after [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 < [1/8] 13/17 tStart=0.2457
88566 tEnd=1 < [1/7] 29/29 tStart=0.245788566 tEnd=0 F 4 | 55 debugShowQuadIntersection no intersect {{{38.920742,26.966198}, {41.2865486,29.2
864628}, {41.3187523,32.6000175}}} {{{38.6568527,27.3431454}, {41,29.6862907}, {
41,33}}} |
56 afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4 | 56 id=1 1=(0,0.5) [2] 3=(0.5,1) [2] id=2 2=(0,1) [3,1] |
57 afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102.
697998}}}, 0.920844734} id=1 | 57 id=1 1=(0,0.5) [2] 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3] |
58 afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141
.981003}}}, 0.580018938} id=1 | 58 id=1 3=(0.5,1) [4,2] id=2 2=(0,0.5) [3] 4=(0.5,1) [3] |
59 after [1/7] 29/29 tStart=0.245788566 tEnd=0 < [1/8] 13/17 tStart=0.245788566 tEn
d=1 < [4/6] 5/5 tStart=0.751854746 tEnd=1 F 4 | 59 id=1 3=(0.5,1) [6,4] id=2 6=(0.25,0.5) [3] 4=(0.5,1) [3] |
60 afterPart {{{{254.22023,-156.776138}, {314.172616,-153.097823}, {377.218994,-141
.981003}}}, 0.580018938} id=1 | 60 id=1 3=(0.5,0.75) [4] 7=(0.75,1) [4] id=2 4=(0.5,1) [7,3] |
61 afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102.
697998}}}, 0.920844734} id=1 | 61 id=1 7=(0.75,1) [8,4] id=2 4=(0.5,0.75) [7] 8=(0.75,1) [7] |
62 afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4 | 62 id=1 7=(0.75,1) [10,8] id=2 10=(0.625,0.75) [7] 8=(0.75,1) [7] |
63 after [4/6] 5/5 tStart=0.751854746 tEnd=1 < [1/8] 13/17 tStart=0.245788566 tEnd=
1 < [4/5] 21/21 tStart=0.751854746 tEnd=0.64393017 T 4 | 63 id=1 9=(0.875,1) [8] id=2 8=(0.75,1) [9] |
64 afterPart {{{254.22023,-156.776138}, {306.588013,-227.983994}}} id=4 | 64 id=1 (empty) id=2 (empty) |
65 afterPart {{{{254.22023,-156.776138}, {35.0915133,-170.22053}, {23.1854992,-102.
697998}}}, 0.920844734} id=1 | 65 debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35
.9135704}, {39.0306854,38.2793732}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.
6568527}}} |
66 afterPart {{{254.22023,-156.776138}, {231.444168,-125.806053}}} id=4 | 66 debugShowQuadIntersection no intersect {{{41.3187523,32.6000175}, {41.3509521,35
.9135704}, {39.0306854,38.2793732}}} {{{38.6568527,27.3431454}, {41,29.6862907},
{41,33}}} |
67 sortAngles [1] tStart=0.245788566 [12] | 67 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1] |
68 sortAngles [2] tStart=0.443739761 [10] | 68 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1] |
69 sortAngles [2] tStart=0.588245674 [14] | 69 id=1 (empty) id=2 (empty) |
70 sortableTop dir=kTop seg=3 t=0.301480449 pt=(252.731339,-209.870193) | 70 debugShowQuadIntersection no intersect {{{39.0306854,38.2793732}, {38.9995995,38
.3110695}, {38.9681816,38.3424988}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.
6568527}}} |
71 sortableTop [0] valid=1 operand=0 span=5 ccw=0 seg=3 {{{{306.588013f, -227.98399
4f}, {212.464996f, -262.242004f}, {95.5512009f, 58.9763985f}}}, 0.707107008f} t=
0.301480449 pt=(252.731339,-209.870193) slope=(-84.4303791,69.255817) | 71 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1] |
72 markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97
63985) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum=
0 oppSum=0 windSum=1 windValue=1 oppValue=0 | 72 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1] |
73 markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97
63985) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum=
0 oppSum=0 windSum=1 windValue=1 oppValue=0 | 73 id=1 1=(0,1) [8] id=2 8=(0.875,1) [1] |
74 markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.751854746 [1
1] (254.22023,-156.776138) tEnd=1 newWindSum=1 newOppSum=0 oppSum=? windSum=? wi
ndValue=1 oppValue=0 | 74 id=1 (empty) id=2 (empty) |
75 findNextWinding simple | 75 debugShowQuadIntersection no intersect {{{38.9681816,38.3424988}, {38.9374619,38
.3742142}, {38.9064751,38.4056053}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.
6568527}}} |
76 markDone id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97639
85) t=0 [5] (306.588013,-227.983994) tEnd=0.602960898 newWindSum=1 newOppSum=0 o
ppSum=0 windSum=1 windValue=1 oppValue=0 | 76 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1] |
77 bridgeWinding current id=3 from=(180.284241,-120.129433) to=(306.588013,-227.983
994) | 77 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1] |
78 path.moveTo(180.284241,-120.129433); | 78 id=1 1=(0,1) [8] id=2 8=(0.875,1) [1] |
79 path.conicTo(257.850769,-245.722916, 306.588013,-227.983994, 1.02163982); | 79 id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1] |
80 markWinding id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6
97998) t=0.245788566 [12] (254.22023,-156.776138) tEnd=1 newWindSum=2 windSum=?
windValue=1 | 80 id=1 1=(0,1) [12,10] id=2 10=(0.9375,0.96875) [1] 12=(0.96875,1) [1] |
81 markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0 [3] (23.185
4992,-102.697998) tEnd=0.443739761 newWindSum=2 windSum=? windValue=1 | 81 id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1]
12=(0.96875,1) [1] |
82 markAngle last seg=2 span=10 windSum=? | 82 id=1 1=(0,1) [14,12,10] id=2 10=(0.9375,0.953125) [1] 14=(0.953125,0.96875) [1]
12=(0.96875,0.984375) [1] |
83 markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.64393017 [13
] (231.444168,-125.806053) tEnd=0.751854746 newWindSum=2 windSum=? windValue=1 | 83 id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.984375) [3] |
84 markAngle last seg=4 span=13 windSum=2 | 84 id=1 3=(0.5,1) [12] id=2 12=(0.96875,0.976563) [3] |
85 markWinding id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6
97998) t=0 [1] (377.218994,-141.981003) tEnd=0.245788566 newWindSum=1 windSum=?
windValue=1 | 85 id=1 5=(0.75,1) [12] id=2 12=(0.96875,0.976563) [5] |
86 markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.588245674 [
14] (231.444168,-125.806053) tEnd=1 newWindSum=1 windSum=? windValue=1 | 86 id=1 5=(0.75,1) [20,12] id=2 12=(0.96875,0.972656) [5] 20=(0.972656,0.976563) [5
] |
87 markAngle last seg=2 span=14 windSum=1 | 87 id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.976563) [7] |
88 findNextWinding | 88 id=1 7=(0.875,1) [20] id=2 20=(0.972656,0.974609) [7] |
89 dumpOne [4/6] next=1/8 sect=5/5 s=0.751854746 [11] e=1 [8] sgn=-1 windVal=1 win
dSum=1 oppVal=0 oppSum=0 | 89 id=1 (empty) id=2 (empty) |
90 dumpOne [1/8] next=4/5 sect=13/17 s=0.245788566 [12] e=1 [2] sgn=-1 windVal=1 w
indSum=2 | 90 debugShowQuadIntersection no intersect {{{38.9064751,38.4056053}, {38.8441086,38
.4687881}, {38.7809143,38.5304031}}} {{{41,33}, {41,36.3137093}, {38.6568527,38.
6568527}}} |
91 dumpOne [4/5] next=1/7 sect=21/21 s=0.751854746 [11] e=0.64393017 [13] sgn=1 wi
ndVal=1 windSum=2 | 91 id=1 1=(0,1) [4] id=2 4=(0.5,1) [1] |
92 dumpOne [1/7] next=4/6 sect=29/29 s=0.245788566 [12] e=0 [1] sgn=1 windVal=1 wi
ndSum=1 | 92 id=1 1=(0,1) [6] id=2 6=(0.75,1) [1] |
93 markDone id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6979
98) t=0.245788566 [12] (254.22023,-156.776138) tEnd=1 newWindSum=2 newOppSum=? o
ppSum=? windSum=2 windValue=1 oppValue=0 | 93 id=1 1=(0,1) [8] id=2 8=(0.875,1) [1] |
94 markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0 [3] (23.185499
2,-102.697998) tEnd=0.443739761 newWindSum=2 newOppSum=? oppSum=? windSum=2 wind
Value=1 oppValue=0 | 94 id=1 1=(0,1) [10] id=2 10=(0.9375,1) [1] |
95 findNextWinding chase.append segment=2 span=10 windSum=-2147483647 | 95 id=1 1=(0,1) [12] id=2 12=(0.96875,1) [1] |
96 markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.64393017 [13] (
231.444168,-125.806053) tEnd=0.751854746 newWindSum=2 newOppSum=? oppSum=? windS
um=2 windValue=1 oppValue=0 | 96 id=1 1=(0,1) [14,12] id=2 12=(0.96875,0.984375) [1] 14=(0.984375,1) [1] |
97 findNextWinding chase.append segment=4 span=13 windSum=2 | 97 id=1 1=(0,0.5) [14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.984375) [1] 14=(0.98437
5,1) [3,1] |
98 findNextWinding chase.append segment=2 span=14 windSum=1 | 98 id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [14] id=2 12=(0.96875,0.976563) [1] 16=(0.97
6563,0.984375) [1] 14=(0.984375,1) [3,1] |
99 markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0.751854746 [11]
(254.22023,-156.776138) tEnd=1 newWindSum=1 newOppSum=0 oppSum=0 windSum=1 windV
alue=1 oppValue=0 | 99 id=1 1=(0,0.5) [16,14,12] 3=(0.5,1) [18,14] id=2 12=(0.96875,0.976563) [1] 16=(0
.976563,0.984375) [1] 14=(0.984375,0.992188) [3,1] 18=(0.992188,1) [3] |
100 findNextWinding from:[4] to:[1] start=50334624 end=1606415336 | 100 id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,1) [18,14] id=2 12=(0.96875,
0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992188) [5,3] 18=(0.99
2188,1) [3] |
101 bridgeWinding current id=4 from=(306.588013,-227.983994) to=(254.22023,-156.7761
38) | 101 id=1 1=(0,0.25) [16,12] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18
] id=2 12=(0.96875,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.992
188) [5,3] 18=(0.992188,1) [7,3] |
102 findNextWinding simple | 102 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1) [18
] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.984375) [5,1] 14=(0.984375,0.99
2188) [5,3] 18=(0.992188,1) [7,3] |
103 markDone id=1 (377.218994,-141.981003 40.578701,-201.339996 23.1854992,-102.6979
98) t=0 [1] (377.218994,-141.981003) tEnd=0.245788566 newWindSum=1 newOppSum=? o
ppSum=? windSum=1 windValue=1 oppValue=0 | 103 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [18,14] 7=(0.75,1)
[18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.980469,0
.984375) [5] 14=(0.984375,0.992188) [5,3] 18=(0.992188,1) [7,3] |
104 bridgeWinding current id=1 from=(254.22023,-156.776138) to=(377.218994,-141.9810
03) | 104 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,
1) [18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.98046
9,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0.99
2188,1) [7,3] |
105 path.lineTo(254.22023,-156.776138); | 105 id=1 1=(0,0.25) [20,16] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75) [24,18,14] 7=(0.75,
1) [26,18] id=2 20=(0.972656,0.976563) [1] 16=(0.976563,0.980469) [5,1] 22=(0.98
0469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988281,0.992188) [3] 18=(0
.992188,0.996094) [7,3] 26=(0.996094,1) [7] |
106 path.conicTo(314.172607,-153.097824, 377.218994,-141.981003, 0.580018938); | 106 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.5) [22,14,16] 3=(0.5,0.75
) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0
.980469) [9,5] 22=(0.980469,0.984375) [5] 14=(0.984375,0.988281) [5,3] 24=(0.988
281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.996094,1) [7] |
107 markWinding id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.443739761 [
10] (180.284241,-120.129433) tEnd=0.588245674 newWindSum=2 windSum=? windValue=1 | 107 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.
5) [14,22] 3=(0.5,0.75) [24,18,14] 7=(0.75,1) [26,18] id=2 20=(0.972656,0.976563
) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,
0.988281) [11,3] 24=(0.988281,0.992188) [3] 18=(0.992188,0.996094) [7,3] 26=(0.9
96094,1) [7] |
108 markAngle last seg=2 span=10 windSum=2 | 108 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.
5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,1) [26,18] id=2
20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375
) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.99218
8,0.996094) [13,7] 26=(0.996094,1) [7] |
109 markWinding id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0 [7] (95.5512
009,58.9763985) tEnd=0.64393017 newWindSum=1 windSum=? windValue=1 | 109 id=1 1=(0,0.125) [20] 9=(0.125,0.25) [16,20] 5=(0.25,0.375) [22,16] 11=(0.375,0.
5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,18]
15=(0.875,1) [26] id=2 20=(0.972656,0.976563) [9,1] 16=(0.976563,0.980469) [9,5]
22=(0.980469,0.984375) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.9921
88) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7] |
110 markWinding id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97
63985) t=0.602960898 [9] (180.284241,-120.129433) tEnd=1 newWindSum=1 windSum=?
windValue=1 | 110 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [28,16] 5=(0.25,0.375) [22,16] 11=(0.375
,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [26,1
8] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [1,9
] 16=(0.976563,0.980469) [9,5] 22=(0.980469,0.984375) [11,5] 14=(0.984375,0.9882
81) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996
094,1) [15,7] |
111 markAngle last seg=3 span=9 windSum=1 | 111 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [30,22] 11=(0.
375,0.5) [14,22] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875) [2
6,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563) [
1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.9843
75) [11,5] 14=(0.984375,0.988281) [11,3] 24=(0.988281,0.992188) [13,3] 18=(0.992
188,0.996094) [13,7] 26=(0.996094,1) [15,7] |
112 findNextWinding | 112 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=
(0.375,0.5) [32,14] 3=(0.5,0.625) [24,14] 13=(0.625,0.75) [18,24] 7=(0.75,0.875)
[26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976563
) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,0.9
82422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.988281) [11,3] 24=(0.988
281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7] |
113 dumpOne [2/12] next=4/4 sect=1/1 s=0.588245674 [14] e=1 [4] sgn=-1 windVal=1 wi
ndSum=1 | 113 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=
(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [18,24] 7=(0.75,0.8
75) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.976
563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.980469,
0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0.98
6328,0.988281) [3,11] 24=(0.988281,0.992188) [13,3] 18=(0.992188,0.996094) [13,7
] 26=(0.996094,1) [15,7] |
114 dumpOne [4/4] next=2/11 sect=5/5 s=0.64393017 [13] e=0.751854746 [11] sgn=-1 wi
ndVal=1 windSum=2 done | 114 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=
(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,
0.875) [26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609,0.
