Index: third_party/qcms/src/transform.c |
diff --git a/third_party/qcms/src/transform.c b/third_party/qcms/src/transform.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..dd4eee46ec05e12a7dd50fcc4fc957662ed565d2 |
--- /dev/null |
+++ b/third_party/qcms/src/transform.c |
@@ -0,0 +1,1641 @@ |
+/* vim: set ts=8 sw=8 noexpandtab: */ |
+// qcms |
+// Copyright (C) 2009 Mozilla Corporation |
+// Copyright (C) 1998-2007 Marti Maria |
+// |
+// Permission is hereby granted, free of charge, to any person obtaining |
+// a copy of this software and associated documentation files (the "Software"), |
+// to deal in the Software without restriction, including without limitation |
+// the rights to use, copy, modify, merge, publish, distribute, sublicense, |
+// and/or sell copies of the Software, and to permit persons to whom the Software |
+// is furnished to do so, subject to the following conditions: |
+// |
+// The above copyright notice and this permission notice shall be included in |
+// all copies or substantial portions of the Software. |
+// |
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
+ |
+#include <stdlib.h> |
+#include <math.h> |
+#include <assert.h> |
+#include <string.h> //memcpy |
+#include "qcmsint.h" |
+#include "chain.h" |
+#include "halffloat.h" |
+#include "matrix.h" |
+#include "transform_util.h" |
+ |
+/* for MSVC, GCC, Intel, and Sun compilers */ |
+#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64) |
+#define X86 |
+#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */ |
+ |
+// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ |
+// This is just an approximation, I am not handling all the non-linear |
+// aspects of the RGB to XYZ process, and assumming that the gamma correction |
+// has transitive property in the tranformation chain. |
+// |
+// the alghoritm: |
+// |
+// - First I build the absolute conversion matrix using |
+// primaries in XYZ. This matrix is next inverted |
+// - Then I eval the source white point across this matrix |
+// obtaining the coeficients of the transformation |
+// - Then, I apply these coeficients to the original matrix |
+static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs) |
+{ |
+ struct matrix primaries; |
+ struct matrix primaries_invert; |
+ struct matrix result; |
+ struct vector white_point; |
+ struct vector coefs; |
+ |
+ double xn, yn; |
+ double xr, yr; |
+ double xg, yg; |
+ double xb, yb; |
+ |
+ xn = white.x; |
+ yn = white.y; |
+ |
+ if (yn == 0.0) |
+ return matrix_invalid(); |
+ |
+ xr = primrs.red.x; |
+ yr = primrs.red.y; |
+ xg = primrs.green.x; |
+ yg = primrs.green.y; |
+ xb = primrs.blue.x; |
+ yb = primrs.blue.y; |
+ |
+ primaries.m[0][0] = xr; |
+ primaries.m[0][1] = xg; |
+ primaries.m[0][2] = xb; |
+ |
+ primaries.m[1][0] = yr; |
+ primaries.m[1][1] = yg; |
+ primaries.m[1][2] = yb; |
+ |
+ primaries.m[2][0] = 1 - xr - yr; |
+ primaries.m[2][1] = 1 - xg - yg; |
+ primaries.m[2][2] = 1 - xb - yb; |
+ primaries.invalid = false; |
+ |
+ white_point.v[0] = xn/yn; |
+ white_point.v[1] = 1.; |
+ white_point.v[2] = (1.0-xn-yn)/yn; |
+ |
+ primaries_invert = matrix_invert(primaries); |
+ |
+ coefs = matrix_eval(primaries_invert, white_point); |
+ |
+ result.m[0][0] = coefs.v[0]*xr; |
+ result.m[0][1] = coefs.v[1]*xg; |
+ result.m[0][2] = coefs.v[2]*xb; |
+ |
+ result.m[1][0] = coefs.v[0]*yr; |
+ result.m[1][1] = coefs.v[1]*yg; |
+ result.m[1][2] = coefs.v[2]*yb; |
+ |
+ result.m[2][0] = coefs.v[0]*(1.-xr-yr); |
+ result.m[2][1] = coefs.v[1]*(1.-xg-yg); |
+ result.m[2][2] = coefs.v[2]*(1.-xb-yb); |
+ result.invalid = primaries_invert.invalid; |
+ |
+ return result; |
+} |
+ |
+struct CIE_XYZ { |
+ double X; |
+ double Y; |
+ double Z; |
+}; |
+ |
+/* CIE Illuminant D50 */ |
+static const struct CIE_XYZ D50_XYZ = { |
+ 0.9642, |
+ 1.0000, |
+ 0.8249 |
+}; |
+ |
+/* from lcms: xyY2XYZ() |
+ * corresponds to argyll: icmYxy2XYZ() */ |
+static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source) |
+{ |
+ struct CIE_XYZ dest; |
+ dest.X = (source.x / source.y) * source.Y; |
+ dest.Y = source.Y; |
+ dest.Z = ((1 - source.x - source.y) / source.y) * source.Y; |
+ return dest; |
+} |
+ |
+/* from lcms: ComputeChromaticAdaption */ |
+// Compute chromatic adaption matrix using chad as cone matrix |
+static struct matrix |
+compute_chromatic_adaption(struct CIE_XYZ source_white_point, |
+ struct CIE_XYZ dest_white_point, |
+ struct matrix chad) |
+{ |
+ struct matrix chad_inv; |
+ struct vector cone_source_XYZ, cone_source_rgb; |
+ struct vector cone_dest_XYZ, cone_dest_rgb; |
+ struct matrix cone, tmp; |
+ |
+ tmp = chad; |
+ chad_inv = matrix_invert(tmp); |
+ |
+ cone_source_XYZ.v[0] = source_white_point.X; |
+ cone_source_XYZ.v[1] = source_white_point.Y; |
+ cone_source_XYZ.v[2] = source_white_point.Z; |
+ |
+ cone_dest_XYZ.v[0] = dest_white_point.X; |
+ cone_dest_XYZ.v[1] = dest_white_point.Y; |
+ cone_dest_XYZ.v[2] = dest_white_point.Z; |
+ |
+ cone_source_rgb = matrix_eval(chad, cone_source_XYZ); |
+ cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ); |
+ |
+ cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0]; |
+ cone.m[0][1] = 0; |
+ cone.m[0][2] = 0; |
+ cone.m[1][0] = 0; |
+ cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1]; |
+ cone.m[1][2] = 0; |
+ cone.m[2][0] = 0; |
+ cone.m[2][1] = 0; |
+ cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2]; |
+ cone.invalid = false; |
+ |
+ // Normalize |
+ return matrix_multiply(chad_inv, matrix_multiply(cone, chad)); |
+} |
+ |
+/* from lcms: cmsAdaptionMatrix */ |
+// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll |
+// Bradford is assumed |
+static struct matrix |
+adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination) |
+{ |
+#if defined (_MSC_VER) |
+#pragma warning(push) |
+/* Disable double to float truncation warning 4305 */ |
+#pragma warning(disable:4305) |
+#endif |
+ struct matrix lam_rigg = {{ // Bradford matrix |
+ { 0.8951, 0.2664, -0.1614 }, |
+ { -0.7502, 1.7135, 0.0367 }, |
+ { 0.0389, -0.0685, 1.0296 } |
+ }}; |
+#if defined (_MSC_VER) |
+/* Restore warnings */ |
+#pragma warning(pop) |
+#endif |
+ return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg); |
+} |
+ |
+/* from lcms: cmsAdaptMatrixToD50 */ |
+static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_point) |
