| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "net/quic/quic_fec_group.h" | |
| 6 | |
| 7 #include <algorithm> | |
| 8 #include <memory> | |
| 9 #include <vector> | |
| 10 | |
| 11 #include "base/logging.h" | |
| 12 #include "testing/gmock/include/gmock/gmock.h" | |
| 13 | |
| 14 using ::testing::_; | |
| 15 using base::StringPiece; | |
| 16 using std::string; | |
| 17 | |
| 18 namespace net { | |
| 19 | |
| 20 namespace { | |
| 21 | |
| 22 // kData[] and kEntropyFlag[] are indexed by packet numbers, which | |
| 23 // start at 1, so their first elements are dummy. | |
| 24 const char* kData[] = { | |
| 25 "", // dummy | |
| 26 // kData[1] must be at least as long as every element of kData[], because | |
| 27 // it is used to calculate kDataMaxLen. | |
| 28 "abc12345678", "987defg", "ghi12345", "987jlkmno", "mno4567890", | |
| 29 "789pqrstuvw", | |
| 30 }; | |
| 31 // The maximum length of an element of kData. | |
| 32 const size_t kDataMaxLen = strlen(kData[1]); | |
| 33 // A suitable test data string, whose length is kDataMaxLen. | |
| 34 const char* kDataSingle = kData[1]; | |
| 35 | |
| 36 const bool kEntropyFlag[] = { | |
| 37 false, // dummy | |
| 38 false, true, true, false, true, true, | |
| 39 }; | |
| 40 | |
| 41 } // namespace | |
| 42 | |
| 43 class QuicFecGroupTest : public ::testing::Test { | |
| 44 protected: | |
| 45 void RunTest(size_t num_packets, size_t lost_packet, bool out_of_order) { | |
| 46 // kData[] and kEntropyFlag[] are indexed by packet numbers, which | |
| 47 // start at 1. | |
| 48 DCHECK_GE(arraysize(kData), num_packets); | |
| 49 std::unique_ptr<char[]> redundancy(new char[kDataMaxLen]); | |
| 50 for (size_t i = 0; i < kDataMaxLen; i++) { | |
| 51 redundancy[i] = 0x00; | |
| 52 } | |
| 53 // XOR in the packets. | |
| 54 for (size_t packet = 1; packet <= num_packets; ++packet) { | |
| 55 for (size_t i = 0; i < kDataMaxLen; i++) { | |
| 56 uint8_t byte = i > strlen(kData[packet]) ? 0x00 : kData[packet][i]; | |
| 57 redundancy[i] = redundancy[i] ^ byte; | |
| 58 } | |
| 59 } | |
| 60 | |
| 61 QuicFecGroup group(1); | |
| 62 | |
| 63 // If we're out of order, send the FEC packet in the position of the | |
| 64 // lost packet. Otherwise send all (non-missing) packets, then FEC. | |
| 65 if (out_of_order) { | |
| 66 // Update the FEC state for each non-lost packet. | |
| 67 for (size_t packet = 1; packet <= num_packets; packet++) { | |
| 68 if (packet == lost_packet) { | |
| 69 QuicPacketHeader header; | |
| 70 header.packet_number = num_packets + 1; | |
| 71 header.fec_group = 1; | |
| 72 ASSERT_FALSE(group.IsFinished()); | |
| 73 ASSERT_TRUE( | |
| 74 group.UpdateFec(ENCRYPTION_FORWARD_SECURE, header, | |
| 75 StringPiece(redundancy.get(), kDataMaxLen))); | |
| 76 } else { | |
| 77 QuicPacketHeader header; | |
| 78 header.packet_number = packet; | |
| 79 header.fec_group = 1; | |
| 80 ASSERT_TRUE( | |
| 81 group.Update(ENCRYPTION_FORWARD_SECURE, header, kData[packet])); | |
| 82 } | |
| 83 ASSERT_TRUE(group.CanRevive() == (packet == num_packets)); | |
| 84 } | |
| 85 } else { | |
| 86 // Update the FEC state for each non-lost packet. | |
| 87 for (size_t packet = 1; packet <= num_packets; packet++) { | |
| 88 if (packet == lost_packet) { | |
| 89 continue; | |
| 90 } | |
| 91 | |
| 92 QuicPacketHeader header; | |
| 93 header.packet_number = packet; | |
| 94 header.fec_group = 1; | |
| 95 header.entropy_flag = kEntropyFlag[packet]; | |
| 96 ASSERT_TRUE( | |
| 97 group.Update(ENCRYPTION_FORWARD_SECURE, header, kData[packet])); | |
| 98 ASSERT_FALSE(group.CanRevive()); | |
| 99 } | |
| 100 | |
| 101 ASSERT_FALSE(group.IsFinished()); | |
| 102 QuicPacketHeader header; | |
| 103 header.packet_number = num_packets + 1; | |