976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.9804
69,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34=(0
.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188) [1
3] 18=(0.992188,0.996094) [13,7] 26=(0.996094,1) [15,7] |
115 dumpOne [2/11] next=4/3 sect=17/17 s=0.588245674 [14] e=0.443739761 [10] sgn=1
windVal=1 windSum=2 | 115 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=
(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,
0.875) [38,26,18] 15=(0.875,1) [26] id=2 20=(0.972656,0.974609) [1] 28=(0.974609
,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(0.9
80469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11] 34
=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.992188)
[13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,1) [
15,7] |
116 dumpOne [4/3] next=2/12 sect=21/21 s=0.64393017 [13] e=0 [7] sgn=1 windVal=1 wi
ndSum=1 | 116 id=1 1=(0,0.125) [28,20] 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=
(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,
0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 20=(0.972656,0.974609) [1] 28=(0.974
609,0.976563) [1,9] 16=(0.976563,0.978516) [9] 30=(0.978516,0.980469) [5,9] 22=(
0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11] 14=(0.984375,0.986328) [11]
34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234) [13,3] 36=(0.990234,0.9921
88) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0
.998047) [15,7] 40=(0.998047,1) [15] |
117 markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.443739761 [10]
(180.284241,-120.129433) tEnd=0.588245674 newWindSum=2 newOppSum=? oppSum=? win
dSum=2 windValue=1 oppValue=0 | 117 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(
38.774329,38.5372382) |
118 findNextWinding chase.append segment=3 span=9 windSum=1 | 118 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.
7653995,38.5464837) |
119 markDone id=2 (23.1854992,-102.697998 377.218994,-141.981003) t=0.588245674 [14]
(231.444168,-125.806053) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 win
dValue=1 oppValue=0 | 119 setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.773
2537,38.5383551) |
120 findNextWinding from:[2] to:[4] start=50334760 end=50333904 | 120 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(
38.774329,38.5372382) |
121 bridgeWinding current id=2 from=(377.218994,-141.981003) to=(231.444168,-125.806
053) | 121 setPerp t=0 cPt=(38.7809143,38.5304031) == oppT=0.973166462 fPerpPt=(38.7809154,
38.5304042) |
122 findNextWinding simple | 122 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(
38.774329,38.5372382) |
123 markDone id=4 (95.5512009,58.9763985 306.588013,-227.983994) t=0 [7] (95.5512009
,58.9763985) tEnd=0.64393017 newWindSum=1 newOppSum=? oppSum=? windSum=1 windVal
ue=1 oppValue=0 | 123 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.
7653995,38.5464837) |
124 bridgeWinding current id=4 from=(231.444168,-125.806053) to=(95.5512009,58.97639
85) | 124 setPerp t=0.0625 cPt=(38.7732525,38.5383541) == oppT=0.974845025 fPerpPt=(38.773
2537,38.5383551) |
125 path.lineTo(231.444168,-125.806053); | 125 setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655
796,38.5462997) |
126 findNextWinding | 126 id=1 9=(0.125,0.25) [30,28,16] 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,1
4] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15
=(0.875,1) [40,26] id=2 28=(0.974609,0.976563) [9] 16=(0.976563,0.978516) [9] 30
=(0.978516,0.980469) [5,9] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,
11] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990
234) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.9941
41,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15] |
127 dumpOne [3/2] next=2/10 sect=21/21 s=0.602960898 [9] e=1 [6] sgn=-1 windVal=1 w
indSum=1 | 127 setPerp t=0.974609375 cPt=(38.7743301,38.5372393) == oppT=0.0537252999 fPerpPt=(
38.774329,38.5372382) |
128 dumpOne [2/10] next=3/1 sect=1/1 s=0.443739761 [10] e=0.588245674 [14] sgn=-1 w
indVal=1 windSum=2 done | 128 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.
7653995,38.5464837) |
129 dumpOne [3/1] next=2/9 sect=5/1 s=0.602960898 [9] e=0 [5] sgn=1 windVal=1 windS
um=1 oppVal=0 oppSum=0 done | 129 setPerp t=0.125 cPt=(38.7655785,38.5462986) == oppT=0.976523392 fPerpPt=(38.7655
796,38.5462997) |
130 dumpOne [2/9] next=3/2 sect=17/17 s=0.443739761 [10] e=0 [3] sgn=1 windVal=1 wi
ndSum=2 done | 130 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.
7653995,38.5464837) |
131 markDone id=3 (306.588013,-227.983994 212.464996,-262.242004 95.5512009,58.97639
85) t=0.602960898 [9] (180.284241,-120.129433) tEnd=1 newWindSum=1 newOppSum=? o
ppSum=? windSum=1 windValue=1 oppValue=0 | 131 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3
8.7564523,38.5557218) |
132 findNextWinding from:[3] to:[2] start=50334352 end=50333208 | 132 setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.757
8932,38.5542378) |
133 bridgeWinding current id=3 from=(95.5512009,58.9763985) to=(180.284241,-120.1294
33) | 133 setPerp t=0.9765625 cPt=(38.7654006,38.5464847) == oppT=0.126456412 fPerpPt=(38.
7653995,38.5464837) |
134 path.lineTo(95.5512009,58.9763985); | 134 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3
8.7564523,38.5557218) |
135 path.conicTo(132.693985,-43.0726738, 180.284241,-120.129433, 0.497736931); | 135 setPerp t=0.1875 cPt=(38.7578922,38.5542368) == oppT=0.978201562 fPerpPt=(38.757
8932,38.5542378) |
| 136 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3
8.7564523,38.5557218) |
| 137 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38
.7474871,38.5649525) |
| 138 setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.75019
46,38.5621695) |
| 139 id=1 5=(0.25,0.375) [32,30,22] 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 1
3=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 30
=(0.978516,0.980469) [5] 22=(0.980469,0.982422) [5] 32=(0.982422,0.984375) [5,11
] 14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.99023
4) [13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141
,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15] |
| 140 setPerp t=0.978515625 cPt=(38.7564533,38.5557228) == oppT=0.199197443 fPerpPt=(3
8.7564523,38.5557218) |
| 141 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38
.7474871,38.5649525) |
| 142 setPerp t=0.25 cPt=(38.7501936,38.5621686) == oppT=0.979879536 fPerpPt=(38.75019
46,38.5621695) |
| 143 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38
.7474871,38.5649525) |
| 144 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38
.7385041,38.5741759) |
| 145 setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424
836,38.5700949) |
| 146 setPerp t=0.98046875 cPt=(38.7474881,38.5649534) == oppT=0.271948381 fPerpPt=(38
.7474871,38.5649525) |
| 147 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38
.7385041,38.5741759) |
| 148 setPerp t=0.3125 cPt=(38.7424827,38.570094) == oppT=0.981557313 fPerpPt=(38.7424
836,38.5700949) |
| 149 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38
.7385041,38.5741759) |
| 150 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72
95033,38.5833918) |
| 151 setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347
604,38.5780138) |
| 152 id=1 11=(0.375,0.5) [34,32,14] 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24]
7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 32=(0.982422,0.984375) [11]
14=(0.984375,0.986328) [11] 34=(0.986328,0.988281) [3,11] 24=(0.988281,0.990234)
[13,3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0
.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15] |
| 153 setPerp t=0.982421875 cPt=(38.738505,38.5741767) == oppT=0.344709216 fPerpPt=(38
.7385041,38.5741759) |
| 154 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72
95033,38.5833918) |
| 155 setPerp t=0.375 cPt=(38.7347596,38.5780131) == oppT=0.983234895 fPerpPt=(38.7347
604,38.5780138) |
| 156 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72
95033,38.5833918) |
| 157 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38
.7204846,38.5926004) |
| 158 setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.727
0248,38.5859264) |
| 159 setPerp t=0.984375 cPt=(38.729504,38.5833925) == oppT=0.417479935 fPerpPt=(38.72
95033,38.5833918) |
| 160 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38
.7204846,38.5926004) |
| 161 setPerp t=0.4375 cPt=(38.7270241,38.5859257) == oppT=0.984912281 fPerpPt=(38.727
0248,38.5859264) |
| 162 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38
.7204846,38.5926004) |
| 163 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.
711448,38.6018015) |
| 164 setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277,
38.5938326) |
| 165 id=1 3=(0.5,0.625) [34,24] 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18]
15=(0.875,1) [40,26] id=2 34=(0.986328,0.988281) [3] 24=(0.988281,0.990234) [13,
3] 36=(0.990234,0.992188) [13] 18=(0.992188,0.994141) [13,7] 38=(0.994141,0.9960
94) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15] |
| 166 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38
.7204846,38.5926004) |
| 167 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.
711448,38.6018015) |
| 168 setPerp t=0.5 cPt=(38.7192764,38.593832) == oppT=0.986589471 fPerpPt=(38.719277,
38.5938326) |
| 169 setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.711
5169,38.6017324) |
| 170 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.
711448,38.6018015) |
| 171 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3
8.7023935,38.6109953) |
| 172 setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037
445,38.6096258) |
| 173 setPerp t=0.986328125 cPt=(38.7204852,38.592601) == oppT=0.490260525 fPerpPt=(38
.7204846,38.5926004) |
| 174 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.
711448,38.6018015) |
| 175 setPerp t=0.5625 cPt=(38.7115164,38.6017319) == oppT=0.988266467 fPerpPt=(38.711
5169,38.6017324) |
| 176 id=1 13=(0.625,0.75) [36,18,24] 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] i
d=2 24=(0.988281,0.990234) [13] 36=(0.990234,0.992188) [13] 18=(0.992188,0.99414
1) [13,7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,
1) [15] |
| 177 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3
8.7023935,38.6109953) |
| 178 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.
6933211,38.6201816) |
| 179 setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.695
9599,38.6175129) |
| 180 setPerp t=0.98828125 cPt=(38.7114485,38.601802) == oppT=0.563050975 fPerpPt=(38.
711448,38.6018015) |
| 181 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3
8.7023935,38.6109953) |
| 182 setPerp t=0.625 cPt=(38.7037442,38.6096255) == oppT=0.989943268 fPerpPt=(38.7037
445,38.6096258) |
| 183 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.
6933211,38.6201816) |
| 184 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38
.6842309,38.6293605) |
| 185 setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.68816
3,38.6253936) |
| 186 setPerp t=0.990234375 cPt=(38.7023939,38.6109956) == oppT=0.635851272 fPerpPt=(3
8.7023935,38.6109953) |
| 187 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.
6933211,38.6201816) |
| 188 setPerp t=0.6875 cPt=(38.6959596,38.6175126) == oppT=0.991619875 fPerpPt=(38.695
9599,38.6175129) |
| 189 id=1 7=(0.75,0.875) [38,26,18] 15=(0.875,1) [40,26] id=2 18=(0.992188,0.994141)
[7] 38=(0.994141,0.996094) [7] 26=(0.996094,0.998047) [15,7] 40=(0.998047,1) [15
] |
| 190 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38
.6842309,38.6293605) |
| 191 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38
.6751227,38.638532) |
| 192 setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.680
3538,38.6332679) |
| 193 setPerp t=0.9921875 cPt=(38.6933214,38.6201819) == oppT=0.708661403 fPerpPt=(38.
6933211,38.6201816) |
| 194 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38
.6842309,38.6293605) |
| 195 setPerp t=0.75 cPt=(38.6881628,38.6253934) == oppT=0.993296287 fPerpPt=(38.68816
3,38.6253936) |
| 196 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38
.6751227,38.638532) |
| 197 setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(3
8.6659967,38.6476961) |
| 198 setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.67253
24,38.6411359) |
| 199 setPerp t=0.994140625 cPt=(38.684231,38.6293607) == oppT=0.781481354 fPerpPt=(38
.6842309,38.6293605) |
| 200 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38
.6751227,38.638532) |
| 201 setPerp t=0.8125 cPt=(38.6803537,38.6332678) == oppT=0.994972505 fPerpPt=(38.680
3538,38.6332679) |
| 202 id=1 15=(0.875,1) [40,26] id=2 26=(0.996094,0.998047) [15] 40=(0.998047,1) [15] |
| 203 setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(3
8.6659967,38.6476961) |
| 204 setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527
) |
| 205 setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.664
6987,38.6489975) |
| 206 setPerp t=0.99609375 cPt=(38.6751228,38.6385321) == oppT=0.854311113 fPerpPt=(38
.6751227,38.638532) |
| 207 setPerp t=0.998046875 cPt=(38.6659967,38.6476961) == oppT=0.927150666 fPerpPt=(3
8.6659967,38.6476961) |
| 208 setPerp t=0.875 cPt=(38.6725323,38.6411358) == oppT=0.99664853 fPerpPt=(38.67253
24,38.6411359) |
| 209 id=1 31=(0.9375,1) [40] id=2 40=(0.998047,1) [31] |
| 210 setPerp t=0.9375 cPt=(38.6646987,38.6489975) == oppT=0.998324361 fPerpPt=(38.664
6987,38.6489975) |
| 211 setPerp t=1 cPt=(38.6568527,38.6568527) == oppT=1 fPerpPt=(38.6568527,38.6568527
) |
| 212 setPerp t=0.999023438 cPt=(38.6614269,38.6522753) == oppT=0.963574111 fPerpPt=(3
8.6614269,38.6522753) |
| 213 id=1 31=(1,1) [42] id=2 42=(1,1) [31] |
| 214 debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.59
40361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33},
{41,36.3137093}, {38.6568527,38.6568527}}} |
| 215 debugShowQuadIntersection wtTs[0]=1 {{{38.7809143,38.5304031}, {38.7196693,38.59
40361}, {38.6568527,38.6568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568
527,38.6568527}, {36.3137093,41}, {33,41}}} |
| 216 debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41},
{33,41}}} {{38.6568527,38.6568527}} wnTs[0]=1 {{{41,33}, {41,36.3137093}, {38.65
68527,38.6568527}}} |
| 217 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1] |
| 218 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1] |
| 219 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6
=(0.75,1) [3] |
| 220 id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1]
4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3] |
| 221 id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1]
8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3] |
| 222 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6]
id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3
] |
| 223 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4
,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.87
5) [5,3] 10=(0.875,1) [5] |
| 224 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [
10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.7
5) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5] |
| 225 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875
) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5
,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5] |
| 226 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75
) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(
0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875)
[11,9,5] 10=(0.875,1) [9,5] |
| 227 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625,
0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1]
8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75
) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5] |
| 228 id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.6
25) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,1
0] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,
0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [
9,5] |
| 229 id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5
,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1)
[6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0.
375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875
) [11,9,5] 10=(0.875,1) [9,5] |
| 230 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.
375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875
) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7]
8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.6
25,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5] |
| 231 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.