+{ |
+ struct CIE_XYZ DNN_XYZ; |
+ struct matrix Bradford; |
+ |
+ if (source_white_point.y == 0.0) |
+ return matrix_invalid(); |
+ |
+ DNN_XYZ = xyY2XYZ(source_white_point); |
+ |
+ Bradford = adaption_matrix(DNN_XYZ, D50_XYZ); |
+ |
+ return matrix_multiply(Bradford, r); |
+} |
+ |
+qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries) |
+{ |
+ struct CIE_XYZ source_white; |
+ struct matrix colorants; |
+ |
+ colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); |
+ colorants = adapt_matrix_to_D50(colorants, white_point); |
+ |
+ if (colorants.invalid) |
+ return false; |
+ |
+ /* note: there's a transpose type of operation going on here */ |
+ profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]); |
+ profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]); |
+ profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]); |
+ |
+ profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]); |
+ profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]); |
+ profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]); |
+ |
+ profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]); |
+ profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]); |
+ profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]); |
+ |
+ /* Store the media white point */ |
+ source_white = xyY2XYZ(white_point); |
+ profile->mediaWhitePoint.X = double_to_s15Fixed16Number(source_white.X); |
+ profile->mediaWhitePoint.Y = double_to_s15Fixed16Number(source_white.Y); |
+ profile->mediaWhitePoint.Z = double_to_s15Fixed16Number(source_white.Z); |
+ |
+ return true; |
+} |
+ |
+#if 0 |
+static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i=0; i<length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ float out_device_r = pow(out_linear_r, transform->out_gamma_r); |
+ float out_device_g = pow(out_linear_g, transform->out_gamma_g); |
+ float out_device_b = pow(out_linear_b, transform->out_gamma_b); |
+ |
+ dest[r_out] = clamp_u8(out_device_r*255); |
+ dest[1] = clamp_u8(out_device_g*255); |
+ dest[b_out] = clamp_u8(out_device_b*255); |
+ dest += 3; |
+ } |
+} |
+#endif |
+ |
+static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ float out_device_r, out_device_g, out_device_b; |
+ unsigned char device = *src++; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ dest[r_out] = clamp_u8(out_device_r*255); |
+ dest[1] = clamp_u8(out_device_g*255); |
+ dest[b_out] = clamp_u8(out_device_b*255); |
+ dest += 3; |
+ } |
+} |
+ |
+/* Alpha is not corrected. |
+ A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If |
+ RGB Is?" Tech Memo 17 (December 14, 1998). |
+ See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf |
+*/ |
+ |
+static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ float out_device_r, out_device_g, out_device_b; |
+ unsigned char device = *src++; |
+ unsigned char alpha = *src++; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ dest[r_out] = clamp_u8(out_device_r*255); |
+ dest[1] = clamp_u8(out_device_g*255); |
+ dest[b_out] = clamp_u8(out_device_b*255); |
+ dest[3] = alpha; |
+ dest += 4; |
+ } |
+} |
+ |
+ |
+static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device = *src++; |
+ uint16_t gray; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ /* we could round here... */ |
+ gray = linear * PRECACHE_OUTPUT_MAX; |
+ |
+ dest[r_out] = transform->output_table_r->data[gray]; |
+ dest[1] = transform->output_table_g->data[gray]; |
+ dest[b_out] = transform->output_table_b->data[gray]; |
+ dest += 3; |
+ } |
+} |
+ |
+ |
+static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device = *src++; |
+ unsigned char alpha = *src++; |
+ uint16_t gray; |
+ |
+ float linear = transform->input_gamma_table_gray[device]; |
+ |
+ /* we could round here... */ |
+ gray = linear * PRECACHE_OUTPUT_MAX; |
+ |
+ dest[r_out] = transform->output_table_r->data[gray]; |
+ dest[1] = transform->output_table_g->data[gray]; |
+ dest[b_out] = transform->output_table_b->data[gray]; |
+ dest[3] = alpha; |
+ dest += 4; |
+ } |
+} |
+ |
+static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ uint16_t r, g, b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ /* we could round here... */ |
+ r = out_linear_r * PRECACHE_OUTPUT_MAX; |
+ g = out_linear_g * PRECACHE_OUTPUT_MAX; |
+ b = out_linear_b * PRECACHE_OUTPUT_MAX; |
+ |
+ dest[r_out] = transform->output_table_r->data[r]; |
+ dest[1] = transform->output_table_g->data[g]; |
+ dest[b_out] = transform->output_table_b->data[b]; |
+ dest += 3; |
+ } |
+} |
+ |
+void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ unsigned char alpha = *src++; |
+ uint16_t r, g, b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ /* we could round here... */ |
+ r = out_linear_r * PRECACHE_OUTPUT_MAX; |
+ g = out_linear_g * PRECACHE_OUTPUT_MAX; |
+ b = out_linear_b * PRECACHE_OUTPUT_MAX; |
+ |
+ dest[r_out] = transform->output_table_r->data[r]; |
+ dest[1] = transform->output_table_g->data[g]; |
+ dest[b_out] = transform->output_table_b->data[b]; |
+ dest[3] = alpha; |
+ dest += 4; |
+ } |
+} |
+ |
+// Not used |
+/* |
+static void qcms_transform_data_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ int xy_len = 1; |
+ int x_len = transform->grid_size; |
+ int len = x_len * x_len; |
+ float* r_table = transform->r_clut; |
+ float* g_table = transform->g_clut; |
+ float* b_table = transform->b_clut; |
+ |
+ for (i = 0; i < length; i++) { |
+ unsigned char in_r = *src++; |
+ unsigned char in_g = *src++; |
+ unsigned char in_b = *src++; |
+ float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f; |
+ |
+ int x = floor(linear_r * (transform->grid_size-1)); |
+ int y = floor(linear_g * (transform->grid_size-1)); |
+ int z = floor(linear_b * (transform->grid_size-1)); |
+ int x_n = ceil(linear_r * (transform->grid_size-1)); |
+ int y_n = ceil(linear_g * (transform->grid_size-1)); |
+ int z_n = ceil(linear_b * (transform->grid_size-1)); |
+ float x_d = linear_r * (transform->grid_size-1) - x; |
+ float y_d = linear_g * (transform->grid_size-1) - y; |
+ float z_d = linear_b * (transform->grid_size-1) - z; |
+ |
+ float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d); |
+ float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d); |
+ float r_y1 = lerp(r_x1, r_x2, y_d); |
