Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(304)

Side by Side Diff: skia/ext/convolver_unittest.cc

Issue 2011713003: Roll skia to 8cc209111876b7c78b5ec577c9221d8ed5e21024 (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « skia/ext/convolver_mips_dspr2.cc ('k') | skia/ext/opacity_draw_filter.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <string.h>
6 #include <time.h>
7 #include <algorithm>
8 #include <numeric>
9 #include <vector>
10
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13 #include "base/time/time.h"
14 #include "skia/ext/convolver.h"
15 #include "testing/gtest/include/gtest/gtest.h"
16 #include "third_party/skia/include/core/SkBitmap.h"
17 #include "third_party/skia/include/core/SkColorPriv.h"
18 #include "third_party/skia/include/core/SkRect.h"
19 #include "third_party/skia/include/core/SkTypes.h"
20
21 namespace skia {
22
23 namespace {
24
25 // Fills the given filter with impulse functions for the range 0->num_entries.
26 void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
27 float one = 1.0f;
28 for (int i = 0; i < num_entries; i++)
29 filter->AddFilter(i, &one, 1);
30 }
31
32 // Filters the given input with the impulse function, and verifies that it
33 // does not change.
34 void TestImpulseConvolution(const unsigned char* data, int width, int height) {
35 int byte_count = width * height * 4;
36
37 ConvolutionFilter1D filter_x;
38 FillImpulseFilter(width, &filter_x);
39
40 ConvolutionFilter1D filter_y;
41 FillImpulseFilter(height, &filter_y);
42
43 std::vector<unsigned char> output;
44 output.resize(byte_count);
45 BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
46 filter_x.num_values() * 4, &output[0], false);
47
48 // Output should exactly match input.
49 EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
50 }
51
52 // Fills the destination filter with a box filter averaging every two pixels
53 // to produce the output.
54 void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
55 const float box[2] = {0.5, 0.5};
56 for (int i = 0; i < size; i++)
57 filter->AddFilter(i * 2, box, 2);
58 }
59
60 } // namespace
61
62 // Tests that each pixel, when set and run through the impulse filter, does
63 // not change.
64 TEST(Convolver, Impulse) {
65 // We pick an "odd" size that is not likely to fit on any boundaries so that
66 // we can see if all the widths and paddings are handled properly.
67 int width = 15;
68 int height = 31;
69 int byte_count = width * height * 4;
70 std::vector<unsigned char> input;
71 input.resize(byte_count);
72
73 unsigned char* input_ptr = &input[0];
74 for (int y = 0; y < height; y++) {
75 for (int x = 0; x < width; x++) {
76 for (int channel = 0; channel < 3; channel++) {
77 memset(input_ptr, 0, byte_count);
78 input_ptr[(y * width + x) * 4 + channel] = 0xff;
79 // Always set the alpha channel or it will attempt to "fix" it for us.
80 input_ptr[(y * width + x) * 4 + 3] = 0xff;
81 TestImpulseConvolution(input_ptr, width, height);
82 }
83 }
84 }
85 }
86
87 // Tests that using a box filter to halve an image results in every square of 4
88 // pixels in the original get averaged to a pixel in the output.
89 TEST(Convolver, Halve) {
90 static const int kSize = 16;
91
92 int src_width = kSize;
93 int src_height = kSize;
94 int src_row_stride = src_width * 4;
95 int src_byte_count = src_row_stride * src_height;
96 std::vector<unsigned char> input;
97 input.resize(src_byte_count);
98
99 int dest_width = src_width / 2;
100 int dest_height = src_height / 2;
101 int dest_byte_count = dest_width * dest_height * 4;
102 std::vector<unsigned char> output;
103 output.resize(dest_byte_count);
104
105 // First fill the array with a bunch of random data.
106 srand(static_cast<unsigned>(time(NULL)));
107 for (int i = 0; i < src_byte_count; i++)
108 input[i] = rand() * 255 / RAND_MAX;
109
110 // Compute the filters.
111 ConvolutionFilter1D filter_x, filter_y;
112 FillBoxFilter(dest_width, &filter_x);
113 FillBoxFilter(dest_height, &filter_y);
114
115 // Do the convolution.
116 BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y,
117 filter_x.num_values() * 4, &output[0], false);
118
119 // Compute the expected results and check, allowing for a small difference
120 // to account for rounding errors.