375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875
) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,
7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(
0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375,
1) [9] |
| 232 setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527
) |
| 233 setPerp t=0.125 cPt=(38.0559018,39.2060279) == oppT=0.125 fPerpPt=(38.0559018,39
.2060279) |
| 234 setPerp t=0.25 cPt=(37.4246206,39.6819797) == oppT=0.25 fPerpPt=(37.4246206,39.6
819797) |
| 235 setPerp t=0.375 cPt=(36.7630093,40.0847081) == oppT=0.375 fPerpPt=(36.7630093,40
.0847081) |
| 236 setPerp t=0.5 cPt=(36.0710678,40.4142132) == oppT=0.5 fPerpPt=(36.0710678,40.414
2132) |
| 237 setPerp t=0.625 cPt=(35.3487961,40.6704949) == oppT=0.625 fPerpPt=(35.3487961,40
.6704949) |
| 238 setPerp t=0.75 cPt=(34.5961943,40.8535533) == oppT=0.75 fPerpPt=(34.5961943,40.8
535533) |
| 239 setPerp t=0.875 cPt=(33.8132622,40.9633883) == oppT=0.875 fPerpPt=(33.8132622,40
.9633883) |
| 240 setPerp t=0.9375 cPt=(33.4104224,40.9908471) == oppT=0.9375 fPerpPt=(33.4104224,
40.9908471) |
| 241 setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41) |
| 242 setPerp t=0 cPt=(38.6568527,38.6568527) == oppT=0 fPerpPt=(38.6568527,38.6568527
) |
| 243 setPerp t=1 cPt=(33,41) == oppT=1 fPerpPt=(33,41) |
| 244 id=1 (empty) id=2 (empty) |
| 245 debugShowQuadIntersection wtTs[0]=0 {{{38.6568527,38.6568527}, {36.3137093,41},
{33,41}}} {{38.6568527,38.6568527}} wtTs[1]=1 {{33,41}} wnTs[0]=0 {{{38.6568527,
38.6568527}, {36.3137093,41}, {33,41}}} wnTs[1]=1 |
| 246 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41},
{33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527
}}} |
| 247 debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6
568527}}} {{33,41}} wnTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41
}}} |
| 248 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1] |
| 249 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1] |
| 250 id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4=
(0.5,1) [3,1] |
| 251 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1]
6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3] |
| 252 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5,
1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3] |
| 253 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8]
id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3
] |
| 254 id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [
4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75
) [7,5,3] 8=(0.75,1) [7,3] |
| 255 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.7
5) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.
25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3] |
| 256 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5,
0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6
=(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3] |
| 257 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 1
0=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.
75) [11,7,3] 8=(0.75,1) [7,3] |
| 258 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,
1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.
5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3] |
| 259 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14
,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0
.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [
13,7] |
| 260 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16
,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12
=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0
.875) [13,7] 16=(0.875,1) [7] |
| 261 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875)
[16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=
(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,
0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7] |
| 262 id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11=
(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.
875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9]
10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,
0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1)
[15,7] |
| 263 setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41) |
| 264 setPerp t=0.0625 cPt=(32.5895776,40.9908471) == oppT=0.0625 fPerpPt=(32.5895776,
40.9908471) |
| 265 setPerp t=0.125 cPt=(32.1867377,40.9633883) == oppT=0.125 fPerpPt=(32.1867377,40
.9633883) |
| 266 setPerp t=0.25 cPt=(31.4038056,40.8535533) == oppT=0.25 fPerpPt=(31.4038056,40.8
535533) |
| 267 setPerp t=0.375 cPt=(30.6512036,40.6704949) == oppT=0.375 fPerpPt=(30.6512036,40
.6704949) |
| 268 setPerp t=0.5 cPt=(29.9289317,40.4142132) == oppT=0.5 fPerpPt=(29.9289317,40.414
2132) |
| 269 setPerp t=0.625 cPt=(29.2369899,40.0847081) == oppT=0.625 fPerpPt=(29.2369899,40
.0847081) |
| 270 setPerp t=0.75 cPt=(28.5753783,39.6819797) == oppT=0.75 fPerpPt=(28.5753783,39.6
819797) |
| 271 setPerp t=0.875 cPt=(27.9440968,39.2060279) == oppT=0.875 fPerpPt=(27.9440968,39
.2060279) |
| 272 setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527
) |
| 273 setPerp t=0 cPt=(33,41) == oppT=0 fPerpPt=(33,41) |
| 274 setPerp t=1 cPt=(27.3431454,38.6568527) == oppT=1 fPerpPt=(27.3431454,38.6568527
) |
| 275 id=1 (empty) id=2 (empty) |
| 276 debugShowQuadIntersection wtTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6
568527}}} {{33,41}} wtTs[1]=1 {{27.3431454,38.6568527}} wnTs[0]=0 {{{33,41}, {29
.6862907,41}, {27.3431454,38.6568527}}} wnTs[1]=1 |
| 277 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6
568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.
3137093}, {25,33}}} |
| 278 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093},
{25,33}}} {{27.3431454,38.6568527}} wnTs[0]=1 {{{33,41}, {29.6862907,41}, {27.34
31454,38.6568527}}} |
| 279 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1] |
| 280 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1] |
| 281 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [6,2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,0.75) [3,1] 6
=(0.75,1) [3] |
| 282 id=1 1=(0,0.5) [4,2] 3=(0.5,0.75) [6,2,4] 5=(0.75,1) [4,6] id=2 2=(0,0.5) [3,1]
4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3] |
| 283 id=1 1=(0,0.5) [8,4,2] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6] id=2 2=(0,0.25) [1]
8=(0.25,0.5) [1,3] 4=(0.5,0.75) [5,3,1] 6=(0.75,1) [5,3] |
| 284 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [4,6]
id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,1) [5,3
] |
| 285 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,1) [10,4
,6] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.75) [7,5,3] 6=(0.75,0.87
5) [5,3] 10=(0.875,1) [5] |
| 286 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [8,6,4] 5=(0.75,0.875) [
10,4,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5,0.7
5) [7,5,3] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5] |
| 287 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.75) [12,8,6,4] 5=(0.75,0.875
) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(0.25,0.5) [7,1,3] 4=(0.5
,0.625) [7,3] 12=(0.625,0.75) [3,5] 6=(0.75,0.875) [9,5,3] 10=(0.875,1) [9,5] |
| 288 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [2,4,8] 3=(0.5,0.625) [12,8,4] 11=(0.625,0.75
) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1] 8=(
0.25,0.5) [7,1,3] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875)
[11,9,5] 10=(0.875,1) [9,5] |
| 289 id=1 1=(0,0.25) [8,2] 7=(0.25,0.5) [14,2,4,8] 3=(0.5,0.625) [14,12,4] 11=(0.625,
0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.25) [7,1]
8=(0.25,0.375) [7,1] 14=(0.375,0.5) [3,7] 4=(0.5,0.625) [11,7,3] 12=(0.625,0.75
) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5] |
| 290 id=1 1=(0,0.25) [8,2] 7=(0.25,0.375) [14,2,8] 13=(0.375,0.5) [8,4,14] 3=(0.5,0.6
25) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1) [6,1
0] id=2 2=(0,0.25) [7,1] 8=(0.25,0.375) [13,7,1] 14=(0.375,0.5) [13,3,7] 4=(0.5,
0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [
9,5] |
| 291 id=1 1=(0,0.25) [16,8,2] 7=(0.25,0.375) [16,14,8] 13=(0.375,0.5) [8,4,14] 3=(0.5
,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875) [12,10,6] 9=(0.875,1)
[6,10] id=2 2=(0,0.125) [1] 16=(0.125,0.25) [1,7] 8=(0.25,0.375) [13,7,1] 14=(0.
375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.625,0.75) [11,3,5] 6=(0.75,0.875
) [11,9,5] 10=(0.875,1) [9,5] |
| 292 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.
375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875
) [12,10,6] 9=(0.875,1) [6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,7]
8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(0.6
25,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,1) [9,5] |
| 293 id=1 1=(0,0.125) [16,2] 15=(0.125,0.25) [2,8,16] 7=(0.25,0.375) [16,14,8] 13=(0.
375,0.5) [8,4,14] 3=(0.5,0.625) [14,12,4] 11=(0.625,0.75) [4,6,12] 5=(0.75,0.875
) [12,10,6] 9=(0.875,1) [18,6,10] id=2 2=(0,0.125) [15,1] 16=(0.125,0.25) [15,1,
7] 8=(0.25,0.375) [15,13,7] 14=(0.375,0.5) [13,3,7] 4=(0.5,0.625) [13,11,3] 12=(
0.625,0.75) [11,3,5] 6=(0.75,0.875) [11,9,5] 10=(0.875,0.9375) [9,5] 18=(0.9375,
1) [9] |
| 294 setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527
) |
| 295 setPerp t=0.125 cPt=(26.7939707,38.0559018) == oppT=0.125 fPerpPt=(26.7939707,38
.0559018) |
| 296 setPerp t=0.25 cPt=(26.3180193,37.4246206) == oppT=0.25 fPerpPt=(26.3180193,37.4
246206) |
| 297 setPerp t=0.375 cPt=(25.9152912,36.7630093) == oppT=0.375 fPerpPt=(25.9152912,36
.7630093) |
| 298 setPerp t=0.5 cPt=(25.5857863,36.0710678) == oppT=0.5 fPerpPt=(25.5857863,36.071
0678) |
| 299 setPerp t=0.625 cPt=(25.3295048,35.3487961) == oppT=0.625 fPerpPt=(25.3295048,35
.3487961) |
| 300 setPerp t=0.75 cPt=(25.1464466,34.5961943) == oppT=0.75 fPerpPt=(25.1464466,34.5
961943) |
| 301 setPerp t=0.875 cPt=(25.0366116,33.8132622) == oppT=0.875 fPerpPt=(25.0366116,33
.8132622) |
| 302 setPerp t=0.9375 cPt=(25.0091529,33.4104224) == oppT=0.9375 fPerpPt=(25.0091529,
33.4104224) |
| 303 setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33) |
| 304 setPerp t=0 cPt=(27.3431454,38.6568527) == oppT=0 fPerpPt=(27.3431454,38.6568527
) |
| 305 setPerp t=1 cPt=(25,33) == oppT=1 fPerpPt=(25,33) |
| 306 id=1 (empty) id=2 (empty) |
| 307 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,38.6568527}, {25,36.3137093},
{25,33}}} {{27.3431454,38.6568527}} wtTs[1]=1 {{25,33}} wnTs[0]=0 {{{27.3431454,
38.6568527}, {25,36.3137093}, {25,33}}} wnTs[1]=1 |
| 308 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093},
{25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454
}}} |
| 309 debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3
431454}}} {{25,33}} wnTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093}, {25,33
}}} |
| 310 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1] |
| 311 id=1 1=(0,0.5) [4,2] 3=(0.5,1) [2,4] id=2 2=(0,0.5) [3,1] 4=(0.5,1) [3,1] |
| 312 id=1 1=(0,0.5) [6,4,2] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [1] 6=(0.25,0.5) [1,3] 4=
(0.5,1) [3,1] |
| 313 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [6,4] id=2 2=(0,0.25) [5,1]
6=(0.25,0.5) [5,1,3] 4=(0.5,1) [5,3] |
| 314 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,1) [8,6,4] id=2 2=(0,0.25) [5,
1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [5,3] 8=(0.75,1) [3] |
| 315 id=1 1=(0,0.25) [6,2] 5=(0.25,0.5) [2,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [4,8]
id=2 2=(0,0.25) [5,1] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3
] |
| 316 id=1 1=(0,0.25) [10,6,2] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.75) [8,6,4] 7=(0.75,1) [
4,8] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1,5] 6=(0.25,0.5) [5,1,3] 4=(0.5,0.75
) [7,5,3] 8=(0.75,1) [7,3] |
| 317 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [10,4,6] 3=(0.5,0.7
5) [8,6,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.
25,0.5) [9,5,3] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3] |
| 318 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.5) [12,10,4,6] 3=(0.5,
0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6
=(0.25,0.375) [9,5] 12=(0.375,0.5) [3,5] 4=(0.5,0.75) [7,5,3] 8=(0.75,1) [7,3] |
| 319 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.75) [12,8,4] 7=(0.75,1) [4,8] id=2 2=(0,0.125) [9,1] 1
0=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.
75) [11,7,3] 8=(0.75,1) [7,3] |
| 320 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.75) [14,12,8,4] 7=(0.75,1) [14,8] id=2 2=(0,0.125) [9,
1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.
5,0.625) [11,3] 14=(0.625,0.75) [3,7] 8=(0.75,1) [7,3] |
| 321 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [14
,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0
.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,1) [
13,7] |
| 322 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,1) [16
,14,8] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12
=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0
.875) [13,7] 16=(0.875,1) [7] |
| 323 id=1 1=(0,0.125) [10,2] 9=(0.125,0.25) [2,6,10] 5=(0.25,0.375) [12,10,6] 11=(0.3
75,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.875)
[16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.125) [9,1] 10=(0.125,0.25) [9,1,5] 6=
(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,0.625) [13,11,3] 14=(0.625,
0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1) [15,7] |
| 324 id=1 1=(0,0.125) [18,10,2] 9=(0.125,0.25) [18,6,10] 5=(0.25,0.375) [12,10,6] 11=
(0.375,0.5) [6,4,12] 3=(0.5,0.625) [14,12,4] 13=(0.625,0.75) [4,8,14] 7=(0.75,0.