+ float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d); |
+ float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d); |
+ float r_y2 = lerp(r_x3, r_x4, y_d); |
+ float clut_r = lerp(r_y1, r_y2, z_d); |
+ |
+ float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d); |
+ float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d); |
+ float g_y1 = lerp(g_x1, g_x2, y_d); |
+ float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d); |
+ float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d); |
+ float g_y2 = lerp(g_x3, g_x4, y_d); |
+ float clut_g = lerp(g_y1, g_y2, z_d); |
+ |
+ float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d); |
+ float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d); |
+ float b_y1 = lerp(b_x1, b_x2, y_d); |
+ float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d); |
+ float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d); |
+ float b_y2 = lerp(b_x3, b_x4, y_d); |
+ float clut_b = lerp(b_y1, b_y2, z_d); |
+ |
+ dest[r_out] = clamp_u8(clut_r*255.0f); |
+ dest[1] = clamp_u8(clut_g*255.0f); |
+ dest[b_out] = clamp_u8(clut_b*255.0f); |
+ dest += 3; |
+ } |
+} |
+*/ |
+ |
+// Using lcms' tetra interpolation algorithm. |
+void qcms_transform_data_tetra_clut_rgba(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ int xy_len = 1; |
+ int x_len = transform->grid_size; |
+ int len = x_len * x_len; |
+ float* r_table = transform->r_clut; |
+ float* g_table = transform->g_clut; |
+ float* b_table = transform->b_clut; |
+ float c0_r, c1_r, c2_r, c3_r; |
+ float c0_g, c1_g, c2_g, c3_g; |
+ float c0_b, c1_b, c2_b, c3_b; |
+ float clut_r, clut_g, clut_b; |
+ |
+ if (!(transform->transform_flags & TRANSFORM_FLAG_CLUT_CACHE)) |
+ qcms_transform_build_clut_cache(transform); |
+ |
+ for (i = 0; i < length; i++) { |
+ unsigned char in_r = *src++; |
+ unsigned char in_g = *src++; |
+ unsigned char in_b = *src++; |
+ unsigned char in_a = *src++; |
+ |
+ int x = transform->floor_cache[in_r]; |
+ int y = transform->floor_cache[in_g]; |
+ int z = transform->floor_cache[in_b]; |
+ |
+ int x_n = transform->ceil_cache[in_r]; |
+ int y_n = transform->ceil_cache[in_g]; |
+ int z_n = transform->ceil_cache[in_b]; |
+ |
+ float rx = transform->r_cache[in_r]; |
+ float ry = transform->r_cache[in_g]; |
+ float rz = transform->r_cache[in_b]; |
+ |
+ c0_r = CLU(r_table, x, y, z); |
+ c0_g = CLU(g_table, x, y, z); |
+ c0_b = CLU(b_table, x, y, z); |
+ |
+ if( rx >= ry ) { |
+ if (ry >= rz) { //rx >= ry && ry >= rz |
+ c1_r = CLU(r_table, x_n, y, z) - c0_r; |
+ c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); |
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); |
+ c1_g = CLU(g_table, x_n, y, z) - c0_g; |
+ c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); |
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); |
+ c1_b = CLU(b_table, x_n, y, z) - c0_b; |
+ c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); |
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); |
+ } else { |
+ if (rx >= rz) { //rx >= rz && rz >= ry |
+ c1_r = CLU(r_table, x_n, y, z) - c0_r; |
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); |
+ c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); |
+ c1_g = CLU(g_table, x_n, y, z) - c0_g; |
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); |
+ c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); |
+ c1_b = CLU(b_table, x_n, y, z) - c0_b; |
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); |
+ c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); |
+ } else { //rz > rx && rx >= ry |
+ c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); |
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); |
+ c3_r = CLU(r_table, x, y, z_n) - c0_r; |
+ c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); |
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); |
+ c3_g = CLU(g_table, x, y, z_n) - c0_g; |
+ c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); |
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); |
+ c3_b = CLU(b_table, x, y, z_n) - c0_b; |
+ } |
+ } |
+ } else { |
+ if (rx >= rz) { //ry > rx && rx >= rz |
+ c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); |
+ c2_r = CLU(r_table, x, y_n, z) - c0_r; |
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); |
+ c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); |
+ c2_g = CLU(g_table, x, y_n, z) - c0_g; |
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); |
+ c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); |
+ c2_b = CLU(b_table, x, y_n, z) - c0_b; |
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); |
+ } else { |
+ if (ry >= rz) { //ry >= rz && rz > rx |
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); |
+ c2_r = CLU(r_table, x, y_n, z) - c0_r; |
+ c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); |
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); |
+ c2_g = CLU(g_table, x, y_n, z) - c0_g; |
+ c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); |
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); |
+ c2_b = CLU(b_table, x, y_n, z) - c0_b; |
+ c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); |
+ } else { //rz > ry && ry > rx |
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); |
+ c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n); |
+ c3_r = CLU(r_table, x, y, z_n) - c0_r; |
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); |
+ c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n); |
+ c3_g = CLU(g_table, x, y, z_n) - c0_g; |
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); |
+ c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n); |
+ c3_b = CLU(b_table, x, y, z_n) - c0_b; |
+ } |
+ } |
+ } |
+ |
+ clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; |
+ clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; |
+ clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; |
+ |
+ dest[r_out] = clamp_u8(clut_r*255.0f); |
+ dest[1] = clamp_u8(clut_g*255.0f); |
+ dest[b_out] = clamp_u8(clut_b*255.0f); |
+ dest[3] = in_a; |
+ dest += 4; |
+ } |
+} |
+ |
+// Using lcms' tetra interpolation code. |
+static void qcms_transform_data_tetra_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ int xy_len = 1; |
+ int x_len = transform->grid_size; |
+ int len = x_len * x_len; |