121 for (int y = 0; y < dest_height; y++) {
122 for (int x = 0; x < dest_width; x++) {
123 for (int channel = 0; channel < 4; channel++) {
124 int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
125 int value = input[src_offset] + // Top left source pixel.
126 input[src_offset + 4] + // Top right source pixel.
127 input[src_offset + src_row_stride] + // Lower left.
128 input[src_offset + src_row_stride + 4]; // Lower right.
129 value /= 4; // Average.
130 int difference = value - output[(y * dest_width + x) * 4 + channel];
131 EXPECT_TRUE(difference >= -1 || difference <= 1);
132 }
133 }
134 }
135 }
136
137 // Tests the optimization in Convolver1D::AddFilter that avoids storing
138 // leading/trailing zeroes.
139 TEST(Convolver, AddFilter) {
140 skia::ConvolutionFilter1D filter;
141
142 const skia::ConvolutionFilter1D::Fixed* values = NULL;
143 int filter_offset = 0;
144 int filter_length = 0;
145
146 // An all-zero filter is handled correctly, all factors ignored
147 static const float factors1[] = {0.0f, 0.0f, 0.0f};
148 filter.AddFilter(11, factors1, arraysize(factors1));
149 ASSERT_EQ(0, filter.max_filter());
150 ASSERT_EQ(1, filter.num_values());
151
152 values = filter.FilterForValue(0, &filter_offset, &filter_length);
153 ASSERT_TRUE(values == NULL); // No values => NULL.
154 ASSERT_EQ(11, filter_offset); // Same as input offset.
155 ASSERT_EQ(0, filter_length); // But no factors since all are zeroes.
156
157 // Zeroes on the left are ignored
158 static const float factors2[] = {0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
159 filter.AddFilter(22, factors2, arraysize(factors2));
160 ASSERT_EQ(4, filter.max_filter());
161 ASSERT_EQ(2, filter.num_values());
162
163 values = filter.FilterForValue(1, &filter_offset, &filter_length);
164 ASSERT_TRUE(values != NULL);
165 ASSERT_EQ(23, filter_offset); // 22 plus 1 leading zero
166 ASSERT_EQ(4, filter_length); // 5 - 1 leading zero
167
168 // Zeroes on the right are ignored
169 static const float factors3[] = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f};
170 filter.AddFilter(33, factors3, arraysize(factors3));
171 ASSERT_EQ(5, filter.max_filter());
172 ASSERT_EQ(3, filter.num_values());
173
174 values = filter.FilterForValue(2, &filter_offset, &filter_length);
175 ASSERT_TRUE(values != NULL);
176 ASSERT_EQ(33, filter_offset); // 33, same as input due to no leading zero
177 ASSERT_EQ(5, filter_length); // 7 - 2 trailing zeroes
178
179 // Zeroes in leading & trailing positions
180 static const float factors4[] = {0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f};
181 filter.AddFilter(44, factors4, arraysize(factors4));
182 ASSERT_EQ(5, filter.max_filter()); // No change from existing value.
183 ASSERT_EQ(4, filter.num_values());
184
185 values = filter.FilterForValue(3, &filter_offset, &filter_length);
186 ASSERT_TRUE(values != NULL);
187 ASSERT_EQ(46, filter_offset); // 44 plus 2 leading zeroes
188 ASSERT_EQ(3, filter_length); // 7 - (2 leading + 2 trailing) zeroes
189
190 // Zeroes surrounded by non-zero values are ignored
191 static const float factors5[] = {0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
192 0.0f, 0.0f, 1.0f, 0.0f};
193 filter.AddFilter(55, factors5, arraysize(factors5));
194 ASSERT_EQ(6, filter.max_filter());
195 ASSERT_EQ(5, filter.num_values());
196
197 values = filter.FilterForValue(4, &filter_offset, &filter_length);
198 ASSERT_TRUE(values != NULL);
199 ASSERT_EQ(57, filter_offset); // 55 plus 2 leading zeroes
200 ASSERT_EQ(6, filter_length); // 9 - (2 leading + 1 trailing) zeroes
201
202 // All-zero filters after the first one also work
203 static const float factors6[] = {0.0f};
204 filter.AddFilter(66, factors6, arraysize(factors6));
205 ASSERT_EQ(6, filter.max_filter());
206 ASSERT_EQ(6, filter.num_values());
207
208 values = filter.FilterForValue(5, &filter_offset, &filter_length);
209 ASSERT_TRUE(values == NULL); // filter_length == 0 => values is NULL
210 ASSERT_EQ(66, filter_offset); // value passed in
211 ASSERT_EQ(0, filter_length);
212 }
213
214 void VerifySIMD(unsigned int source_width,
215 unsigned int source_height,
216 unsigned int dest_width,
217 unsigned int dest_height) {
218 float filter[] = {0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f};
219 // Preparing convolve coefficients.