875) [16,14,8] 15=(0.875,1) [8,16] id=2 2=(0,0.0625) [1] 18=(0.0625,0.125) [1,9]
10=(0.125,0.25) [9,1,5] 6=(0.25,0.375) [11,9,5] 12=(0.375,0.5) [11,3,5] 4=(0.5,
0.625) [13,11,3] 14=(0.625,0.75) [13,3,7] 8=(0.75,0.875) [15,13,7] 16=(0.875,1)
[15,7] |
| 325 setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33) |
| 326 setPerp t=0.0625 cPt=(25.0091529,32.5895776) == oppT=0.0625 fPerpPt=(25.0091529,
32.5895776) |
| 327 setPerp t=0.125 cPt=(25.0366116,32.1867377) == oppT=0.125 fPerpPt=(25.0366116,32
.1867377) |
| 328 setPerp t=0.25 cPt=(25.1464466,31.4038056) == oppT=0.25 fPerpPt=(25.1464466,31.4
038056) |
| 329 setPerp t=0.375 cPt=(25.3295048,30.6512036) == oppT=0.375 fPerpPt=(25.3295048,30
.6512036) |
| 330 setPerp t=0.5 cPt=(25.5857863,29.9289317) == oppT=0.5 fPerpPt=(25.5857863,29.928
9317) |
| 331 setPerp t=0.625 cPt=(25.9152912,29.2369899) == oppT=0.625 fPerpPt=(25.9152912,29
.2369899) |
| 332 setPerp t=0.75 cPt=(26.3180193,28.5753783) == oppT=0.75 fPerpPt=(26.3180193,28.5
753783) |
| 333 setPerp t=0.875 cPt=(26.7939707,27.9440968) == oppT=0.875 fPerpPt=(26.7939707,27
.9440968) |
| 334 setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454
) |
| 335 setPerp t=0 cPt=(25,33) == oppT=0 fPerpPt=(25,33) |
| 336 setPerp t=1 cPt=(27.3431454,27.3431454) == oppT=1 fPerpPt=(27.3431454,27.3431454
) |
| 337 id=1 (empty) id=2 (empty) |
| 338 debugShowQuadIntersection wtTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3
431454}}} {{25,33}} wtTs[1]=1 {{27.3431454,27.3431454}} wnTs[0]=0 {{{25,33}, {25
,29.6862907}, {27.3431454,27.3431454}}} wnTs[1]=1 |
| 339 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3
431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.686
2907,25}, {33,25}}} |
| 340 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.29
87461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wnTs[0]=1 {{{25,33},
{25,29.6862907}, {27.3431454,27.3431454}}} |
| 341 id=1 1=(0,1) [2] id=2 2=(0,0.5) [1] |
| 342 id=1 1=(0,1) [2] id=2 2=(0,0.25) [1] |
| 343 id=1 1=(0,1) [2] id=2 2=(0,0.125) [1] |
| 344 id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1] |
| 345 id=1 1=(0,1) [2] id=2 2=(0,0.03125) [1] |
| 346 id=1 1=(0,1) [14,2] id=2 2=(0,0.015625) [1] 14=(0.015625,0.03125) [1] |
| 347 id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.031
25) [3] |
| 348 id=1 1=(0,0.5) [2] 3=(0.5,1) [2,14] id=2 2=(0,0.015625) [3,1] 14=(0.015625,0.023
4375) [3] |
| 349 id=1 1=(0,0.5) [18,2] 3=(0.5,1) [18,14] id=2 2=(0,0.0078125) [1] 18=(0.0078125,0
.015625) [1,3] 14=(0.015625,0.0234375) [3] |
| 350 id=1 1=(0,0.5) [18,2] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=2 2=(0,0.0078125)
[1] 18=(0.0078125,0.015625) [5,1,3] 14=(0.015625,0.0234375) [5] |
| 351 id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=
2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0234375)
[5] |
| 352 id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [18] 5=(0.75,1) [14,18] id=
2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.015625) [7,5,3] 14=(0.015625,0.0195313)
[5] |
| 353 id=1 1=(0,0.25) [2] 7=(0.25,0.5) [2,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22,14]
id=2 2=(0,0.0078125) [7,1] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625
) [3,5] 14=(0.015625,0.0195313) [5] |
| 354 id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,1) [22,
14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,7] 18=(0.0078125,0.01
17188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0195313) [5] |
| 355 id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.75) [22,18] 5=(0.75,0.875)
[22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.00390625,0.0078125) [1,
7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625) [3,5] 14=(0.015625,0.0
195313) [9,5] |
| 356 id=1 1=(0,0.25) [24,2] 7=(0.25,0.5) [24,18] 3=(0.5,0.625) [22,18] 11=(0.625,0.75
) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0.00390625) [1] 24=(0.0
0390625,0.0078125) [1,7] 18=(0.0078125,0.0117188) [7,3] 22=(0.0117188,0.015625)
[11,3,5] 14=(0.015625,0.0195313) [9,5] |
| 357 id=1 1=(0,0.25) [24,2] 7=(0.25,0.375) [24] 13=(0.375,0.5) [18,24] 3=(0.5,0.625)
[22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.875,1) [14] id=2 2=(0,0
.00390625) [1] 24=(0.00390625,0.0078125) [13,1,7] 18=(0.0078125,0.0117188) [13,3
] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.0195313) [9,5] |
| 358 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [
18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22,14] 9=(0.87
5,1) [14] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0
.0078125,0.0117188) [13,3] 22=(0.0117188,0.015625) [11,3,5] 14=(0.015625,0.01953
13) [9,5] |
| 359 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421
1186,27.2660833) |
| 360 setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024
,27.2551784) |
| 361 setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(2
7.4258215,27.2614932) |
| 362 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994
59,27.2770142) |
| 363 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421
1186,27.2660833) |
| 364 setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4
166057,27.2704942) |
| 365 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421
1186,27.2660833) |
| 366 setPerp t=1 cPt=(27.4323025,27.2551785) == oppT=0.0189506978 fPerpPt=(27.4323024
,27.2551784) |
| 367 setPerp t=0.017578125 cPt=(27.4258215,27.2614932) == oppT=0.927578956 fPerpPt=(2
7.4258215,27.2614932) |
| 368 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [
18,24] 3=(0.5,0.625) [22,18] 11=(0.625,0.75) [22] 5=(0.75,0.875) [22] id=2 2=(0,
0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] 18=(0.0078125,0.0117188)
[13,3] 22=(0.0117188,0.015625) [11,3,5] |
| 369 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398
7845,27.2879711) |
| 370 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994
59,27.2770142) |
| 371 setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27
.4073972,27.279513) |
| 372 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763
42,27.298954) |
| 373 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398
7845,27.2879711) |
| 374 setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27
.3981962,27.2885497) |
| 375 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994
59,27.2770142) |
| 376 setPerp t=0.875 cPt=(27.4211186,27.2660834) == oppT=0.0165816271 fPerpPt=(27.421
1186,27.2660833) |
| 377 setPerp t=0.015625 cPt=(27.4166056,27.2704941) == oppT=0.824524193 fPerpPt=(27.4
166057,27.2704942) |
| 378 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398
7845,27.2879711) |
| 379 setPerp t=0.75 cPt=(27.409946,27.2770143) == oppT=0.0142126233 fPerpPt=(27.40994
59,27.2770142) |
| 380 setPerp t=0.013671875 cPt=(27.4073972,27.279513) == oppT=0.721467031 fPerpPt=(27
.4073972,27.279513) |
| 381 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [
18,24] 3=(0.5,0.625) [18] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125)
[15,13,7] 18=(0.0078125,0.0117188) [13,3] |
| 382 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37
64952,27.3099628) |
| 383 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763
42,27.298954) |
| 384 setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27.
3798163,27.3066768) |
| 385 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763
42,27.298954) |
| 386 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398
7845,27.2879711) |
| 387 setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(2
7.3890025,27.2976043) |
| 388 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763
42,27.298954) |
| 389 setPerp t=0.625 cPt=(27.3987845,27.2879711) == oppT=0.0118436864 fPerpPt=(27.398
7845,27.2879711) |
| 390 setPerp t=0.009765625 cPt=(27.3890025,27.2976043) == oppT=0.515345519 fPerpPt=(2
7.3890025,27.2976043) |
| 391 setPerp t=0.01171875 cPt=(27.3981961,27.2885497) == oppT=0.618407471 fPerpPt=(27
.3981962,27.2885497) |
| 392 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2,24] 7=(0.25,0.375) [24] 13=(0.375,0.5) [
24] id=2 2=(0,0.00390625) [15,1] 24=(0.00390625,0.0078125) [15,13,7] |
| 393 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35
42508,27.3320585) |
| 394 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365
3674,27.3209977) |
| 395 setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27.
361466,27.3248753) |
| 396 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365
3674,27.3209977) |
| 397 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37
64952,27.3099628) |
| 398 setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(2
7.3706374,27.3157671) |
| 399 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365
3674,27.3209977) |
| 400 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37
64952,27.3099628) |
| 401 setPerp t=0.005859375 cPt=(27.3706374,27.3157671) == oppT=0.309214451 fPerpPt=(2
7.3706374,27.3157671) |
| 402 setPerp t=0.375 cPt=(27.3764952,27.3099629) == oppT=0.00710601267 fPerpPt=(27.37
64952,27.3099628) |
| 403 setPerp t=0.5 cPt=(27.3876343,27.298954) == oppT=0.00947481625 fPerpPt=(27.38763
42,27.298954) |
| 404 setPerp t=0.0078125 cPt=(27.3798163,27.3066767) == oppT=0.412281177 fPerpPt=(27.
3798163,27.3066768) |
| 405 id=1 1=(0,0.125) [2] 15=(0.125,0.25) [2] id=2 2=(0,0.00390625) [15,1] |
| 406 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35
42508,27.3320585) |
| 407 setPerp t=0.25 cPt=(27.3653674,27.3209977) == oppT=0.00473727552 fPerpPt=(27.365
3674,27.3209977) |
| 408 setPerp t=0.00390625 cPt=(27.361466,27.3248753) == oppT=0.206145343 fPerpPt=(27.
361466,27.3248753) |
| 409 id=1 1=(0,0.125) [34,2] id=2 2=(0,0.00195313) [1] 34=(0.00195313,0.00390625) [1] |
| 410 id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=(
0.00195313,0.00390625) [17] |
| 411 id=1 1=(0,0.0625) [2] 17=(0.0625,0.125) [2,34] id=2 2=(0,0.00195313) [17,1] 34=(
0.00195313,0.00292969) [17] |
| 412 id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.125) [38,34] id=2 2=(0,0.000976563) [1] 38
=(0.000976563,0.00195313) [1,17] 34=(0.00195313,0.00292969) [17] |
| 413 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27
.352302,27.3340014) |
| 414 setPerp t=0.0029296875 cPt=(27.3568831,27.3294361) == oppT=0.154609898 fPerpPt=(
27.3568831,27.3294361) |
| 415 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35
42508,27.3320585) |
| 416 id=1 1=(0,0.0625) [38,2] 17=(0.0625,0.09375) [38] 19=(0.09375,0.125) [38] id=2 2
=(0,0.000976563) [1] 38=(0.000976563,0.00195313) [19,1,17] |
| 417 id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [38] 19=(0
.09375,0.125) [38] id=2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00195313) [21
,19,17] |
| 418 setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27.
3514734,27.3348278) |
| 419 setPerp t=0.125 cPt=(27.3542508,27.3320585) == oppT=0.00236860468 fPerpPt=(27.35
42508,27.3320585) |
| 420 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27
.352302,27.3340014) |
| 421 id=1 1=(0,0.03125) [2] 21=(0.03125,0.0625) [2,38] 17=(0.0625,0.09375) [40,38] id
=2 2=(0,0.000976563) [21,1] 38=(0.000976563,0.00146484) [21,17] 40=(0.00146484,0
.00195313) [17] |
| 422 id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.09375) [40,38
] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563
,0.00146484) [21,17] 40=(0.00146484,0.00195313) [17] |
| 423 setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt
=(27.3500121,27.3362857) |
| 424 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27
.352302,27.3340014) |
| 425 setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27
.3500849,27.3362131) |
| 426 setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt
=(27.3500121,27.3362857) |
| 427 setPerp t=0.001953125 cPt=(27.352302,27.3340014) == oppT=0.103073858 fPerpPt=(27
.352302,27.3340014) |
| 428 setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27
.3500849,27.3362131) |
| 429 setPerp t=0.09375 cPt=(27.3514734,27.3348278) == oppT=0.00177644731 fPerpPt=(27.
3514734,27.3348278) |
| 430 id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.0625) [42,38] 17=(0.0625,0.078125) [38]
id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.000976563) [1,21] 38=(0.000976563,0
.00146484) [21,17] |
| 431 id=1 1=(0,0.03125) [42,2] 21=(0.03125,0.046875) [42] 25=(0.046875,0.0625) [38,42
] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [1] 42=(0.000488281,0.0009765
63) [25,1,21] 38=(0.000976563,0.00146484) [25,17] |
| 432 id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42]
25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [2
7,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.00146484) [25,17] |
| 433 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3
486967,27.3375987) |
| 434 setPerp t=0.078125 cPt=(27.3500849,27.3362131) == oppT=0.00148037018 fPerpPt=(27
.3500849,27.3362131) |
| 435 setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt
=(27.3488674,27.3374283) |
| 436 setPerp t=0.00146484375 cPt=(27.3500121,27.3362857) == oppT=0.0773056159 fPerpPt
=(27.3500121,27.3362857) |
| 437 id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [42]
25=(0.046875,0.0625) [38,42] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281) [2
7,1] 42=(0.000488281,0.000976563) [27,25,21] 38=(0.000976563,0.0012207) [25,17] |
| 438 id=1 1=(0,0.015625) [2] 27=(0.015625,0.03125) [2,42] 21=(0.03125,0.046875) [46,4
2] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000488281)
[27,1] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25
] 38=(0.000976563,0.0012207) [25,17] |
| 439 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [
46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.078125) [38] id=2 2=(0,0.000244
141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21
] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17] |
| 440 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [
46,42] 25=(0.046875,0.0625) [46,38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.00024
4141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,2
1] 46=(0.000732422,0.000976563) [21,25] 38=(0.000976563,0.0012207) [25,17] |
| 441 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.046875) [
46,42] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0
703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.000244141,0.000488281) [1,27] 42=(
0.000488281,0.000732422) [27,21] 46=(0.000732422,0.000976563) [21,25] 38=(0.0009
76563,0.0012207) [31,25,17] |
| 442 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.03125) [48,42] 21=(0.03125,0.0390625)
[46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.05468
75,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=(0,0.000244141) [1] 48=(0.0002
44141,0.000488281) [1,27] 42=(0.000488281,0.000732422) [27,21] 46=(0.000732422,0
.000976563) [33,21,25] 38=(0.000976563,0.0012207) [31,25,17] |
| 443 id=1 1=(0,0.015625) [48,2] 27=(0.015625,0.0234375) [48] 35=(0.0234375,0.03125) [
42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625,0.046875) [46] 25=(0.046875,
0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0.0625,0.0703125) [38] id=2 2=
(0,0.000244141) [1] 48=(0.000244141,0.000488281) [35,1,27] 42=(0.000488281,0.000
732422) [35,21] 46=(0.000732422,0.000976563) [33,21,25] 38=(0.000976563,0.001220
7) [31,25,17] |
| 444 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375)
[48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625
,0.046875) [46] 25=(0.046875,0.0546875) [46,38] 31=(0.0546875,0.0625) [38] 17=(0
.0625,0.0703125) [38] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281)
[37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000976563) [3
3,21,25] 38=(0.000976563,0.0012207) [31,25,17] |
| 445 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2
7.3480026,27.3382917) |
| 446 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3
486967,27.3375987) |
| 447 setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt=
(27.3482951,27.3379997) |
| 448 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27
.3473086,27.3389848) |
| 449 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2
7.3480026,27.3382917) |
| 450 setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=
(27.3477228,27.3385711) |
| 451 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3
486967,27.3375987) |
| 452 setPerp t=0.0703125 cPt=(27.3493908,27.3369058) == oppT=0.001332332 fPerpPt=(27.