+ float* r_table = transform->r_clut; |
+ float* g_table = transform->g_clut; |
+ float* b_table = transform->b_clut; |
+ float c0_r, c1_r, c2_r, c3_r; |
+ float c0_g, c1_g, c2_g, c3_g; |
+ float c0_b, c1_b, c2_b, c3_b; |
+ float clut_r, clut_g, clut_b; |
+ |
+ if (!(transform->transform_flags & TRANSFORM_FLAG_CLUT_CACHE)) |
+ qcms_transform_build_clut_cache(transform); |
+ |
+ for (i = 0; i < length; i++) { |
+ unsigned char in_r = *src++; |
+ unsigned char in_g = *src++; |
+ unsigned char in_b = *src++; |
+ |
+ int x = transform->floor_cache[in_r]; |
+ int y = transform->floor_cache[in_g]; |
+ int z = transform->floor_cache[in_b]; |
+ |
+ int x_n = transform->ceil_cache[in_r]; |
+ int y_n = transform->ceil_cache[in_g]; |
+ int z_n = transform->ceil_cache[in_b]; |
+ |
+ float rx = transform->r_cache[in_r]; |
+ float ry = transform->r_cache[in_g]; |
+ float rz = transform->r_cache[in_b]; |
+ |
+ c0_r = CLU(r_table, x, y, z); |
+ c0_g = CLU(g_table, x, y, z); |
+ c0_b = CLU(b_table, x, y, z); |
+ |
+ if( rx >= ry ) { |
+ if (ry >= rz) { //rx >= ry && ry >= rz |
+ c1_r = CLU(r_table, x_n, y, z) - c0_r; |
+ c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); |
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); |
+ c1_g = CLU(g_table, x_n, y, z) - c0_g; |
+ c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); |
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); |
+ c1_b = CLU(b_table, x_n, y, z) - c0_b; |
+ c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); |
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); |
+ } else { |
+ if (rx >= rz) { //rx >= rz && rz >= ry |
+ c1_r = CLU(r_table, x_n, y, z) - c0_r; |
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); |
+ c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); |
+ c1_g = CLU(g_table, x_n, y, z) - c0_g; |
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); |
+ c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); |
+ c1_b = CLU(b_table, x_n, y, z) - c0_b; |
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); |
+ c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); |
+ } else { //rz > rx && rx >= ry |
+ c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); |
+ c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); |
+ c3_r = CLU(r_table, x, y, z_n) - c0_r; |
+ c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); |
+ c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); |
+ c3_g = CLU(g_table, x, y, z_n) - c0_g; |
+ c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); |
+ c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); |
+ c3_b = CLU(b_table, x, y, z_n) - c0_b; |
+ } |
+ } |
+ } else { |
+ if (rx >= rz) { //ry > rx && rx >= rz |
+ c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); |
+ c2_r = CLU(r_table, x, y_n, z) - c0_r; |
+ c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); |
+ c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); |
+ c2_g = CLU(g_table, x, y_n, z) - c0_g; |
+ c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); |
+ c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); |
+ c2_b = CLU(b_table, x, y_n, z) - c0_b; |
+ c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); |
+ } else { |
+ if (ry >= rz) { //ry >= rz && rz > rx |
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); |
+ c2_r = CLU(r_table, x, y_n, z) - c0_r; |
+ c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); |
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); |
+ c2_g = CLU(g_table, x, y_n, z) - c0_g; |
+ c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); |
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); |
+ c2_b = CLU(b_table, x, y_n, z) - c0_b; |
+ c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); |
+ } else { //rz > ry && ry > rx |
+ c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); |
+ c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n); |
+ c3_r = CLU(r_table, x, y, z_n) - c0_r; |
+ c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); |
+ c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n); |
+ c3_g = CLU(g_table, x, y, z_n) - c0_g; |
+ c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); |
+ c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n); |
+ c3_b = CLU(b_table, x, y, z_n) - c0_b; |
+ } |
+ } |
+ } |
+ |
+ clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; |
+ clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; |
+ clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; |
+ |
+ dest[r_out] = clamp_u8(clut_r*255.0f); |
+ dest[1] = clamp_u8(clut_g*255.0f); |
+ dest[b_out] = clamp_u8(clut_b*255.0f); |
+ dest += 3; |
+ } |
+} |
+ |
+static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ float out_device_r, out_device_g, out_device_b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ out_device_r = lut_interp_linear(out_linear_r, |
+ transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(out_linear_g, |
+ transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(out_linear_b, |
+ transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ dest[r_out] = clamp_u8(out_device_r*255); |
+ dest[1] = clamp_u8(out_device_g*255); |
+ dest[b_out] = clamp_u8(out_device_b*255); |
+ dest += 3; |
+ } |
+} |
+ |
+static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ unsigned int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ unsigned char alpha = *src++; |
+ float out_device_r, out_device_g, out_device_b; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ out_linear_r = clamp_float(out_linear_r); |
+ out_linear_g = clamp_float(out_linear_g); |
+ out_linear_b = clamp_float(out_linear_b); |
+ |
+ out_device_r = lut_interp_linear(out_linear_r, |
+ transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); |
+ out_device_g = lut_interp_linear(out_linear_g, |
+ transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); |
+ out_device_b = lut_interp_linear(out_linear_b, |
+ transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); |
+ |
+ dest[r_out] = clamp_u8(out_device_r*255); |
+ dest[1] = clamp_u8(out_device_g*255); |
+ dest[b_out] = clamp_u8(out_device_b*255); |
+ dest[3] = alpha; |
+ dest += 4; |
+ } |
+} |
+ |
+#if 0 |
+static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) |
+{ |
+ const int r_out = output_format.r; |