220 ConvolutionFilter1D x_filter, y_filter;
221 for (unsigned int p = 0; p < dest_width; ++p) {
222 unsigned int offset = source_width * p / dest_width;
223 EXPECT_LT(offset, source_width);
224 x_filter.AddFilter(offset, filter,
225 std::min<int>(arraysize(filter), source_width - offset));
226 }
227 x_filter.PaddingForSIMD();
228 for (unsigned int p = 0; p < dest_height; ++p) {
229 unsigned int offset = source_height * p / dest_height;
230 y_filter.AddFilter(offset, filter, std::min<int>(arraysize(filter),
231 source_height - offset));
232 }
233 y_filter.PaddingForSIMD();
234
235 // Allocate input and output skia bitmap.
236 SkBitmap source, result_c, result_sse;
237 source.allocN32Pixels(source_width, source_height);
238 result_c.allocN32Pixels(dest_width, dest_height);
239 result_sse.allocN32Pixels(dest_width, dest_height);
240
241 // Randomize source bitmap for testing.
242 unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels());
243 for (int y = 0; y < source.height(); y++) {
244 for (unsigned int x = 0; x < source.rowBytes(); x++)
245 src_ptr[x] = rand() % 255;
246 src_ptr += source.rowBytes();
247 }
248
249 // Test both cases with different has_alpha.
250 for (int alpha = 0; alpha < 2; alpha++) {
251 // Convolve using C code.
252 base::TimeTicks resize_start;
253 base::TimeDelta delta_c, delta_sse;
254 unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels());
255 unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels());
256
257 resize_start = base::TimeTicks::Now();
258 BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
259 static_cast<int>(source.rowBytes()), (alpha != 0), x_filter,
260 y_filter, static_cast<int>(result_c.rowBytes()), r1, false);
261 delta_c = base::TimeTicks::Now() - resize_start;
262
263 resize_start = base::TimeTicks::Now();
264 // Convolve using SSE2 code
265 BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()),
266 static_cast<int>(source.rowBytes()), (alpha != 0), x_filter,
267 y_filter, static_cast<int>(result_sse.rowBytes()), r2, true);
268 delta_sse = base::TimeTicks::Now() - resize_start;
269
270 // Unfortunately I could not enable the performance check now.
271 // Most bots use debug version, and there are great difference between
272 // the code generation for intrinsic, etc. In release version speed
273 // difference was 150%-200% depend on alpha channel presence;
274 // while in debug version speed difference was 96%-120%.
275 // TODO(jiesun): optimize further until we could enable this for
276 // debug version too.
277 // EXPECT_LE(delta_sse, delta_c);
278
279 int64 c_us = delta_c.InMicroseconds();
280 int64 sse_us = delta_sse.InMicroseconds();
281 VLOG(1) << "from:" << source_width << "x" << source_height
282 << " to:" << dest_width << "x" << dest_height
283 << (alpha ? " with alpha" : " w/o alpha");
284 VLOG(1) << "c:" << c_us << " sse:" << sse_us;
285 VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us;
286
287 // Comparing result.
288 for (unsigned int i = 0; i < dest_height; i++) {
289 EXPECT_FALSE(memcmp(r1, r2, dest_width * 4)); // RGBA always
290 r1 += result_c.rowBytes();
291 r2 += result_sse.rowBytes();
292 }
293 }
294 }
295
296 TEST(Convolver, VerifySIMDEdgeCases) {
297 srand(static_cast<unsigned int>(time(0)));
298 // Loop over all possible (small) image sizes
299 for (unsigned int width = 1; width < 20; width++) {
300 for (unsigned int height = 1; height < 20; height++) {
301 VerifySIMD(width, height, 8, 8);
302 VerifySIMD(8, 8, width, height);
303 }
304 }
305 }
306
307 // Verify that lage upscales/downscales produce the same result
308 // with and without SIMD.
309 TEST(Convolver, VerifySIMDPrecision) {
310 int source_sizes[][2] = {{1920, 1080}, {1377, 523}, {325, 241}};
311 int dest_sizes[][2] = {{1280, 1024}, {177, 123}};
312
313 srand(static_cast<unsigned int>(time(0)));
314
315 // Loop over some specific source and destination dimensions.