3493908,27.3369058) |
| 453 setPerp t=0.00122070313 cPt=(27.3488674,27.3374283) == oppT=0.0644214392 fPerpPt
=(27.3488674,27.3374283) |
| 454 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2
7.3480026,27.3382917) |
| 455 setPerp t=0.0625 cPt=(27.3486967,27.3375987) == oppT=0.00118429408 fPerpPt=(27.3
486967,27.3375987) |
| 456 setPerp t=0.00109863281 cPt=(27.3482951,27.3379997) == oppT=0.057979337 fPerpPt=
(27.3482951,27.3379997) |
| 457 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375)
[48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625
,0.046875) [46] 25=(0.046875,0.0546875) [46] id=2 2=(0,0.000244141) [37,1] 48=(0
.000244141,0.000488281) [37,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.00
0732422,0.000976563) [33,21,25] |
| 458 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27
.3473086,27.3389848) |
| 459 setPerp t=0.0546875 cPt=(27.3480026,27.3382917) == oppT=0.00103625641 fPerpPt=(2
7.3480026,27.3382917) |
| 460 setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=
(27.3477228,27.3385711) |
| 461 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375)
[48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [46,42] 33=(0.0390625
,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281) [3
7,35,27] 42=(0.000488281,0.000732422) [35,21] 46=(0.000732422,0.000854492) [33,2
1] 52=(0.000854492,0.000976563) [33] |
| 462 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375)
[48] 35=(0.0234375,0.03125) [42,48] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0390
625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.000488281)
[37,35,27] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [2
1] 46=(0.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33] |
| 463 id=1 1=(0,0.0078125) [2] 37=(0.0078125,0.015625) [2,48] 27=(0.015625,0.0234375)
[56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=(0.0
390625,0.046875) [52,46] id=2 2=(0,0.000244141) [37,1] 48=(0.000244141,0.0003662
11) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [3
5,21] 54=(0.000610352,0.000732422) [21] 46=(0.000732422,0.000854492) [33,21] 52=
(0.000854492,0.000976563) [33] |
| 464 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343
75) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=
(0.0390625,0.046875) [52,46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.00024414
1) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,
35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610352,0.000732422) [21] 46=(0
.000732422,0.000854492) [33,21] 52=(0.000854492,0.000976563) [33] |
| 465 setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpP
t=(27.3471505,27.3391427) |
| 466 setPerp t=0.0009765625 cPt=(27.3477228,27.3385711) == oppT=0.0515372255 fPerpPt=
(27.3477228,27.3385711) |
| 467 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27
.3473086,27.3389848) |
| 468 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343
75) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0390625) [54,46,42] 33=
(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1
] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.
000366211,0.000488281) [27,35] 42=(0.000488281,0.000610352) [35,21] 54=(0.000610
352,0.000732422) [21] 46=(0.000732422,0.000854492) [39,33,21] |
| 469 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343
75) [56,48] 35=(0.0234375,0.03125) [56,42] 21=(0.03125,0.0351563) [54,42] 41=(0.
0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875)
[46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.0002441
41,0.000366211) [37,27] 56=(0.000366211,0.000488281) [27,35] 42=(0.000488281,0.0
00610352) [35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.0008544
92) [41,39,33] |
| 470 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.02343
75) [56,48] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.0
3125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688
) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.0
00244141) [1,37] 48=(0.000244141,0.000366211) [37,27] 56=(0.000366211,0.00048828
1) [27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422)
[41,21] 46=(0.000732422,0.000854492) [41,39,33] |
| 471 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.015625) [58,48] 27=(0.015625,0.01953
13) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0
.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [
46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00
012207) [1] 58=(0.00012207,0.000244141) [1,37] 48=(0.000244141,0.000366211) [37,
27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,
21] 54=(0.000610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33] |
| 472 id=1 1=(0,0.0078125) [58,2] 37=(0.0078125,0.0117188) [58] 47=(0.0117188,0.015625
) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0195313,0.0234375) [56] 35=(0.02
34375,0.0273438) [56,42] 43=(0.0273438,0.03125) [42] 21=(0.03125,0.0351563) [54,
42] 41=(0.0351563,0.0390625) [46,54] 33=(0.0390625,0.0429688) [46] 39=(0.0429688
,0.046875) [46] id=2 2=(0,0.00012207) [1] 58=(0.00012207,0.000244141) [47,1,37]
48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=
(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.000732422) [41,21] 46=(0.
000732422,0.000854492) [41,39,33] |
| 473 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171
88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0
195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [
42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [46,54] 33=(0.039062
5,0.0429688) [46] 39=(0.0429688,0.046875) [46] id=2 2=(0,0.00012207) [49,1] 58=(
0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.00
0366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.00
0610352,0.000732422) [41,21] 46=(0.000732422,0.000854492) [41,39,33] |
| 474 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=
(27.3462676,27.3400246) |
| 475 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(
27.3466146,27.3396779) |
| 476 setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpP
t=(27.3465782,27.3397143) |
| 477 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(
27.3466146,27.3396779) |
| 478 setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=
(27.3469616,27.3393313) |
| 479 setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpP
t=(27.3468644,27.3394285) |
| 480 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(
27.3466146,27.3396779) |
| 481 setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=
(27.3469616,27.3393313) |
| 482 setPerp t=0.000793457031 cPt=(27.3468644,27.3394285) == oppT=0.0418740408 fPerpP
t=(27.3468644,27.3394285) |
| 483 setPerp t=0.04296875 cPt=(27.3469616,27.3393313) == oppT=0.000814200404 fPerpPt=
(27.3469616,27.3393313) |
| 484 setPerp t=0.046875 cPt=(27.3473086,27.3389848) == oppT=0.00088821901 fPerpPt=(27
.3473086,27.3389848) |
| 485 setPerp t=0.000854492188 cPt=(27.3471505,27.3391427) == oppT=0.0450951047 fPerpP
t=(27.3471505,27.3391427) |
| 486 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171
88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0
195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [
42] 21=(0.03125,0.0351563) [54,42] 41=(0.0351563,0.0390625) [54] id=2 2=(0,0.000
12207) [49,1] 58=(0.00012207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211
) [47,27] 56=(0.000366211,0.000488281) [45,27,35] 42=(0.000488281,0.000610352) [
43,35,21] 54=(0.000610352,0.000732422) [41,21] |
| 487 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=
(27.3462676,27.3400246) |
| 488 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(
27.3466146,27.3396779) |
| 489 setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpP
t=(27.3462921,27.3400001) |
| 490 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=
(27.3462676,27.3400246) |
| 491 setPerp t=0.0390625 cPt=(27.3466146,27.3396779) == oppT=0.000740181863 fPerpPt=(
27.3466146,27.3396779) |
| 492 setPerp t=0.000671386719 cPt=(27.3462921,27.3400001) == oppT=0.0354319062 fPerpP
t=(27.3462921,27.3400001) |
| 493 setPerp t=0.000732421875 cPt=(27.3465782,27.3397143) == oppT=0.0386529746 fPerpP
t=(27.3465782,27.3397143) |
| 494 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171
88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0
195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [
42] 21=(0.03125,0.0351563) [54,42] id=2 2=(0,0.00012207) [49,1] 58=(0.00012207,0
.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0.00
0488281) [45,27,35] 42=(0.000488281,0.000610352) [43,35,21] 54=(0.000610352,0.00
0671387) [21] |
| 495 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171
88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0
195313,0.0234375) [56] 35=(0.0234375,0.0273438) [56,42] 43=(0.0273438,0.03125) [
64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.0001220
7,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.000366211,0
.000488281) [45,27,35] 42=(0.000488281,0.000549316) [43,35] 64=(0.000549316,0.00
0610352) [21,43] 54=(0.000610352,0.000671387) [21] |
| 496 id=1 1=(0,0.00390625) [2] 49=(0.00390625,0.0078125) [2,58] 37=(0.0078125,0.01171
88) [58] 47=(0.0117188,0.015625) [48,58] 27=(0.015625,0.0195313) [56,48] 45=(0.0
195313,0.0234375) [66,56] 35=(0.0234375,0.0273438) [66,42] 43=(0.0273438,0.03125
) [64,42] 21=(0.03125,0.0351563) [64,54] id=2 2=(0,0.00012207) [49,1] 58=(0.0001
2207,0.000244141) [49,47,37] 48=(0.000244141,0.000366211) [47,27] 56=(0.00036621
1,0.000427246) [45,27] 66=(0.000427246,0.000488281) [35,45] 42=(0.000488281,0.00
0549316) [43,35] 64=(0.000549316,0.000610352) [21,43] 54=(0.000610352,0.00067138
7) [21] |
| 497 setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454
) |
| 498 setPerp t=0.00390625 cPt=(27.3434922,27.3427985) == oppT=7.40178961e-05 fPerpPt=
(27.3434922,27.3427985) |
| 499 setPerp t=0.0078125 cPt=(27.3438391,27.3424517) == oppT=0.000148035857 fPerpPt=(
27.3438391,27.3424517) |
| 500 setPerp t=0.01171875 cPt=(27.344186,27.3421049) == oppT=0.000222053882 fPerpPt=(
27.344186,27.3421049) |
| 501 setPerp t=0.015625 cPt=(27.3445329,27.3417581) == oppT=0.000296071971 fPerpPt=(2
7.3445329,27.3417581) |
| 502 setPerp t=0.01953125 cPt=(27.3448799,27.3414113) == oppT=0.000370090126 fPerpPt=
(27.3448799,27.3414113) |
| 503 setPerp t=0.0234375 cPt=(27.3452268,27.3410646) == oppT=0.000444108344 fPerpPt=(
27.3452268,27.3410646) |
| 504 setPerp t=0.02734375 cPt=(27.3455737,27.3407179) == oppT=0.000518126627 fPerpPt=
(27.3455737,27.3407179) |
| 505 setPerp t=0.03125 cPt=(27.3459207,27.3403712) == oppT=0.000592144975 fPerpPt=(27
.3459207,27.3403712) |
| 506 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=
(27.3462676,27.3400246) |
| 507 setPerp t=0 cPt=(27.3431454,27.3431454) == oppT=0 fPerpPt=(27.3431454,27.3431454
) |
| 508 setPerp t=0.03515625 cPt=(27.3462676,27.3400246) == oppT=0.000666163387 fPerpPt=
(27.3462676,27.3400246) |
| 509 id=1 (empty) id=2 (empty) |
| 510 debugShowQuadIntersection wtTs[0]=0 {{{27.3431454,27.3431454}, {27.3875446,27.29
87461}, {27.4323025,27.2551785}}} {{27.3431454,27.3431454}} wtTs[1]=0.03515625 {
{27.3462677,27.3400249}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.6862907,25}, {
33,25}}} wnTs[1]=0.000666163387 |
| 511 SkOpSegment::addT insert t=0.03515625 segID=20 spanID=49 |
| 512 SkOpSegment::addT insert t=0.000666163387 segID=6 spanID=50 |
| 513 id=1 1=(0,1) [2] id=2 2=(0,0.5) [1] |
| 514 id=1 1=(0,1) [2] id=2 2=(0,0.25) [1] |
| 515 id=1 1=(0,1) [2] id=2 2=(0,0.125) [1] |
| 516 id=1 1=(0,1) [2] id=2 2=(0,0.0625) [1] |
| 517 id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.0625) [1] |
| 518 id=1 1=(0,1) [12,2] id=2 2=(0,0.03125) [1] 12=(0.03125,0.046875) [1] |
| 519 id=1 1=(0,1) [16,12] id=2 16=(0.015625,0.03125) [1] 12=(0.03125,0.046875) [1] |
| 520 id=1 1=(0,0.5) [16] 3=(0.5,1) [16] id=2 16=(0.015625,0.03125) [3,1] |
| 521 id=1 1=(0,0.5) [18,16] id=2 16=(0.015625,0.0234375) [1] 18=(0.0234375,0.03125) [
1] |
| 522 id=1 1=(0,0.25) [16] id=2 16=(0.015625,0.0234375) [1] |
| 523 id=1 1=(0,0.25) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.0234375
) [1] |
| 524 id=1 1=(0,0.125) [20,16] id=2 16=(0.015625,0.0195313) [1] 20=(0.0195313,0.023437
5) [1] |
| 525 setPerp t=0 cPt=(27.4323025,27.2551785) == oppT=0.0189506973 fPerpPt=(27.4323024
,27.2551784) |
| 526 setPerp t=0.125 cPt=(27.4431369,27.243922) != oppT=0.0213231007 fPerpPt=(27.4435
129,27.2442845) |
| 527 setPerp t=0.01953125 cPt=(27.4350447,27.2525101) != oppT=0.0306377854 fPerpPt=(2
7.4349556,27.2524185) |
| 528 id=1 1=(0,0.125) [16] id=2 16=(0.015625,0.0195313) [1] |
| 529 id=1 (empty) id=2 (empty) |
| 530 debugShowQuadIntersection no intersect {{{27.4323025,27.2551785}, {27.4755878,27
.2101307}, {27.5197105,27.165432}}} {{{27.3431454,27.3431454}, {29.6862907,25},
{33,25}}} |
| 531 debugShowQuadIntersection no intersect {{{27.5197105,27.165432}, {27.541851,27.1
430035}, {27.5638676,27.1209965}}} {{{27.3431454,27.3431454}, {29.6862907,25}, {
33,25}}} |
| 532 id=1 (empty) id=2 (empty) |
| 533 debugShowQuadIntersection no intersect {{{27.5638676,27.1209965}, {27.5855064,27
.0986347}, {27.6075668,27.0761414}}} {{{27.3431454,27.3431454}, {29.6862907,25},
{33,25}}} |
| 534 id=1 1=(0,1) [4,2] id=2 2=(0,0.5) [1] 4=(0.5,1) [1] |
| 535 id=1 1=(0,0.5) [2] 3=(0.5,1) [4] id=2 2=(0,0.5) [1] 4=(0.5,1) [3] |
| 536 id=1 1=(0,0.5) [2] id=2 2=(0,0.5) [1] |
| 537 id=1 1=(0,0.5) [8,2] id=2 2=(0,0.25) [1] 8=(0.25,0.5) [1] |
| 538 id=1 1=(0,0.25) [2] id=2 2=(0,0.25) [1] |
| 539 id=1 1=(0,0.25) [10,2] id=2 2=(0,0.125) [1] 10=(0.125,0.25) [1] |
| 540 id=1 (empty) id=2 (empty) |
| 541 debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24
.7103367}, {33.2413864,24.6781349}}} {{{27.3431454,27.3431454}, {29.6862907,25},
{33,25}}} |
| 542 debugShowQuadIntersection no intersect {{{27.6075668,27.0761414}, {29.9278316,24
.7103367}, {33.2413864,24.6781349}}} {{{33,25}, {36.3137093,25}, {38.6568527,27.
3431454}}} |
| 543 debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6
568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.313
7093,41}, {33,41}}} |
| 544 debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6
568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33
}}} |
| 545 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41},
{33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527
}}} |
| 546 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6
568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.
3137093}, {25,33}}} |
| 547 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093},
{25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454
}}} |
| 548 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3
431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.686
2907,25}, {33,25}}} |
| 549 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25},
{33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454
}}} |
| 550 debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3
431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29.