+ const int b_out = output_format.b; |
+ |
+ int i; |
+ float (*mat)[4] = transform->matrix; |
+ for (i = 0; i < length; i++) { |
+ unsigned char device_r = *src++; |
+ unsigned char device_g = *src++; |
+ unsigned char device_b = *src++; |
+ |
+ float linear_r = transform->input_gamma_table_r[device_r]; |
+ float linear_g = transform->input_gamma_table_g[device_g]; |
+ float linear_b = transform->input_gamma_table_b[device_b]; |
+ |
+ float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; |
+ float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; |
+ float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; |
+ |
+ dest[r_out] = clamp_u8(out_linear_r*255); |
+ dest[1] = clamp_u8(out_linear_g*255); |
+ dest[b_out] = clamp_u8(out_linear_b*255); |
+ dest += 3; |
+ } |
+} |
+#endif |
+ |
+/* |
+ * If users create and destroy objects on different threads, even if the same |
+ * objects aren't used on different threads at the same time, we can still run |
+ * in to trouble with refcounts if they aren't atomic. |
+ * |
+ * This can lead to us prematurely deleting the precache if threads get unlucky |
+ * and write the wrong value to the ref count. |
+ */ |
+static struct precache_output *precache_reference(struct precache_output *p) |
+{ |
+ qcms_atomic_increment(p->ref_count); |
+ return p; |
+} |
+ |
+static struct precache_output *precache_create() |
+{ |
+ struct precache_output *p = malloc(sizeof(struct precache_output)); |
+ if (p) |
+ p->ref_count = 1; |
+ return p; |
+} |
+ |
+void precache_release(struct precache_output *p) |
+{ |
+ if (qcms_atomic_decrement(p->ref_count) == 0) { |
+ free(p); |
+ } |
+} |
+ |
+#ifdef HAVE_POSIX_MEMALIGN |
+static qcms_transform *transform_alloc(void) |
+{ |
+ qcms_transform *t; |
+ if (!posix_memalign(&t, 16, sizeof(*t))) { |
+ return t; |
+ } else { |
+ return NULL; |
+ } |
+} |
+static void transform_free(qcms_transform *t) |
+{ |
+ free(t); |
+} |
+#else |
+static qcms_transform *transform_alloc(void) |
+{ |
+ /* transform needs to be aligned on a 16byte boundrary */ |
+ char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1); |
+ /* make room for a pointer to the block returned by calloc */ |
+ void *transform_start = original_block + sizeof(void*); |
+ /* align transform_start */ |
+ qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf); |
+ |
+ /* store a pointer to the block returned by calloc so that we can free it later */ |
+ void **(original_block_ptr) = (void**)transform_aligned; |
+ if (!original_block) |
+ return NULL; |
+ original_block_ptr--; |
+ *original_block_ptr = original_block; |
+ |
+ return transform_aligned; |
+} |
+static void transform_free(qcms_transform *t) |
+{ |
+ /* get at the pointer to the unaligned block returned by calloc */ |
+ void **p = (void**)t; |
+ p--; |
+ free(*p); |
+} |
+#endif |
+ |
+void qcms_transform_release(qcms_transform *t) |
+{ |
+ /* ensure we only free the gamma tables once even if there are |
+ * multiple references to the same data */ |
+ |
+ if (t->output_table_r) |
+ precache_release(t->output_table_r); |
+ if (t->output_table_g) |
+ precache_release(t->output_table_g); |
+ if (t->output_table_b) |
+ precache_release(t->output_table_b); |
+ |
+ free(t->input_gamma_table_r); |
+ if (t->input_gamma_table_g != t->input_gamma_table_r) |
+ free(t->input_gamma_table_g); |
+ if (t->input_gamma_table_g != t->input_gamma_table_r && |
+ t->input_gamma_table_g != t->input_gamma_table_b) |
+ free(t->input_gamma_table_b); |
+ |
+ free(t->input_gamma_table_gray); |
+ |
+ free(t->output_gamma_lut_r); |
+ free(t->output_gamma_lut_g); |
+ free(t->output_gamma_lut_b); |
+ |
+ transform_free(t); |
+} |
+ |
+#ifdef X86 |
+// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in |
+// mozilla/jpeg) |
+ // ------------------------------------------------------------------------- |
+#if defined(_M_IX86) && defined(_MSC_VER) |
+#define HAS_CPUID |
+/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC |
+ register - I'm not sure if that ever happens on windows, but cpuid isn't |
+ on the critical path so we just preserve the register to be safe and to be |
+ consistent with the non-windows version. */ |
+static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { |
+ uint32_t a_, b_, c_, d_; |
+ __asm { |
+ xchg ebx, esi |
+ mov eax, fxn |
+ cpuid |
+ mov a_, eax |
+ mov b_, ebx |
+ mov c_, ecx |
+ mov d_, edx |
+ xchg ebx, esi |
+ } |
+ *a = a_; |
+ *b = b_; |
+ *c = c_; |
+ *d = d_; |
+} |
+#elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386)) |
+#define HAS_CPUID |
+/* Get us a CPUID function. We can't use ebx because it's the PIC register on |
+ some platforms, so we use ESI instead and save ebx to avoid clobbering it. */ |
+static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { |
+ |
+ uint32_t a_, b_, c_, d_; |
+ __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;" |
+ : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn)); |
+ *a = a_; |
+ *b = b_; |
+ *c = c_; |
+ *d = d_; |
+} |
+#endif |
+ |
+// -------------------------Runtime SSEx Detection----------------------------- |
+ |
+/* MMX is always supported per |
+ * Gecko v1.9.1 minimum CPU requirements */ |
+#define SSE1_EDX_MASK (1UL << 25) |
+#define SSE2_EDX_MASK (1UL << 26) |
+#define SSE3_ECX_MASK (1UL << 0) |
+ |
+static int sse_version_available(void) |
+{ |
+#if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64) |
+ /* we know at build time that 64-bit CPUs always have SSE2 |
+ * this tells the compiler that non-SSE2 branches will never be |
+ * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */ |
+ return 2; |
+#elif defined(HAS_CPUID) |
+ static int sse_version = -1; |
+ uint32_t a, b, c, d; |
+ uint32_t function = 0x00000001; |
+ |
+ if (sse_version == -1) { |
+ sse_version = 0; |
+ cpuid(function, &a, &b, &c, &d); |
+ if (c & SSE3_ECX_MASK) |
+ sse_version = 3; |
+ else if (d & SSE2_EDX_MASK) |
+ sse_version = 2; |
+ else if (d & SSE1_EDX_MASK) |
+ sse_version = 1; |
+ } |
+ |
+ return sse_version; |
+#else |
+ return 0; |
+#endif |
+} |
+#endif |
+ |
+static const struct matrix bradford_matrix = {{ { 0.8951f, 0.2664f,-0.1614f}, |
+ {-0.7502f, 1.7135f, 0.0367f}, |
+ { 0.0389f,-0.0685f, 1.0296f}}, |
+ false}; |
+ |