| 104 header.fec_group = 1; | |
| 105 // Attempt to revive the missing packet. | |
| 106 ASSERT_TRUE(group.UpdateFec(ENCRYPTION_FORWARD_SECURE, header, | |
| 107 StringPiece(redundancy.get(), kDataMaxLen))); | |
| 108 } | |
| 109 QuicPacketHeader header; | |
| 110 char recovered[kMaxPacketSize]; | |
| 111 ASSERT_TRUE(group.CanRevive()); | |
| 112 size_t len = group.Revive(&header, recovered, arraysize(recovered)); | |
| 113 ASSERT_NE(0u, len) << "Failed to revive packet " << lost_packet | |
| 114 << " out of " << num_packets; | |
| 115 EXPECT_EQ(lost_packet, header.packet_number) << "Failed to revive packet " | |
| 116 << lost_packet << " out of " | |
| 117 << num_packets; | |
| 118 // Revived packets have an unknown entropy. | |
| 119 EXPECT_FALSE(header.entropy_flag); | |
| 120 ASSERT_GE(len, strlen(kData[lost_packet])) << "Incorrect length"; | |
| 121 for (size_t i = 0; i < strlen(kData[lost_packet]); i++) { | |
| 122 EXPECT_EQ(kData[lost_packet][i], recovered[i]); | |
| 123 } | |
| 124 ASSERT_TRUE(group.IsFinished()); | |
| 125 } | |
| 126 }; | |
| 127 | |
| 128 TEST_F(QuicFecGroupTest, UpdateAndRevive) { | |
| 129 RunTest(2, 1, false); | |
| 130 RunTest(2, 2, false); | |
| 131 | |
| 132 RunTest(3, 1, false); | |
| 133 RunTest(3, 2, false); | |
| 134 RunTest(3, 3, false); | |
| 135 } | |
| 136 | |
| 137 TEST_F(QuicFecGroupTest, UpdateAndReviveOutOfOrder) { | |
| 138 RunTest(2, 1, true); | |
| 139 RunTest(2, 2, true); | |
| 140 | |
| 141 RunTest(3, 1, true); | |
| 142 RunTest(3, 2, true); | |
| 143 RunTest(3, 3, true); | |
| 144 } | |
| 145 | |
| 146 TEST_F(QuicFecGroupTest, UpdateFecIfReceivedPacketIsNotCovered) { | |
| 147 char data1[] = "abc123"; | |
| 148 char redundancy[arraysize(data1)]; | |
| 149 for (size_t i = 0; i < arraysize(data1); i++) { | |
| 150 redundancy[i] = data1[i]; | |
| 151 } | |
| 152 | |
| 153 QuicFecGroup group(1); | |
| 154 | |
| 155 QuicPacketHeader header; | |
| 156 header.fec_group = 1; | |
| 157 header.packet_number = 3; | |
| 158 group.Update(ENCRYPTION_FORWARD_SECURE, header, data1); | |
| 159 | |
| 160 header.packet_number = 2; | |
| 161 ASSERT_FALSE(group.UpdateFec(ENCRYPTION_FORWARD_SECURE, header, redundancy)); | |
| 162 } | |
| 163 | |
| 164 TEST_F(QuicFecGroupTest, IsWaitingForPacketBefore) { | |
| 165 QuicPacketHeader header; | |
| 166 header.fec_group = 3; | |
| 167 header.packet_number = 3; | |
| 168 | |
| 169 QuicFecGroup group(3); | |
| 170 ASSERT_TRUE(group.Update(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 171 | |
| 172 EXPECT_FALSE(group.IsWaitingForPacketBefore(1)); | |
| 173 EXPECT_FALSE(group.IsWaitingForPacketBefore(2)); | |
| 174 EXPECT_FALSE(group.IsWaitingForPacketBefore(3)); | |
| 175 EXPECT_FALSE(group.IsWaitingForPacketBefore(4)); | |
| 176 EXPECT_TRUE(group.IsWaitingForPacketBefore(5)); | |
| 177 EXPECT_TRUE(group.IsWaitingForPacketBefore(50)); | |
| 178 } | |
| 179 | |
| 180 TEST_F(QuicFecGroupTest, IsWaitingForPacketBeforeWithSeveralPackets) { | |
| 181 QuicPacketHeader header; | |
| 182 header.fec_group = 3; | |
| 183 header.packet_number = 3; | |
| 184 | |
| 185 QuicFecGroup group(3); | |
| 186 ASSERT_TRUE(group.Update(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 187 | |
| 188 header.packet_number = 7; | |
| 189 ASSERT_TRUE(group.Update(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 190 | |
| 191 header.packet_number = 5; | |
| 192 ASSERT_TRUE(group.Update(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 193 | |
| 194 EXPECT_FALSE(group.IsWaitingForPacketBefore(1)); | |
| 195 EXPECT_FALSE(group.IsWaitingForPacketBefore(2)); | |
| 196 EXPECT_FALSE(group.IsWaitingForPacketBefore(3)); | |
| 197 EXPECT_FALSE(group.IsWaitingForPacketBefore(4)); | |