6862907}, {41,33}}} |
| 551 SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [11]
(27.3431454,27.3431454) tEnd=0.000666163387 newWindSum=? newOppSum=? oppSum=? wi
ndSum=? windValue=0 oppValue=0 |
| 552 SkOpSegment::markDone id=5 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [9] (
25,33) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0 |
| 553 SkOpSegment::markDone id=4 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [7] (
27.3431454,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windVa
lue=0 oppValue=0 |
| 554 SkOpSegment::markDone id=3 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [5] (
33,41) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windValue=0 oppValue=0 |
| 555 SkOpSegment::markDone id=2 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [3] (
38.6568527,38.6568527) tEnd=1 newWindSum=? newOppSum=? oppSum=? windSum=? windVa
lue=0 oppValue=0 |
| 556 SkOpSegment::sortAngles [15] tStart=1 [30] |
| 557 SkOpAngle::after [15/1] 4/5 tStart=1 tEnd=0 < [16/2] 21/17 tStart=0 tEnd=1 < [1/
13] 1/5 tStart=1 tEnd=0 T 5 |
| 558 SkOpAngle::afterPart {{{38.6568527,38.6568527}, {38.7196693,38.5940361}, {38.780
9143,38.5304031}}} id=15 |
| 559 SkOpAngle::afterPart {{{38.6568527,38.6568527}, {36.3137093,41}, {33,41}}} id=16 |
| 560 SkOpAngle::afterPart {{{38.6568527,38.6568527}, {41,36.3137093}, {41,33}}} id=1 |
| 561 SkOpSegment::sortAngles [16] tStart=0 [31] |
| 562 SkOpSegment::sortAngles [16] tStart=1 [32] |
| 563 SkOpSegment::sortAngles [17] tStart=0 [33] |
| 564 SkOpSegment::sortAngles [17] tStart=1 [34] |
| 565 SkOpSegment::sortAngles [18] tStart=0 [35] |
| 566 SkOpSegment::sortAngles [18] tStart=1 [36] |
| 567 SkOpSegment::sortAngles [19] tStart=0 [37] |
| 568 SkOpSegment::sortAngles [19] tStart=1 [38] |
| 569 SkOpSegment::sortAngles [20] tStart=0 [39] |
| 570 SkOpSegment::sortAngles [20] tStart=0.03515625 [49] |
| 571 SkOpAngle::after [20/11] 17/17 tStart=0.03515625 tEnd=0 < [6/14] 1/1 tStart=0.00
0666163387 tEnd=1 < [20/12] 1/1 tStart=0.03515625 tEnd=1 F 11 |
| 572 SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3447063,27.3415846}, {27.343
1454,27.3431454}}} id=20 |
| 573 SkOpAngle::afterPart {{{27.3462677,27.3400249}, {29.6884986,25}, {33,25}}} id=6 |
| 574 SkOpAngle::afterPart {{{27.3462677,27.3400249}, {27.3891352,27.2971979}, {27.432
3025,27.2551785}}} id=20 |
| 575 SkOpSegment::sortAngles [1] tStart=1 [2] |
| 576 SkOpSegment::sortAngles [6] tStart=0.000666163387 [50] |
| 577 SkOpCoincidence::debugShowCoincidence - id=20 t=0 tEnd=0.03515625 |
| 578 SkOpCoincidence::debugShowCoincidence + id=6 t=0 tEnd=0.000666163387 |
| 579 SkOpCoincidence::debugShowCoincidence - id=19 t=0 tEnd=1 |
| 580 SkOpCoincidence::debugShowCoincidence + id=5 t=0 tEnd=1 |
| 581 SkOpCoincidence::debugShowCoincidence - id=18 t=0 tEnd=1 |
| 582 SkOpCoincidence::debugShowCoincidence + id=4 t=0 tEnd=1 |
| 583 SkOpCoincidence::debugShowCoincidence - id=17 t=0 tEnd=1 |
| 584 SkOpCoincidence::debugShowCoincidence + id=3 t=0 tEnd=1 |
| 585 SkOpCoincidence::debugShowCoincidence - id=16 t=0 tEnd=1 |
| 586 SkOpCoincidence::debugShowCoincidence + id=2 t=0 tEnd=1 |
| 587 SkOpSegment::debugShowActiveSpans id=9 (33.2413864,24.6781349 36.5549393,24.6459
332 38.920742,26.966198) t=0 (33.2413864,24.6781349) tEnd=1 windSum=? windValue=
1 |
| 588 SkOpSegment::debugShowActiveSpans id=10 (38.920742,26.966198 41.2865486,29.28646
28 41.3187523,32.6000175) t=0 (38.920742,26.966198) tEnd=1 windSum=? windValue=1 |
| 589 SkOpSegment::debugShowActiveSpans id=11 (41.3187523,32.6000175 41.3509521,35.913
5704 39.0306854,38.2793732) t=0 (41.3187523,32.6000175) tEnd=1 windSum=? windVal
ue=1 |
| 590 SkOpSegment::debugShowActiveSpans id=12 (39.0306854,38.2793732 38.9995995,38.311
0695 38.9681816,38.3424988) t=0 (39.0306854,38.2793732) tEnd=1 windSum=? windVal
ue=1 |
| 591 SkOpSegment::debugShowActiveSpans id=13 (38.9681816,38.3424988 38.9374619,38.374
2142 38.9064751,38.4056053) t=0 (38.9681816,38.3424988) tEnd=1 windSum=? windVal
ue=1 |
| 592 SkOpSegment::debugShowActiveSpans id=14 (38.9064751,38.4056053 38.8441086,38.468
7881 38.7809143,38.5304031) t=0 (38.9064751,38.4056053) tEnd=1 windSum=? windVal
ue=1 |
| 593 SkOpSegment::debugShowActiveSpans id=15 (38.7809143,38.5304031 38.7196693,38.594
0361 38.6568527,38.6568527) t=0 (38.7809143,38.5304031) tEnd=1 windSum=? windVal
ue=1 |
| 594 SkOpSegment::debugShowActiveSpans id=16 (38.6568527,38.6568527 36.3137093,41 33,
41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=2 |
| 595 SkOpSegment::debugShowActiveSpans id=17 (33,41 29.6862907,41 27.3431454,38.65685
27) t=0 (33,41) tEnd=1 windSum=? windValue=2 |
| 596 SkOpSegment::debugShowActiveSpans id=18 (27.3431454,38.6568527 25,36.3137093 25,
33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=2 |
| 597 SkOpSegment::debugShowActiveSpans id=19 (25,33 25,29.6862907 27.3431454,27.34314
54) t=0 (25,33) tEnd=1 windSum=? windValue=2 |
| 598 SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.298
7461 27.4323025,27.2551785) t=0 (27.3431454,27.3431454) tEnd=0.03515625 windSum=
? windValue=2 |
| 599 SkOpSegment::debugShowActiveSpans id=20 (27.3431454,27.3431454 27.3875446,27.298
7461 27.4323025,27.2551785) t=0.03515625 (27.3462677,27.3400249) tEnd=1 windSum=
? windValue=1 |
| 600 SkOpSegment::debugShowActiveSpans id=21 (27.4323025,27.2551785 27.4755878,27.210
1307 27.5197105,27.165432) t=0 (27.4323025,27.2551785) tEnd=1 windSum=? windValu
e=1 |
| 601 SkOpSegment::debugShowActiveSpans id=22 (27.5197105,27.165432 27.541851,27.14300
35 27.5638676,27.1209965) t=0 (27.5197105,27.165432) tEnd=1 windSum=? windValue=
1 |
| 602 SkOpSegment::debugShowActiveSpans id=23 (27.5638676,27.1209965 27.5855064,27.098
6347 27.6075668,27.0761414) t=0 (27.5638676,27.1209965) tEnd=1 windSum=? windVal
ue=1 |
| 603 SkOpSegment::debugShowActiveSpans id=24 (27.6075668,27.0761414 29.9278316,24.710
3367 33.2413864,24.6781349) t=0 (27.6075668,27.0761414) tEnd=1 windSum=? windVal
ue=1 |
| 604 SkOpSegment::debugShowActiveSpans id=1 (41,33 41,36.3137093 38.6568527,38.656852
7) t=0 (41,33) tEnd=1 windSum=? windValue=1 |
| 605 SkOpSegment::debugShowActiveSpans id=6 (27.3431454,27.3431454 29.6862907,25 33,2
5) t=0.000666163387 (27.3462677,27.3400249) tEnd=1 windSum=? windValue=1 |
| 606 SkOpSegment::debugShowActiveSpans id=7 (33,25 36.3137093,25 38.6568527,27.343145
4) t=0 (33,25) tEnd=1 windSum=? windValue=1 |
| 607 SkOpSegment::debugShowActiveSpans id=8 (38.6568527,27.3431454 41,29.6862907 41,3
3) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1 |
| 608 SkOpSpan::sortableTop dir=kTop seg=9 t=0.5 pt=(36.3180008,25.2340508) |
| 609 SkOpSpan::sortableTop [0] valid=1 operand=0 span=17 ccw=1 seg=9 {{{33.2413864f,
24.6781349f}, {36.5549393f, 24.6459332f}, {38.920742f, 26.966198f}}} t=0.5 pt=(3
6.3180008,25.2340508) slope=(2.83967781,1.14403152) |
| 610 SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.92
0742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 611 SkOpSegment::markWinding id=10 (38.920742,26.966198 41.2865486,29.2864628 41.318
7523,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0
oppSum=? windSum=? windValue=1 oppValue=0 |
| 612 SkOpSegment::markWinding id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0
306854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppS
um=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 613 SkOpSegment::markWinding id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9
681816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppS
um=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 614 SkOpSegment::markWinding id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9
064751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppS
um=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 615 SkOpSegment::markWinding id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7
809143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppS
um=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 616 SkOpSegment::markWinding id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6
568527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppS
um=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 617 SkOpSegment::markWinding id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.92
0742,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 618 SkOpSegment::markWinding id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2
413864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppS
um=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 619 SkOpSegment::markWinding id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6
075668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppS
um=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 620 SkOpSegment::markWinding id=22 (27.5197105,27.165432 27.541851,27.1430035 27.563
8676,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 621 SkOpSegment::markWinding id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5
197105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSu
m=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 622 SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4
323025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=-
1 newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 623 SkOpSegment::findNextWinding simple |
| 624 SkOpSegment::markDone id=9 (33.2413864,24.6781349 36.5549393,24.6459332 38.92074
2,26.966198) t=0 [17] (33.2413864,24.6781349) tEnd=1 newWindSum=-1 newOppSum=0 o
ppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 625 bridgeWinding current id=9 from=(38.920742,26.966198) to=(33.2413864,24.6781349) |
| 626 path.moveTo(38.920742,26.966198); |
| 627 path.quadTo(36.5549393,24.6459332, 33.2413864,24.6781349); |
| 628 SkOpSegment::findNextWinding simple |
| 629 SkOpSegment::markDone id=24 (27.6075668,27.0761414 29.9278316,24.7103367 33.2413
864,24.6781349) t=0 [47] (27.6075668,27.0761414) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 630 bridgeWinding current id=24 from=(33.2413864,24.6781349) to=(27.6075668,27.07614
14) |
| 631 path.quadTo(29.9278316,24.7103367, 27.6075668,27.0761414); |
| 632 SkOpSegment::findNextWinding simple |
| 633 SkOpSegment::markDone id=23 (27.5638676,27.1209965 27.5855064,27.0986347 27.6075
668,27.0761414) t=0 [45] (27.5638676,27.1209965) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 634 bridgeWinding current id=23 from=(27.6075668,27.0761414) to=(27.5638676,27.12099
65) |
| 635 path.quadTo(27.5855064,27.0986347, 27.5638676,27.1209965); |
| 636 SkOpSegment::findNextWinding simple |
| 637 SkOpSegment::markDone id=22 (27.5197105,27.165432 27.541851,27.1430035 27.563867
6,27.1209965) t=0 [43] (27.5197105,27.165432) tEnd=1 newWindSum=-1 newOppSum=0 o
ppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 638 bridgeWinding current id=22 from=(27.5638676,27.1209965) to=(27.5197105,27.16543
2) |
| 639 path.quadTo(27.541851,27.1430035, 27.5197105,27.165432); |
| 640 SkOpSegment::findNextWinding simple |
| 641 SkOpSegment::markDone id=21 (27.4323025,27.2551785 27.4755878,27.2101307 27.5197
105,27.165432) t=0 [41] (27.4323025,27.2551785) tEnd=1 newWindSum=-1 newOppSum=0
oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 642 bridgeWinding current id=21 from=(27.5197105,27.165432) to=(27.4323025,27.255178
5) |
| 643 path.quadTo(27.4755878,27.2101307, 27.4323025,27.2551785); |
| 644 SkOpSegment::markWinding id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.00
0666163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 windSum=? windValue=
1 |
| 645 SkOpSegment::markWinding id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [1
3] (33,25) tEnd=1 newWindSum=1 windSum=? windValue=1 |
| 646 SkOpSegment::markWinding id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [1
5] (38.6568527,27.3431454) tEnd=1 newWindSum=1 windSum=? windValue=1 |
| 647 SkOpSegment::markWinding id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1
] (41,33) tEnd=1 newWindSum=1 windSum=? windValue=1 |
| 648 SkOpSegment::markAngle last seg=1 span=2 |
| 649 SkOpSegment::markWinding id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4
323025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1
windSum=? windValue=2 |
| 650 SkOpSegment::nextChase mismatched signs |
| 651 SkOpSegment::markWinding id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [
37] (25,33) tEnd=1 newWindSum=1 windSum=? windValue=2 |
| 652 SkOpSegment::nextChase mismatched signs |
| 653 SkOpSegment::markWinding id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [
35] (27.3431454,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2 |
| 654 SkOpSegment::nextChase mismatched signs |
| 655 SkOpSegment::markWinding id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [
33] (33,41) tEnd=1 newWindSum=1 windSum=? windValue=2 |
| 656 SkOpSegment::nextChase mismatched signs |