+static const struct matrix bradford_matrix_inv = {{ { 0.9869929f,-0.1470543f, 0.1599627f}, |
+ { 0.4323053f, 0.5183603f, 0.0492912f}, |
+ {-0.0085287f, 0.0400428f, 0.9684867f}}, |
+ false}; |
+ |
+// See ICCv4 E.3 |
+struct matrix compute_whitepoint_adaption(float X, float Y, float Z) { |
+ float p = (0.96422f*bradford_matrix.m[0][0] + 1.000f*bradford_matrix.m[1][0] + 0.82521f*bradford_matrix.m[2][0]) / |
+ (X*bradford_matrix.m[0][0] + Y*bradford_matrix.m[1][0] + Z*bradford_matrix.m[2][0] ); |
+ float y = (0.96422f*bradford_matrix.m[0][1] + 1.000f*bradford_matrix.m[1][1] + 0.82521f*bradford_matrix.m[2][1]) / |
+ (X*bradford_matrix.m[0][1] + Y*bradford_matrix.m[1][1] + Z*bradford_matrix.m[2][1] ); |
+ float b = (0.96422f*bradford_matrix.m[0][2] + 1.000f*bradford_matrix.m[1][2] + 0.82521f*bradford_matrix.m[2][2]) / |
+ (X*bradford_matrix.m[0][2] + Y*bradford_matrix.m[1][2] + Z*bradford_matrix.m[2][2] ); |
+ struct matrix white_adaption = {{ {p,0,0}, {0,y,0}, {0,0,b}}, false}; |
+ return matrix_multiply( bradford_matrix_inv, matrix_multiply(white_adaption, bradford_matrix) ); |
+} |
+ |
+void qcms_profile_precache_output_transform(qcms_profile *profile) |
+{ |
+ /* we only support precaching on rgb profiles */ |
+ if (profile->color_space != RGB_SIGNATURE) |
+ return; |
+ |
+ if (qcms_supports_iccv4) { |
+ /* don't precache since we will use the B2A LUT */ |
+ if (profile->B2A0) |
+ return; |
+ |
+ /* don't precache since we will use the mBA LUT */ |
+ if (profile->mBA) |
+ return; |
+ } |
+ |
+ /* don't precache if we do not have the TRC curves */ |
+ if (!profile->redTRC || !profile->greenTRC || !profile->blueTRC) |
+ return; |
+ |
+ if (!profile->output_table_r) { |
+ profile->output_table_r = precache_create(); |
+ if (profile->output_table_r && |
+ !compute_precache(profile->redTRC, profile->output_table_r->data)) { |
+ precache_release(profile->output_table_r); |
+ profile->output_table_r = NULL; |
+ } |
+ } |
+ if (!profile->output_table_g) { |
+ profile->output_table_g = precache_create(); |
+ if (profile->output_table_g && |
+ !compute_precache(profile->greenTRC, profile->output_table_g->data)) { |
+ precache_release(profile->output_table_g); |
+ profile->output_table_g = NULL; |
+ } |
+ } |
+ if (!profile->output_table_b) { |
+ profile->output_table_b = precache_create(); |
+ if (profile->output_table_b && |
+ !compute_precache(profile->blueTRC, profile->output_table_b->data)) { |
+ precache_release(profile->output_table_b); |
+ profile->output_table_b = NULL; |
+ } |
+ } |
+} |
+ |
+/* Replace the current transformation with a LUT transformation using a given number of sample points */ |
+qcms_transform* qcms_transform_precacheLUT_float(qcms_transform *transform, qcms_profile *in, qcms_profile *out, |
+ int samples, qcms_data_type in_type) |
+{ |
+ /* The range between which 2 consecutive sample points can be used to interpolate */ |
+ uint16_t x,y,z; |
+ uint32_t l; |
+ uint32_t lutSize = 3 * samples * samples * samples; |
+ float* src = NULL; |
+ float* dest = NULL; |
+ float* lut = NULL; |
+ float inverse; |
+ |
+ src = malloc(lutSize*sizeof(float)); |
+ dest = malloc(lutSize*sizeof(float)); |
+ |
+ if (src && dest) { |
+ /* Prepare a list of points we want to sample: x, y, z order */ |
+ l = 0; |
+ inverse = 1 / (float)(samples-1); |
+ for (x = 0; x < samples; x++) { |
+ for (y = 0; y < samples; y++) { |
+ for (z = 0; z < samples; z++) { |
+ src[l++] = x * inverse; // r |
+ src[l++] = y * inverse; // g |
+ src[l++] = z * inverse; // b |
+ } |
+ } |
+ } |
+ |
+ lut = qcms_chain_transform(in, out, src, dest, lutSize); |
+ |
+ if (lut) { |
+ transform->r_clut = &lut[0]; // r |
+ transform->g_clut = &lut[1]; // g |
+ transform->b_clut = &lut[2]; // b |
+ transform->grid_size = samples; |
+ |
+ if (in_type == QCMS_DATA_RGBA_8) { |
+#if defined(SSE2_ENABLE) |
+ if (sse_version_available() >= 2) { |
+ transform->transform_fn = qcms_transform_data_tetra_clut_rgba_sse2; |
+ } else { |
+ transform->transform_fn = qcms_transform_data_tetra_clut_rgba; |
+ } |
+#else |
+ transform->transform_fn = qcms_transform_data_tetra_clut_rgba; |
+#endif |
+ } else { |
+ transform->transform_fn = qcms_transform_data_tetra_clut; |
+ } |
+ } |
+ } |
+ |
+ // XXX: qcms_modular_transform_data may return the lut in either the src or the |
+ // dest buffer. If so, it must not be free-ed. |
+ if (src && lut != src) { |
+ free(src); |
+ } |
+ if (dest && lut != dest) { |
+ free(dest); |
+ } |
+ |
+ if (lut == NULL) { |
+ return NULL; |
+ } |
+ return transform; |
+} |
+ |
+/* Create a transform LUT using the given number of sample points. The transform LUT data is stored |
+ in the output (cube) in bgra format in zyx sample order. */ |
+qcms_bool qcms_transform_create_LUT_zyx_bgra(qcms_profile *in, qcms_profile *out, qcms_intent intent, |
+ int samples, unsigned char* cube) |
+{ |
+ uint16_t z,y,x; |
+ uint32_t l,index; |
+ uint32_t lutSize = 3 * samples * samples * samples; |
+ |
+ float* src = NULL; |
+ float* dest = NULL; |
+ float* lut = NULL; |
+ float inverse; |
+ |
+ src = malloc(lutSize*sizeof(float)); |
+ dest = malloc(lutSize*sizeof(float)); |
+ |
+ if (src && dest) { |
+ /* Prepare a list of points we want to sample: z, y, x order */ |
+ l = 0; |
+ inverse = 1 / (float)(samples-1); |
+ for (z = 0; z < samples; z++) { |
+ for (y = 0; y < samples; y++) { |
+ for (x = 0; x < samples; x++) { |
+ src[l++] = x * inverse; // r |
+ src[l++] = y * inverse; // g |
+ src[l++] = z * inverse; // b |
+ } |
+ } |
+ } |
+ |
+ lut = qcms_chain_transform(in, out, src, dest, lutSize); |
+ |
+ if (lut) { |
+ index = l = 0; |
+ for (z = 0; z < samples; z++) { |
+ for (y = 0; y < samples; y++) { |
+ for (x = 0; x < samples; x++) { |
+ cube[index++] = (int)floorf(lut[l + 2] * 255.0f + 0.5f); // b |
+ cube[index++] = (int)floorf(lut[l + 1] * 255.0f + 0.5f); // g |
+ cube[index++] = (int)floorf(lut[l + 0] * 255.0f + 0.5f); // r |
+ cube[index++] = 255; // a |
+ l += 3; |
+ } |
+ } |
+ } |
+ } |
+ } |
+ |
+ // XXX: qcms_modular_transform_data may return the lut data in either the src or |
+ // dest buffer so free src, dest, and lut with care. |
+ |
+ if (src && lut != src) |
+ free(src); |
+ if (dest && lut != dest) |
+ free(dest); |
+ |
+ if (lut) { |
+ free(lut); |
+ return true; |
+ } |
+ |
+ return false; |
+} |
+ |