316 for (unsigned int i = 0; i < arraysize(source_sizes); ++i) {
317 unsigned int source_width = source_sizes[i][0];
318 unsigned int source_height = source_sizes[i][1];
319 for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) {
320 unsigned int dest_width = dest_sizes[j][0];
321 unsigned int dest_height = dest_sizes[j][1];
322 VerifySIMD(source_width, source_height, dest_width, dest_height);
323 }
324 }
325 }
326
327 TEST(Convolver, SeparableSingleConvolution) {
328 static const int kImgWidth = 1024;
329 static const int kImgHeight = 1024;
330 static const int kChannelCount = 3;
331 static const int kStrideSlack = 22;
332 ConvolutionFilter1D filter;
333 const float box[5] = {0.2f, 0.2f, 0.2f, 0.2f, 0.2f};
334 filter.AddFilter(0, box, 5);
335
336 // Allocate a source image and set to 0.
337 const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
338 int src_byte_count = src_row_stride * kImgHeight;
339 std::vector<unsigned char> input;
340 const int signal_x = kImgWidth / 2;
341 const int signal_y = kImgHeight / 2;
342 input.resize(src_byte_count, 0);
343 // The image has a single impulse pixel in channel 1, smack in the middle.
344 const int non_zero_pixel_index =
345 signal_y * src_row_stride + signal_x * kChannelCount + 1;
346 input[non_zero_pixel_index] = 255;
347
348 // Destination will be a single channel image with stide matching width.
349 const int dest_row_stride = kImgWidth;
350 const int dest_byte_count = dest_row_stride * kImgHeight;
351 std::vector<unsigned char> output;
352 output.resize(dest_byte_count);
353
354 // Apply convolution in X.
355 SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, filter,
356 SkISize::Make(kImgWidth, kImgHeight), &output[0],
357 dest_row_stride, 0, 1, false);
358 for (int x = signal_x - 2; x <= signal_x + 2; ++x)
359 EXPECT_GT(output[signal_y * dest_row_stride + x], 0);
360
361 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0);
362 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0);
363
364 // Apply convolution in Y.
365 SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, filter,
366 SkISize::Make(kImgWidth, kImgHeight), &output[0],
367 dest_row_stride, 0, 1, false);
368 for (int y = signal_y - 2; y <= signal_y + 2; ++y)
369 EXPECT_GT(output[y * dest_row_stride + signal_x], 0);
370
371 EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0);
372 EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0);
373
374 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0);
375 EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0);
376
377 // The main point of calling this is to invoke the routine on input without
378 // padding.
379 std::vector<unsigned char> output2;
380 output2.resize(dest_byte_count);
381 SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1, filter,
382 SkISize::Make(kImgWidth, kImgHeight), &output2[0],
383 dest_row_stride, 0, 1, false);
384 // This should be a result of 2D convolution.
385 for (int x = signal_x - 2; x <= signal_x + 2; ++x) {
386 for (int y = signal_y - 2; y <= signal_y + 2; ++y)
387 EXPECT_GT(output2[y * dest_row_stride + x], 0);
388 }
389 EXPECT_EQ(output2[0], 0);
390 EXPECT_EQ(output2[dest_row_stride - 1], 0);
391 EXPECT_EQ(output2[dest_byte_count - 1], 0);
392 }
393
394 TEST(Convolver, SeparableSingleConvolutionEdges) {
395 // The purpose of this test is to check if the implementation treats correctly
396 // edges of the image.
397 static const int kImgWidth = 600;
398 static const int kImgHeight = 800;
399 static const int kChannelCount = 3;
400 static const int kStrideSlack = 22;
401 static const int kChannel = 1;
402 ConvolutionFilter1D filter;
403 const float box[5] = {0.2f, 0.2f, 0.2f, 0.2f, 0.2f};
404 filter.AddFilter(0, box, 5);
405
406 // Allocate a source image and set to 0.
407 int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
408 int src_byte_count = src_row_stride * kImgHeight;
409 std::vector<unsigned char> input(src_byte_count);
410
411 // Draw a frame around the image.