| 657 SkOpSegment::markWinding id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [
31] (38.6568527,38.6568527) tEnd=1 newWindSum=1 windSum=? windValue=2 |
| 658 SkOpSegment::markAngle last seg=16 span=31 windSum=1 |
| 659 SkOpSegment::findNextWinding |
| 660 SkOpAngle::dumpOne [20/12] next=6/14 sect=1/1 s=0.03515625 [49] e=1 [40] sgn=-1
windVal=1 windSum=-1 oppVal=0 oppSum=0 |
| 661 SkOpAngle::dumpOne [6/14] next=20/11 sect=1/1 s=0.000666163387 [50] e=1 [12] sg
n=-1 windVal=1 windSum=1 |
| 662 SkOpAngle::dumpOne [20/11] next=20/12 sect=17/17 s=0.03515625 [49] e=0 [39] sgn
=1 windVal=2 windSum=1 |
| 663 SkOpSegment::findNextWinding chase.append segment=1 span=2 |
| 664 SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323
025,27.2551785) t=0 [39] (27.3431454,27.3431454) tEnd=0.03515625 newWindSum=1 ne
wOppSum=? oppSum=? windSum=1 windValue=2 oppValue=0 |
| 665 SkOpSegment::nextChase mismatched signs |
| 666 SkOpSegment::markDone id=19 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [37]
(25,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue
=0 |
| 667 SkOpSegment::nextChase mismatched signs |
| 668 SkOpSegment::markDone id=18 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [35]
(27.3431454,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 wind
Value=2 oppValue=0 |
| 669 SkOpSegment::nextChase mismatched signs |
| 670 SkOpSegment::markDone id=17 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [33]
(33,41) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=2 oppValue
=0 |
| 671 SkOpSegment::nextChase mismatched signs |
| 672 SkOpSegment::markDone id=16 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [31]
(38.6568527,38.6568527) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 wind
Value=2 oppValue=0 |
| 673 SkOpSegment::findNextWinding chase.append segment=16 span=31 windSum=1 |
| 674 SkOpSegment::markDone id=20 (27.3431454,27.3431454 27.3875446,27.2987461 27.4323
025,27.2551785) t=0.03515625 [49] (27.3462677,27.3400249) tEnd=1 newWindSum=-1 n
ewOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 675 SkOpSegment::findNextWinding from:[20] to:[6] start=5584652 end=5579668 |
| 676 bridgeWinding current id=20 from=(27.4323025,27.2551785) to=(27.3462677,27.34002
49) |
| 677 path.quadTo(27.3891354,27.2971973, 27.3462677,27.3400249); |
| 678 SkOpSegment::findNextWinding simple |
| 679 SkOpSegment::markDone id=6 (27.3431454,27.3431454 29.6862907,25 33,25) t=0.00066
6163387 [50] (27.3462677,27.3400249) tEnd=1 newWindSum=1 newOppSum=? oppSum=? wi
ndSum=1 windValue=1 oppValue=0 |
| 680 bridgeWinding current id=6 from=(27.3462677,27.3400249) to=(33,25) |
| 681 path.quadTo(29.6884995,25, 33,25); |
| 682 SkOpSegment::findNextWinding simple |
| 683 SkOpSegment::markDone id=7 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [13]
(33,25) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=
0 |
| 684 bridgeWinding current id=7 from=(33,25) to=(38.6568527,27.3431454) |
| 685 path.quadTo(36.3137093,25, 38.6568527,27.3431454); |
| 686 SkOpSegment::findNextWinding simple |
| 687 SkOpSegment::markDone id=8 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [15]
(38.6568527,27.3431454) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windV
alue=1 oppValue=0 |
| 688 bridgeWinding current id=8 from=(38.6568527,27.3431454) to=(41,33) |
| 689 path.quadTo(41,29.6862907, 41,33); |
| 690 SkOpSegment::findNextWinding |
| 691 SkOpAngle::dumpOne [1/13] next=15/1 sect=1/5 s=1 [2] e=0 [1] sgn=1 windVal=1 wi
ndSum=1 |
| 692 SkOpAngle::dumpOne [15/1] next=16/2 sect=4/5 s=1 [30] e=0 [29] sgn=1 windVal=1
windSum=-1 oppVal=0 oppSum=0 |
| 693 SkOpAngle::dumpOne [16/2] next=1/13 sect=21/17 s=0 [31] e=1 [32] sgn=-1 windVal
=2 windSum=1 done |
| 694 SkOpSegment::markDone id=1 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1] (
41,33) tEnd=1 newWindSum=1 newOppSum=? oppSum=? windSum=1 windValue=1 oppValue=0 |
| 695 SkOpSegment::findNextWinding from:[1] to:[15] start=5581892 end=5581788 |
| 696 bridgeWinding current id=1 from=(41,33) to=(38.6568527,38.6568527) |
| 697 path.quadTo(41,36.3137093, 38.6568527,38.6568527); |
| 698 SkOpSegment::findNextWinding simple |
| 699 SkOpSegment::markDone id=15 (38.7809143,38.5304031 38.7196693,38.5940361 38.6568
527,38.6568527) t=0 [29] (38.7809143,38.5304031) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 700 bridgeWinding current id=15 from=(38.6568527,38.6568527) to=(38.7809143,38.53040
31) |
| 701 path.quadTo(38.7196693,38.5940361, 38.7809143,38.5304031); |
| 702 SkOpSegment::findNextWinding simple |
| 703 SkOpSegment::markDone id=14 (38.9064751,38.4056053 38.8441086,38.4687881 38.7809
143,38.5304031) t=0 [27] (38.9064751,38.4056053) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 704 bridgeWinding current id=14 from=(38.7809143,38.5304031) to=(38.9064751,38.40560
53) |
| 705 path.quadTo(38.8441086,38.4687881, 38.9064751,38.4056053); |
| 706 SkOpSegment::findNextWinding simple |
| 707 SkOpSegment::markDone id=13 (38.9681816,38.3424988 38.9374619,38.3742142 38.9064
751,38.4056053) t=0 [25] (38.9681816,38.3424988) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 708 bridgeWinding current id=13 from=(38.9064751,38.4056053) to=(38.9681816,38.34249
88) |
| 709 path.quadTo(38.9374619,38.3742142, 38.9681816,38.3424988); |
| 710 SkOpSegment::findNextWinding simple |
| 711 SkOpSegment::markDone id=12 (39.0306854,38.2793732 38.9995995,38.3110695 38.9681
816,38.3424988) t=0 [23] (39.0306854,38.2793732) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 712 bridgeWinding current id=12 from=(38.9681816,38.3424988) to=(39.0306854,38.27937
32) |
| 713 path.quadTo(38.9995995,38.3110695, 39.0306854,38.2793732); |
| 714 SkOpSegment::findNextWinding simple |
| 715 SkOpSegment::markDone id=11 (41.3187523,32.6000175 41.3509521,35.9135704 39.0306
854,38.2793732) t=0 [21] (41.3187523,32.6000175) tEnd=1 newWindSum=-1 newOppSum=
0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 716 bridgeWinding current id=11 from=(39.0306854,38.2793732) to=(41.3187523,32.60001
75) |
| 717 path.quadTo(41.3509521,35.9135704, 41.3187523,32.6000175); |
| 718 SkOpSegment::findNextWinding simple |
| 719 SkOpSegment::markDone id=10 (38.920742,26.966198 41.2865486,29.2864628 41.318752
3,32.6000175) t=0 [19] (38.920742,26.966198) tEnd=1 newWindSum=-1 newOppSum=0 op
pSum=0 windSum=-1 windValue=1 oppValue=0 |
| 720 bridgeWinding current id=10 from=(41.3187523,32.6000175) to=(38.920742,26.966198
) |
| 721 path.quadTo(41.2865486,29.2864628, 38.920742,26.966198); |
| 722 path.close(); |
| 723 </div> |
| 724 |
| 725 <div id="fuzz763_4713parts"> |
| 726 seg=1 {{{-33.1326447f, -40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293
f, -38.5680733f}}} |
| 727 seg=2 {{{-27.4682293f, -38.5680733f}, {-25.117506f, -36.2325325f}, {-25.1067715f
, -32.9188423f}}} |
| 728 seg=3 {{{-25.1067715f, -32.9188423f}, {-25.0960369f, -29.6051483f}, {-27.4315796
f, -27.254425f}}} |
| 729 seg=4 {{{-27.4315796f, -27.254425f}, {-29.7671204f, -24.9036999f}, {-33.0808144f
, -24.8929653f}}} |
| 730 seg=5 {{{-33.0808144f, -24.8929653f}, {-36.3945045f, -24.8822308f}, {-38.7452278
f, -27.2177753f}}} |
| 731 seg=6 {{{-38.7452278f, -27.2177753f}, {-41.0959549f, -29.5533161f}, {-41.1066895
f, -32.867012f}}} |
| 732 seg=7 {{{-41.1066895f, -32.867012f}, {-41.117424f, -36.1807022f}, {-38.7818794f,
-38.5314217f}}} |
| 733 seg=8 {{{-38.7818794f, -38.5314217f}, {-36.4463348f, -40.8821487f}, {-33.1326447
f, -40.8928833f}}} |
| 734 op union |
| 735 seg=9 {{{41, 33}, {41, 36.3137093f}, {38.6568527f, 38.6568527f}}} |
| 736 seg=10 {{{38.6568527f, 38.6568527f}, {36.3137093f, 41}, {33, 41}}} |
| 737 seg=11 {{{33, 41}, {29.6862907f, 41}, {27.3431454f, 38.6568527f}}} |
| 738 seg=12 {{{27.3431454f, 38.6568527f}, {25, 36.3137093f}, {25, 33}}} |
| 739 seg=13 {{{25, 33}, {25, 29.6862907f}, {27.3431454f, 27.3431454f}}} |
| 740 seg=14 {{{27.3431454f, 27.3431454f}, {29.6862907f, 25}, {33, 25}}} |
| 741 seg=15 {{{33, 25}, {36.3137093f, 25}, {38.6568527f, 27.3431454f}}} |
| 742 seg=16 {{{38.6568527f, 27.3431454f}, {41, 29.6862907f}, {41, 33}}} |
| 743 debugShowQuadIntersection wtTs[0]=1 {{{-33.1326447,-40.8928833}, {-29.8189526,-4
0.9036179}, {-27.4682293,-38.5680733}}} {{-27.4682293,-38.5680733}} wnTs[0]=0 {{
{-27.4682293,-38.5680733}, {-25.117506,-36.2325325}, {-25.1067715,-32.9188423}}} |
| 744 debugShowQuadIntersection wtTs[0]=0 {{{-33.1326447,-40.8928833}, {-29.8189526,-4
0.9036179}, {-27.4682293,-38.5680733}}} {{-33.1326447,-40.8928833}} wnTs[0]=1 {{
{-38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}}
} |
| 745 debugShowQuadIntersection wtTs[0]=1 {{{-27.4682293,-38.5680733}, {-25.117506,-36
.2325325}, {-25.1067715,-32.9188423}}} {{-25.1067715,-32.9188423}} wnTs[0]=0 {{{
-25.1067715,-32.9188423}, {-25.0960369,-29.6051483}, {-27.4315796,-27.254425}}} |
| 746 debugShowQuadIntersection wtTs[0]=1 {{{-25.1067715,-32.9188423}, {-25.0960369,-2
9.6051483}, {-27.4315796,-27.254425}}} {{-27.4315796,-27.254425}} wnTs[0]=0 {{{-
27.4315796,-27.254425}, {-29.7671204,-24.9036999}, {-33.0808144,-24.8929653}}} |
| 747 debugShowQuadIntersection wtTs[0]=1 {{{-27.4315796,-27.254425}, {-29.7671204,-24
.9036999}, {-33.0808144,-24.8929653}}} {{-33.0808144,-24.8929653}} wnTs[0]=0 {{{
-33.0808144,-24.8929653}, {-36.3945045,-24.8822308}, {-38.7452278,-27.2177753}}} |
| 748 debugShowQuadIntersection wtTs[0]=1 {{{-33.0808144,-24.8929653}, {-36.3945045,-2
4.8822308}, {-38.7452278,-27.2177753}}} {{-38.7452278,-27.2177753}} wnTs[0]=0 {{
{-38.7452278,-27.2177753}, {-41.0959549,-29.5533161}, {-41.1066895,-32.867012}}} |
| 749 debugShowQuadIntersection wtTs[0]=1 {{{-38.7452278,-27.2177753}, {-41.0959549,-2
9.5533161}, {-41.1066895,-32.867012}}} {{-41.1066895,-32.867012}} wnTs[0]=0 {{{-
41.1066895,-32.867012}, {-41.117424,-36.1807022}, {-38.7818794,-38.5314217}}} |
| 750 debugShowQuadIntersection wtTs[0]=1 {{{-41.1066895,-32.867012}, {-41.117424,-36.
1807022}, {-38.7818794,-38.5314217}}} {{-38.7818794,-38.5314217}} wnTs[0]=0 {{{-
38.7818794,-38.5314217}, {-36.4463348,-40.8821487}, {-33.1326447,-40.8928833}}} |
| 751 debugShowQuadIntersection wtTs[0]=1 {{{41,33}, {41,36.3137093}, {38.6568527,38.6
568527}}} {{38.6568527,38.6568527}} wnTs[0]=0 {{{38.6568527,38.6568527}, {36.313
7093,41}, {33,41}}} |
| 752 debugShowQuadIntersection wtTs[0]=0 {{{41,33}, {41,36.3137093}, {38.6568527,38.6
568527}}} {{41,33}} wnTs[0]=1 {{{38.6568527,27.3431454}, {41,29.6862907}, {41,33
}}} |
| 753 debugShowQuadIntersection wtTs[0]=1 {{{38.6568527,38.6568527}, {36.3137093,41},
{33,41}}} {{33,41}} wnTs[0]=0 {{{33,41}, {29.6862907,41}, {27.3431454,38.6568527
}}} |
| 754 debugShowQuadIntersection wtTs[0]=1 {{{33,41}, {29.6862907,41}, {27.3431454,38.6
568527}}} {{27.3431454,38.6568527}} wnTs[0]=0 {{{27.3431454,38.6568527}, {25,36.
3137093}, {25,33}}} |
| 755 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,38.6568527}, {25,36.3137093},
{25,33}}} {{25,33}} wnTs[0]=0 {{{25,33}, {25,29.6862907}, {27.3431454,27.3431454
}}} |
| 756 debugShowQuadIntersection wtTs[0]=1 {{{25,33}, {25,29.6862907}, {27.3431454,27.3
431454}}} {{27.3431454,27.3431454}} wnTs[0]=0 {{{27.3431454,27.3431454}, {29.686
2907,25}, {33,25}}} |
| 757 debugShowQuadIntersection wtTs[0]=1 {{{27.3431454,27.3431454}, {29.6862907,25},
{33,25}}} {{33,25}} wnTs[0]=0 {{{33,25}, {36.3137093,25}, {38.6568527,27.3431454
}}} |
| 758 debugShowQuadIntersection wtTs[0]=1 {{{33,25}, {36.3137093,25}, {38.6568527,27.3
431454}}} {{38.6568527,27.3431454}} wnTs[0]=0 {{{38.6568527,27.3431454}, {41,29.
6862907}, {41,33}}} |
| 759 SkOpSegment::debugShowActiveSpans id=1 (-33.1326447,-40.8928833 -29.8189526,-40.
9036179 -27.4682293,-38.5680733) t=0 (-33.1326447,-40.8928833) tEnd=1 windSum=?
windValue=1 |
| 760 SkOpSegment::debugShowActiveSpans id=2 (-27.4682293,-38.5680733 -25.117506,-36.2
325325 -25.1067715,-32.9188423) t=0 (-27.4682293,-38.5680733) tEnd=1 windSum=? w
indValue=1 |
| 761 SkOpSegment::debugShowActiveSpans id=3 (-25.1067715,-32.9188423 -25.0960369,-29.
6051483 -27.4315796,-27.254425) t=0 (-25.1067715,-32.9188423) tEnd=1 windSum=? w
indValue=1 |
| 762 SkOpSegment::debugShowActiveSpans id=4 (-27.4315796,-27.254425 -29.7671204,-24.9
036999 -33.0808144,-24.8929653) t=0 (-27.4315796,-27.254425) tEnd=1 windSum=? wi
ndValue=1 |
| 763 SkOpSegment::debugShowActiveSpans id=5 (-33.0808144,-24.8929653 -36.3945045,-24.
8822308 -38.7452278,-27.2177753) t=0 (-33.0808144,-24.8929653) tEnd=1 windSum=?
windValue=1 |
| 764 SkOpSegment::debugShowActiveSpans id=6 (-38.7452278,-27.2177753 -41.0959549,-29.
5533161 -41.1066895,-32.867012) t=0 (-38.7452278,-27.2177753) tEnd=1 windSum=? w
indValue=1 |
| 765 SkOpSegment::debugShowActiveSpans id=7 (-41.1066895,-32.867012 -41.117424,-36.18
07022 -38.7818794,-38.5314217) t=0 (-41.1066895,-32.867012) tEnd=1 windSum=? win
dValue=1 |
| 766 SkOpSegment::debugShowActiveSpans id=8 (-38.7818794,-38.5314217 -36.4463348,-40.