+void qcms_transform_build_clut_cache(qcms_transform* transform) { |
+ const int grid_factor = transform->grid_size - 1; |
+ const float grid_scaled = (1.0f / 255.0f) * grid_factor; |
+ int i; |
+ |
+#define div_255_ceiling(value) (((value) + 254) / 255) |
+ |
+ for (i = 0; i < 256; i++) { |
+ transform->ceil_cache[i] = div_255_ceiling(i * grid_factor); |
+ transform->floor_cache[i] = i * grid_factor / 255; |
+ transform->r_cache[i] = (i * grid_scaled) - transform->floor_cache[i]; |
+ } |
+ |
+#undef div_255_ceil |
+ |
+ transform->transform_flags |= TRANSFORM_FLAG_CLUT_CACHE; |
+} |
+ |
+#define NO_MEM_TRANSFORM NULL |
+ |
+qcms_transform* qcms_transform_create( |
+ qcms_profile *in, qcms_data_type in_type, |
+ qcms_profile *out, qcms_data_type out_type, |
+ qcms_intent intent) |
+{ |
+ qcms_transform *transform = NULL; |
+ bool precache = false; |
+ int i, j; |
+ |
+ transform = transform_alloc(); |
+ if (!transform) { |
+ return NULL; |
+ } |
+ |
+ if (out_type != QCMS_DATA_RGB_8 && out_type != QCMS_DATA_RGBA_8) { |
+ assert(0 && "output type"); |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ |
+ transform->transform_flags = 0; |
+ |
+ if (out->output_table_r && out->output_table_g && out->output_table_b) { |
+ precache = true; |
+ } |
+ |
+ if (qcms_supports_iccv4 && (in->A2B0 || out->B2A0 || in->mAB || out->mAB)) { |
+ // Precache the transformation to a CLUT 33x33x33 in size. |
+ // 33 is used by many profiles and works well in practice. |
+ // This evenly divides 256 into blocks of 8x8x8. |
+ // TODO For transforming small data sets of about 200x200 or less |
+ // precaching should be avoided. |
+ qcms_transform *result = qcms_transform_precacheLUT_float(transform, in, out, 33, in_type); |
+ if (!result) { |
+ assert(0 && "precacheLUT failed"); |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ return result; |
+ } |
+ |
+ /* A matrix-based transform will be selected: check that the PCS |
+ of the input/output profiles are the same, crbug.com/5120682 */ |
+ if (in->pcs != out->pcs) { |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ |
+ if (precache) { |
+ transform->output_table_r = precache_reference(out->output_table_r); |
+ transform->output_table_g = precache_reference(out->output_table_g); |
+ transform->output_table_b = precache_reference(out->output_table_b); |
+ } else { |
+ if (!out->redTRC || !out->greenTRC || !out->blueTRC) { |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ |
+ build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length); |
+ build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length); |
+ build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length); |
+ |
+ if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) { |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ } |
+ |
+ if (in->color_space == RGB_SIGNATURE) { |
+ struct matrix in_matrix, out_matrix, result; |
+ |
+ if (in_type != QCMS_DATA_RGB_8 && in_type != QCMS_DATA_RGBA_8) { |
+ assert(0 && "input type"); |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ |
+ if (precache) { |
+#if defined(SSE2_ENABLE) |
+ if (sse_version_available() >= 2) { |
+ if (in_type == QCMS_DATA_RGB_8) |
+ transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2; |
+ else |
+ transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2; |
+ } else |
+#endif |
+ { |
+ if (in_type == QCMS_DATA_RGB_8) |
+ transform->transform_fn = qcms_transform_data_rgb_out_lut_precache; |
+ else |
+ transform->transform_fn = qcms_transform_data_rgba_out_lut_precache; |
+ } |
+ } else { |
+ if (in_type == QCMS_DATA_RGB_8) |
+ transform->transform_fn = qcms_transform_data_rgb_out_lut; |
+ else |
+ transform->transform_fn = qcms_transform_data_rgba_out_lut; |
+ } |
+ |
+ //XXX: avoid duplicating tables if we can |
+ transform->input_gamma_table_r = build_input_gamma_table(in->redTRC); |
+ transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC); |
+ transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC); |
+ |
+ if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) { |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ |
+ /* build combined colorant matrix */ |
+ in_matrix = build_colorant_matrix(in); |
+ out_matrix = build_colorant_matrix(out); |
+ out_matrix = matrix_invert(out_matrix); |
+ if (out_matrix.invalid) { |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ result = matrix_multiply(out_matrix, in_matrix); |
+ |
+ /* check for NaN values in the matrix and bail if we find any |
+ see also https://bugzilla.mozilla.org/show_bug.cgi?id=1170316 */ |
+ for (i = 0 ; i < 3 ; ++i) { |
+ for (j = 0 ; j < 3 ; ++j) { |
+ if (result.m[i][j] != result.m[i][j]) { |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ } |
+ } |
+ |
+ /* store the results in column major mode |
+ * this makes doing the multiplication with sse easier */ |
+ transform->matrix[0][0] = result.m[0][0]; |
+ transform->matrix[1][0] = result.m[0][1]; |
+ transform->matrix[2][0] = result.m[0][2]; |
+ transform->matrix[0][1] = result.m[1][0]; |
+ transform->matrix[1][1] = result.m[1][1]; |
+ transform->matrix[2][1] = result.m[1][2]; |
+ transform->matrix[0][2] = result.m[2][0]; |
+ transform->matrix[1][2] = result.m[2][1]; |
+ transform->matrix[2][2] = result.m[2][2]; |
+ |
+ /* Flag transform as matrix. */ |
+ transform->transform_flags |= TRANSFORM_FLAG_MATRIX; |
+ |
+ } else if (in->color_space == GRAY_SIGNATURE) { |
+ if (in_type != QCMS_DATA_GRAY_8 && in_type != QCMS_DATA_GRAYA_8) { |
+ assert(0 && "input type"); |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ |
+ transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC); |
+ |
+ if (!transform->input_gamma_table_gray) { |
+ qcms_transform_release(transform); |
+ return NO_MEM_TRANSFORM; |
+ } |
+ |
+ if (precache) { |
+ if (in_type == QCMS_DATA_GRAY_8) { |
+ transform->transform_fn = qcms_transform_data_gray_out_precache; |
+ } else { |
+ transform->transform_fn = qcms_transform_data_graya_out_precache; |
+ } |
+ } else { |
+ if (in_type == QCMS_DATA_GRAY_8) { |
+ transform->transform_fn = qcms_transform_data_gray_out_lut; |
+ } else { |
+ transform->transform_fn = qcms_transform_data_graya_out_lut; |
+ } |
+ } |
+ } else { |
+ assert(0 && "unexpected colorspace"); |
+ qcms_transform_release(transform); |