412 for (int i = 0; i < src_byte_count; ++i) {
413 int row = i / src_row_stride;
414 int col = i % src_row_stride / kChannelCount;
415 int channel = i % src_row_stride % kChannelCount;
416 if (channel != kChannel || col > kImgWidth) {
417 input[i] = 255;
418 } else if (row == 0 || col == 0 || col == kImgWidth - 1 ||
419 row == kImgHeight - 1) {
420 input[i] = 100;
421 } else if (row == 1 || col == 1 || col == kImgWidth - 2 ||
422 row == kImgHeight - 2) {
423 input[i] = 200;
424 } else {
425 input[i] = 0;
426 }
427 }
428
429 // Destination will be a single channel image with stide matching width.
430 int dest_row_stride = kImgWidth;
431 int dest_byte_count = dest_row_stride * kImgHeight;
432 std::vector<unsigned char> output;
433 output.resize(dest_byte_count);
434
435 // Apply convolution in X.
436 SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, filter,
437 SkISize::Make(kImgWidth, kImgHeight), &output[0],
438 dest_row_stride, 0, 1, false);
439
440 // Sadly, comparison is not as simple as retaining all values.
441 int invalid_values = 0;
442 const unsigned char first_value = output[0];
443 EXPECT_NEAR(first_value, 100, 1);
444 for (int i = 0; i < dest_row_stride; ++i) {
445 if (output[i] != first_value)
446 ++invalid_values;
447 }
448 EXPECT_EQ(0, invalid_values);
449
450 int test_row = 22;
451 EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1);
452 EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1);
453 EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1);
454 EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1);
455 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1);
456 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1);
457 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1);
458 EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1);
459
460 SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, filter,
461 SkISize::Make(kImgWidth, kImgHeight), &output[0],
462 dest_row_stride, 0, 1, false);
463
464 int test_column = 42;
465 EXPECT_NEAR(output[test_column], 100, 1);
466 EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1);
467 EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1);
468 EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1);
469
470 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1);
471 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1);
472 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1);
473 EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1);
474 }
475
476 TEST(Convolver, SetUpGaussianConvolutionFilter) {
477 ConvolutionFilter1D smoothing_filter;
478 ConvolutionFilter1D gradient_filter;
479 SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false);
480 SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true);
481
482 int specified_filter_length;
483 int filter_offset;
484 int filter_length;
485
486 const ConvolutionFilter1D::Fixed* smoothing_kernel =
487 smoothing_filter.GetSingleFilter(&specified_filter_length, &filter_offset,
488 &filter_length);
489 EXPECT_TRUE(smoothing_kernel);
490 std::vector<float> fp_smoothing_kernel(filter_length);
491 std::transform(smoothing_kernel, smoothing_kernel + filter_length,
492 fp_smoothing_kernel.begin(),
493 ConvolutionFilter1D::FixedToFloat);
494 // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[.
495 EXPECT_NEAR(std::accumulate(fp_smoothing_kernel.begin(),
496 fp_smoothing_kernel.end(), 0.0f),
497 1.0f, 0.01f);
498 EXPECT_GT(
499 *std::min_element(fp_smoothing_kernel.begin(), fp_smoothing_kernel.end()),
500 0.0f);
501 EXPECT_LT(
502 *std::max_element(fp_smoothing_kernel.begin(), fp_smoothing_kernel.end()),
503 1.0f);
504
505 const ConvolutionFilter1D::Fixed* gradient_kernel =
506 gradient_filter.GetSingleFilter(&specified_filter_length, &filter_offset,
507 &filter_length);
508 EXPECT_TRUE(gradient_kernel);
509 std::vector<float> fp_gradient_kernel(filter_length);
510 std::transform(gradient_kernel, gradient_kernel + filter_length,
511 fp_gradient_kernel.begin(), ConvolutionFilter1D::FixedToFloat);
512 // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[.
513 EXPECT_NEAR(std::accumulate(fp_gradient_kernel.begin(),
514 fp_gradient_kernel.end(), 0.0f),
515 0.0f, 0.01f);
516 EXPECT_GT(
517 *std::min_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()),
518 -1.5f);
519 EXPECT_LT(
520 *std::min_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()),
521 0.0f);
522 EXPECT_LT(
523 *std::max_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()),
524 1.5f);
525 EXPECT_GT(
526 *std::max_element(fp_gradient_kernel.begin(), fp_gradient_kernel.end()),
527 0.0f);
528 }
529
530 } // namespace skia
OLDNEW
« no previous file with comments | « skia/ext/convolver_mips_dspr2.cc ('k') | skia/ext/opacity_draw_filter.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698