8821487 -33.1326447,-40.8928833) t=0 (-38.7818794,-38.5314217) tEnd=1 windSum=?
windValue=1 |
| 767 SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.656852
7) t=0 (41,33) tEnd=1 windSum=? windValue=1 |
| 768 SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33,
41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1 |
| 769 SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.65685
27) t=0 (33,41) tEnd=1 windSum=? windValue=1 |
| 770 SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25,
33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1 |
| 771 SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.34314
54) t=0 (25,33) tEnd=1 windSum=? windValue=1 |
| 772 SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33,
25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1 |
| 773 SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.34314
54) t=0 (33,25) tEnd=1 windSum=? windValue=1 |
| 774 SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41,
33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1 |
| 775 SkOpSpan::sortableTop dir=kTop seg=1 t=0.5 pt=(-30.0596943,-40.3170471) |
| 776 SkOpSpan::sortableTop [0] valid=1 operand=0 span=1 ccw=1 seg=1 {{{-33.1326447f,
-40.8928833f}, {-29.8189526f, -40.9036179f}, {-27.4682293f, -38.5680733f}}} t=0.
5 pt=(-30.0596943,-40.3170471) slope=(2.83220768,1.16240501) |
| 777 SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -
27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 n
ewOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 778 SkOpSegment::markWinding id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -2
5.1067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 ne
wOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 779 SkOpSegment::markWinding id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -
27.4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 ne
wOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 780 SkOpSegment::markWinding id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -3
3.0808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 new
OppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 781 SkOpSegment::markWinding id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -
38.7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 n
ewOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 782 SkOpSegment::markWinding id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -
41.1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 n
ewOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 783 SkOpSegment::markWinding id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38
.7818794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 new
OppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 784 SkOpSegment::markWinding id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -
33.1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1
newOppSum=0 oppSum=? windSum=? windValue=1 oppValue=0 |
| 785 SkOpSegment::markWinding id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -
27.4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 n
ewOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 786 SkOpSegment::activeOp id=1 t=1 tEnd=0 op=union miFrom=0 miTo=1 suFrom=0 suTo=0 r
esult=1 |
| 787 SkOpSegment::findNextOp simple |
| 788 SkOpSegment::markDone id=1 (-33.1326447,-40.8928833 -29.8189526,-40.9036179 -27.
4682293,-38.5680733) t=0 [1] (-33.1326447,-40.8928833) tEnd=1 newWindSum=-1 newO
ppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 789 bridgeOp current id=1 from=(-27.4682293,-38.5680733) to=(-33.1326447,-40.8928833
) |
| 790 path.moveTo(-27.4682293,-38.5680733); |
| 791 path.quadTo(-29.8189526,-40.9036179, -33.1326447,-40.8928833); |
| 792 SkOpSegment::findNextOp simple |
| 793 SkOpSegment::markDone id=8 (-38.7818794,-38.5314217 -36.4463348,-40.8821487 -33.
1326447,-40.8928833) t=0 [15] (-38.7818794,-38.5314217) tEnd=1 newWindSum=-1 new
OppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 794 bridgeOp current id=8 from=(-33.1326447,-40.8928833) to=(-38.7818794,-38.5314217
) |
| 795 path.quadTo(-36.4463348,-40.8821487, -38.7818794,-38.5314217); |
| 796 SkOpSegment::findNextOp simple |
| 797 SkOpSegment::markDone id=7 (-41.1066895,-32.867012 -41.117424,-36.1807022 -38.78
18794,-38.5314217) t=0 [13] (-41.1066895,-32.867012) tEnd=1 newWindSum=-1 newOpp
Sum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 798 bridgeOp current id=7 from=(-38.7818794,-38.5314217) to=(-41.1066895,-32.867012) |
| 799 path.quadTo(-41.117424,-36.1807022, -41.1066895,-32.867012); |
| 800 SkOpSegment::findNextOp simple |
| 801 SkOpSegment::markDone id=6 (-38.7452278,-27.2177753 -41.0959549,-29.5533161 -41.
1066895,-32.867012) t=0 [11] (-38.7452278,-27.2177753) tEnd=1 newWindSum=-1 newO
ppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 802 bridgeOp current id=6 from=(-41.1066895,-32.867012) to=(-38.7452278,-27.2177753) |
| 803 path.quadTo(-41.0959549,-29.5533161, -38.7452278,-27.2177753); |
| 804 SkOpSegment::findNextOp simple |
| 805 SkOpSegment::markDone id=5 (-33.0808144,-24.8929653 -36.3945045,-24.8822308 -38.
7452278,-27.2177753) t=0 [9] (-33.0808144,-24.8929653) tEnd=1 newWindSum=-1 newO
ppSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 806 bridgeOp current id=5 from=(-38.7452278,-27.2177753) to=(-33.0808144,-24.8929653
) |
| 807 path.quadTo(-36.3945045,-24.8822308, -33.0808144,-24.8929653); |
| 808 SkOpSegment::findNextOp simple |
| 809 SkOpSegment::markDone id=4 (-27.4315796,-27.254425 -29.7671204,-24.9036999 -33.0
808144,-24.8929653) t=0 [7] (-27.4315796,-27.254425) tEnd=1 newWindSum=-1 newOpp
Sum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 810 bridgeOp current id=4 from=(-33.0808144,-24.8929653) to=(-27.4315796,-27.254425) |
| 811 path.quadTo(-29.7671204,-24.9036999, -27.4315796,-27.254425); |
| 812 SkOpSegment::findNextOp simple |
| 813 SkOpSegment::markDone id=3 (-25.1067715,-32.9188423 -25.0960369,-29.6051483 -27.
4315796,-27.254425) t=0 [5] (-25.1067715,-32.9188423) tEnd=1 newWindSum=-1 newOp
pSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 814 bridgeOp current id=3 from=(-27.4315796,-27.254425) to=(-25.1067715,-32.9188423) |
| 815 path.quadTo(-25.0960369,-29.6051483, -25.1067715,-32.9188423); |
| 816 SkOpSegment::findNextOp simple |
| 817 SkOpSegment::markDone id=2 (-27.4682293,-38.5680733 -25.117506,-36.2325325 -25.1
067715,-32.9188423) t=0 [3] (-27.4682293,-38.5680733) tEnd=1 newWindSum=-1 newOp
pSum=0 oppSum=0 windSum=-1 windValue=1 oppValue=0 |
| 818 bridgeOp current id=2 from=(-25.1067715,-32.9188423) to=(-27.4682293,-38.5680733
) |
| 819 path.quadTo(-25.117506,-36.2325325, -27.4682293,-38.5680733); |
| 820 path.close(); |
| 821 SkOpSegment::debugShowActiveSpans id=9 (41,33 41,36.3137093 38.6568527,38.656852
7) t=0 (41,33) tEnd=1 windSum=? windValue=1 |
| 822 SkOpSegment::debugShowActiveSpans id=10 (38.6568527,38.6568527 36.3137093,41 33,
41) t=0 (38.6568527,38.6568527) tEnd=1 windSum=? windValue=1 |
| 823 SkOpSegment::debugShowActiveSpans id=11 (33,41 29.6862907,41 27.3431454,38.65685
27) t=0 (33,41) tEnd=1 windSum=? windValue=1 |
| 824 SkOpSegment::debugShowActiveSpans id=12 (27.3431454,38.6568527 25,36.3137093 25,
33) t=0 (27.3431454,38.6568527) tEnd=1 windSum=? windValue=1 |
| 825 SkOpSegment::debugShowActiveSpans id=13 (25,33 25,29.6862907 27.3431454,27.34314
54) t=0 (25,33) tEnd=1 windSum=? windValue=1 |
| 826 SkOpSegment::debugShowActiveSpans id=14 (27.3431454,27.3431454 29.6862907,25 33,
25) t=0 (27.3431454,27.3431454) tEnd=1 windSum=? windValue=1 |
| 827 SkOpSegment::debugShowActiveSpans id=15 (33,25 36.3137093,25 38.6568527,27.34314
54) t=0 (33,25) tEnd=1 windSum=? windValue=1 |
| 828 SkOpSegment::debugShowActiveSpans id=16 (38.6568527,27.3431454 41,29.6862907 41,
33) t=0 (38.6568527,27.3431454) tEnd=1 windSum=? windValue=1 |
| 829 SkOpSpan::sortableTop dir=kLeft seg=9 t=0.5 pt=(40.4142151,36.0710678) |
| 830 SkOpSpan::sortableTop [0] valid=1 operand=1 span=23 ccw=1 seg=12 {{{27.3431454f,
38.6568527f}, {25, 36.3137093f}, {25, 33}}} t=0.5 pt=(25.5857868,36.0710678) sl
ope=(-1.17157269,-2.82842636) |
| 831 SkOpSpan::sortableTop [1] valid=1 operand=1 span=17 ccw=0 seg=9 {{{41, 33}, {41,
36.3137093f}, {38.6568527f, 38.6568527f}}} t=0.5 pt=(40.4142151,36.0710678) slo
pe=(-1.17157364,2.82842636) |
| 832 SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [
23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1
windValue=1 oppValue=0 |
| 833 SkOpSegment::markWinding id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [
25] (25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppV
alue=0 |
| 834 SkOpSegment::markWinding id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [
27] (27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=?
windValue=1 oppValue=0 |
| 835 SkOpSegment::markWinding id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [
29] (33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppV
alue=0 |
| 836 SkOpSegment::markWinding id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [
31] (38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=?
windValue=1 oppValue=0 |
| 837 SkOpSegment::markWinding id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [1
7] (41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppVa
lue=0 |
| 838 SkOpSegment::markWinding id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [
19] (38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=?
windValue=1 oppValue=0 |
| 839 SkOpSegment::markWinding id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [
21] (33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=? windSum=? windValue=1 oppV
alue=0 |
| 840 SkOpSegment::markWinding id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [
23] (27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1
windValue=1 oppValue=0 |
| 841 SkOpSegment::activeOp id=9 t=1 tEnd=0 op=union miFrom=0 miTo=0 suFrom=0 suTo=1 r
esult=1 |
| 842 SkOpSegment::findNextOp simple |
| 843 SkOpSegment::markDone id=9 (41,33 41,36.3137093 38.6568527,38.6568527) t=0 [17]
(41,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppValu
e=0 |
| 844 bridgeOp current id=9 from=(38.6568527,38.6568527) to=(41,33) |
| 845 path.moveTo(38.6568527,38.6568527); |
| 846 path.quadTo(41,36.3137093, 41,33); |
| 847 SkOpSegment::findNextOp simple |
| 848 SkOpSegment::markDone id=16 (38.6568527,27.3431454 41,29.6862907 41,33) t=0 [31]
(38.6568527,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi
ndValue=1 oppValue=0 |
| 849 bridgeOp current id=16 from=(41,33) to=(38.6568527,27.3431454) |
| 850 path.quadTo(41,29.6862907, 38.6568527,27.3431454); |
| 851 SkOpSegment::findNextOp simple |
| 852 SkOpSegment::markDone id=15 (33,25 36.3137093,25 38.6568527,27.3431454) t=0 [29]
(33,25) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppVal
ue=0 |
| 853 bridgeOp current id=15 from=(38.6568527,27.3431454) to=(33,25) |
| 854 path.quadTo(36.3137093,25, 33,25); |
| 855 SkOpSegment::findNextOp simple |
| 856 SkOpSegment::markDone id=14 (27.3431454,27.3431454 29.6862907,25 33,25) t=0 [27]
(27.3431454,27.3431454) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi
ndValue=1 oppValue=0 |
| 857 bridgeOp current id=14 from=(33,25) to=(27.3431454,27.3431454) |
| 858 path.quadTo(29.6862907,25, 27.3431454,27.3431454); |
| 859 SkOpSegment::findNextOp simple |
| 860 SkOpSegment::markDone id=13 (25,33 25,29.6862907 27.3431454,27.3431454) t=0 [25]
(25,33) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppVal
ue=0 |
| 861 bridgeOp current id=13 from=(27.3431454,27.3431454) to=(25,33) |
| 862 path.quadTo(25,29.6862907, 25,33); |
| 863 SkOpSegment::findNextOp simple |
| 864 SkOpSegment::markDone id=12 (27.3431454,38.6568527 25,36.3137093 25,33) t=0 [23]
(27.3431454,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi
ndValue=1 oppValue=0 |
| 865 bridgeOp current id=12 from=(25,33) to=(27.3431454,38.6568527) |
| 866 path.quadTo(25,36.3137093, 27.3431454,38.6568527); |
| 867 SkOpSegment::findNextOp simple |
| 868 SkOpSegment::markDone id=11 (33,41 29.6862907,41 27.3431454,38.6568527) t=0 [21]
(33,41) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 windValue=1 oppVal
ue=0 |
| 869 bridgeOp current id=11 from=(27.3431454,38.6568527) to=(33,41) |
| 870 path.quadTo(29.6862907,41, 33,41); |
| 871 SkOpSegment::findNextOp simple |
| 872 SkOpSegment::markDone id=10 (38.6568527,38.6568527 36.3137093,41 33,41) t=0 [19]
(38.6568527,38.6568527) tEnd=1 newWindSum=-1 newOppSum=0 oppSum=0 windSum=-1 wi
ndValue=1 oppValue=0 |
| 873 bridgeOp current id=10 from=(33,41) to=(38.6568527,38.6568527) |
| 874 path.quadTo(36.3137093,41, 38.6568527,38.6568527); |
136 path.close(); | 875 path.close(); |
137 </div> | 876 </div> |
138 | 877 |
139 </div> | 878 </div> |
140 | 879 |
141 <script type="text/javascript"> | 880 <script type="text/javascript"> |
142 | 881 |
143 var testDivs = [ | 882 var testDivs = [ |
144 reduced, | 883 fuzz763_4713_b, |
| 884 fuzz763_4713parts, |
145 ]; | 885 ]; |
146 | 886 |
147 var decimal_places = 3; // make this 3 to show more precision | 887 var decimal_places = 3; // make this 3 to show more precision |
148 | 888 |
149 var tests = []; | 889 var tests = []; |
150 var testLines = []; | 890 var testLines = []; |
151 var testTitles = []; | 891 var testTitles = []; |
152 var testIndex = 0; | 892 var testIndex = 0; |
153 var ctx; | 893 var ctx; |
154 | 894 |
(...skipping 3795 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3950 </script> | 4690 </script> |
3951 </head> | 4691 </head> |
3952 | 4692 |
3953 <body onLoad="start();"> | 4693 <body onLoad="start();"> |
3954 <canvas id="canvas" width="750" height="500" | 4694 <canvas id="canvas" width="750" height="500" |
3955 onmousemove="handleMouseOver()" | 4695 onmousemove="handleMouseOver()" |
3956 onclick="handleMouseClick()" | 4696 onclick="handleMouseClick()" |
3957 ></canvas > | 4697 ></canvas > |
3958 </body> | 4698 </body> |
3959 </html> | 4699 </html> |
OLD | NEW |