+ return NULL; |
+ } |
+ |
+ return transform; |
+} |
+ |
+/* __force_align_arg_pointer__ is an x86-only attribute, and gcc/clang warns on unused |
+ * attributes. Don't use this on ARM or AMD64. __has_attribute can detect the presence |
+ * of the attribute but is currently only supported by clang */ |
+#if defined(__has_attribute) |
+#define HAS_FORCE_ALIGN_ARG_POINTER __has_attribute(__force_align_arg_pointer__) |
+#elif defined(__GNUC__) && defined(__i386__) |
+#define HAS_FORCE_ALIGN_ARG_POINTER 1 |
+#else |
+#define HAS_FORCE_ALIGN_ARG_POINTER 0 |
+#endif |
+ |
+#if HAS_FORCE_ALIGN_ARG_POINTER |
+/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */ |
+__attribute__((__force_align_arg_pointer__)) |
+#endif |
+void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length) |
+{ |
+ static const struct _qcms_format_type output_rgbx = { 0, 2 }; |
+ |
+ transform->transform_fn(transform, src, dest, length, output_rgbx); |
+} |
+ |
+void qcms_transform_data_type(qcms_transform *transform, void *src, void *dest, size_t length, qcms_output_type type) |
+{ |
+ static const struct _qcms_format_type output_rgbx = { 0, 2 }; |
+ static const struct _qcms_format_type output_bgrx = { 2, 0 }; |
+ |
+ transform->transform_fn(transform, src, dest, length, type == QCMS_OUTPUT_BGRX ? output_bgrx : output_rgbx); |
+} |
+ |
+#define ENABLE_ICC_V4_PROFILE_SUPPORT false |
+ |
+qcms_bool qcms_supports_iccv4 = ENABLE_ICC_V4_PROFILE_SUPPORT; |
+ |
+void qcms_enable_iccv4() |
+{ |
+ qcms_supports_iccv4 = true; |
+} |
+ |
+static inline qcms_bool transform_is_matrix(qcms_transform *t) |
+{ |
+ return (t->transform_flags & TRANSFORM_FLAG_MATRIX) ? true : false; |
+} |
+ |
+qcms_bool qcms_transform_is_matrix(qcms_transform *t) |
+{ |
+ return transform_is_matrix(t); |
+} |
+ |
+float qcms_transform_get_matrix(qcms_transform *t, unsigned i, unsigned j) |
+{ |
+ assert(transform_is_matrix(t) && i < 3 && j < 3); |
+ |
+ // Return transform matrix element in row major order (permute i and j) |
+ |
+ return t->matrix[j][i]; |
+} |
+ |
+static inline qcms_bool supported_trc_type(qcms_trc_type type) |
+{ |
+ return (type == QCMS_TRC_HALF_FLOAT || type == QCMS_TRC_USHORT); |
+} |
+ |
+const uint16_t half_float_one = 0x3c00; |
+ |
+size_t qcms_transform_get_input_trc_rgba(qcms_transform *t, qcms_profile *in, qcms_trc_type type, unsigned short *data) |
+{ |
+ const size_t size = 256; // The input gamma tables always have 256 entries. |
+ |
+ size_t i; |
+ |
+ if (in->color_space != RGB_SIGNATURE || !supported_trc_type(type)) |
+ return 0; |
+ |
+ // qcms_profile *in is assumed to be the profile on the input-side of the color transform t. |
+ // When a transform is created, the input gamma curve data is stored in the transform ... |
+ |
+ if (!t->input_gamma_table_r || !t->input_gamma_table_g || !t->input_gamma_table_b) |
+ return 0; |
+ |
+ // Report the size if no output data is requested. This allows callers to first work out the |
+ // the curve size, then provide allocated memory sufficient to store the curve rgba data. |
+ |
+ if (!data) |
+ return size; |
+ |
+ switch(type) { |
+ case QCMS_TRC_HALF_FLOAT: |
+ for (i = 0; i < size; ++i) { |
+ *data++ = float_to_half_float(t->input_gamma_table_r[i]); // r |
+ *data++ = float_to_half_float(t->input_gamma_table_g[i]); // g |
+ *data++ = float_to_half_float(t->input_gamma_table_b[i]); // b |
+ *data++ = half_float_one; // a |
+ } |
+ break; |
+ case QCMS_TRC_USHORT: |
+ for (i = 0; i < size; ++i) { |
+ *data++ = roundf(t->input_gamma_table_r[i] * 65535.0); // r |
+ *data++ = roundf(t->input_gamma_table_g[i] * 65535.0); // g |
+ *data++ = roundf(t->input_gamma_table_b[i] * 65535.0); // b |
+ *data++ = 65535; // a |
+ } |
+ break; |
+ default: |
+ /* should not be reached */ |
+ assert(0); |
+ } |
+ |
+ return size; |
+} |
+ |
+const float inverse65535 = (float) (1.0 / 65535.0); |
+ |
+size_t qcms_transform_get_output_trc_rgba(qcms_transform *t, qcms_profile *out, qcms_trc_type type, unsigned short *data) |
+{ |
+ size_t size, i; |
+ |
+ if (out->color_space != RGB_SIGNATURE || !supported_trc_type(type)) |
+ return 0; |
+ |
+ // qcms_profile *out is assumed to be the profile on the output-side of the transform t. |
+ // If the transform output gamma curves need building, do that. They're usually built when |
+ // the transform was created, but sometimes not due to the output gamma precache ... |
+ |
+ if (!out->redTRC || !out->greenTRC || !out->blueTRC) |
+ return 0; |
+ if (!t->output_gamma_lut_r) |
+ build_output_lut(out->redTRC, &t->output_gamma_lut_r, &t->output_gamma_lut_r_length); |
+ if (!t->output_gamma_lut_g) |
+ build_output_lut(out->greenTRC, &t->output_gamma_lut_g, &t->output_gamma_lut_g_length); |
+ if (!t->output_gamma_lut_b) |
+ build_output_lut(out->blueTRC, &t->output_gamma_lut_b, &t->output_gamma_lut_b_length); |
+ |
+ if (!t->output_gamma_lut_r || !t->output_gamma_lut_g || !t->output_gamma_lut_b) |
+ return 0; |
+ |
+ // Output gamma tables should have the same size and should have 4096 entries at most (the |
+ // minimum is 256). Larger tables are rare and ignored here: fail by returning 0. |
+ |
+ size = t->output_gamma_lut_r_length; |
+ if (size != t->output_gamma_lut_g_length) |
+ return 0; |
+ if (size != t->output_gamma_lut_b_length) |
+ return 0; |
+ if (size < 256 || size > 4096) |
+ return 0; |
+ |
+ // Report the size if no output data is requested. This allows callers to first work out the |
+ // the curve size, then provide allocated memory sufficient to store the curve rgba data. |
+ |
+ if (!data) |
+ return size; |
+ |
+ switch (type) { |
+ case QCMS_TRC_HALF_FLOAT: |
+ for (i = 0; i < size; ++i) { |
+ *data++ = float_to_half_float(t->output_gamma_lut_r[i] * inverse65535); // r |
+ *data++ = float_to_half_float(t->output_gamma_lut_g[i] * inverse65535); // g |
+ *data++ = float_to_half_float(t->output_gamma_lut_b[i] * inverse65535); // b |
+ *data++ = half_float_one; // a |
+ } |
+ break; |
+ case QCMS_TRC_USHORT: |
+ for (i = 0; i < size; ++i) { |
+ *data++ = t->output_gamma_lut_r[i]; // r |
+ *data++ = t->output_gamma_lut_g[i]; // g |
+ *data++ = t->output_gamma_lut_b[i]; // b |
+ *data++ = 65535; // a |
+ } |
+ break; |
+ default: |
+ /* should not be reached */ |
+ assert(0); |
+ } |
+ |
+ return size; |
+} |