| 198 EXPECT_TRUE(group.IsWaitingForPacketBefore(5)); | |
| 199 EXPECT_TRUE(group.IsWaitingForPacketBefore(6)); | |
| 200 EXPECT_TRUE(group.IsWaitingForPacketBefore(7)); | |
| 201 EXPECT_TRUE(group.IsWaitingForPacketBefore(8)); | |
| 202 EXPECT_TRUE(group.IsWaitingForPacketBefore(9)); | |
| 203 EXPECT_TRUE(group.IsWaitingForPacketBefore(50)); | |
| 204 } | |
| 205 | |
| 206 TEST_F(QuicFecGroupTest, IsWaitingForPacketBeforeWithFecData1) { | |
| 207 QuicFecGroup group(3); | |
| 208 | |
| 209 QuicPacketHeader header; | |
| 210 header.fec_group = 3; | |
| 211 header.packet_number = 4; | |
| 212 ASSERT_TRUE(group.UpdateFec(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 213 | |
| 214 EXPECT_FALSE(group.IsWaitingForPacketBefore(1)); | |
| 215 EXPECT_FALSE(group.IsWaitingForPacketBefore(2)); | |
| 216 EXPECT_FALSE(group.IsWaitingForPacketBefore(3)); | |
| 217 EXPECT_TRUE(group.IsWaitingForPacketBefore(4)); | |
| 218 EXPECT_TRUE(group.IsWaitingForPacketBefore(5)); | |
| 219 EXPECT_TRUE(group.IsWaitingForPacketBefore(6)); | |
| 220 EXPECT_TRUE(group.IsWaitingForPacketBefore(50)); | |
| 221 } | |
| 222 | |
| 223 TEST_F(QuicFecGroupTest, IsWaitingForPacketBeforeWithFecData2) { | |
| 224 QuicFecGroup group(3); | |
| 225 | |
| 226 QuicPacketHeader header; | |
| 227 header.fec_group = 3; | |
| 228 header.packet_number = 3; | |
| 229 ASSERT_TRUE(group.Update(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 230 | |
| 231 header.packet_number = 5; | |
| 232 ASSERT_TRUE(group.UpdateFec(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 233 | |
| 234 EXPECT_FALSE(group.IsWaitingForPacketBefore(1)); | |
| 235 EXPECT_FALSE(group.IsWaitingForPacketBefore(2)); | |
| 236 EXPECT_FALSE(group.IsWaitingForPacketBefore(3)); | |
| 237 EXPECT_FALSE(group.IsWaitingForPacketBefore(4)); | |
| 238 EXPECT_TRUE(group.IsWaitingForPacketBefore(5)); | |
| 239 EXPECT_TRUE(group.IsWaitingForPacketBefore(6)); | |
| 240 EXPECT_TRUE(group.IsWaitingForPacketBefore(50)); | |
| 241 } | |
| 242 | |
| 243 TEST_F(QuicFecGroupTest, EffectiveEncryptionLevel) { | |
| 244 QuicFecGroup group(1); | |
| 245 EXPECT_EQ(NUM_ENCRYPTION_LEVELS, group.EffectiveEncryptionLevel()); | |
| 246 | |
| 247 QuicPacketHeader header; | |
| 248 header.fec_group = 1; | |
| 249 header.packet_number = 5; | |
| 250 ASSERT_TRUE(group.Update(ENCRYPTION_INITIAL, header, kDataSingle)); | |
| 251 EXPECT_EQ(ENCRYPTION_INITIAL, group.EffectiveEncryptionLevel()); | |
| 252 | |
| 253 header.packet_number = 7; | |
| 254 ASSERT_TRUE(group.UpdateFec(ENCRYPTION_FORWARD_SECURE, header, kDataSingle)); | |
| 255 EXPECT_EQ(ENCRYPTION_INITIAL, group.EffectiveEncryptionLevel()); | |
| 256 | |
| 257 header.packet_number = 3; | |
| 258 ASSERT_TRUE(group.Update(ENCRYPTION_NONE, header, kDataSingle)); | |
| 259 EXPECT_EQ(ENCRYPTION_NONE, group.EffectiveEncryptionLevel()); | |
| 260 } | |
| 261 | |
| 262 // Test the code assuming it is going to be operating in 128-bit chunks (which | |
| 263 // is something that can happen if it is compiled with full vectorization). | |
| 264 const QuicByteCount kWordSize = 128 / 8; | |
| 265 | |
| 266 // A buffer which stores the data with the specified offset with respect to word | |
| 267 // alignment boundary. | |
| 268 class MisalignedBuffer { | |
| 269 public: | |
| 270 MisalignedBuffer(const string& original, size_t offset); | |
| 271 | |
| 272 char* buffer() { return buffer_; } | |
| 273 size_t size() { return size_; } | |
| 274 | |
| 275 StringPiece AsStringPiece() { return StringPiece(buffer_, size_); } | |
| 276 | |
| 277 private: | |
| 278 char* buffer_; | |
| 279 size_t size_; | |
| 280 | |
| 281 std::unique_ptr<char[]> allocation_; | |
| 282 }; | |
| 283 | |
| 284 MisalignedBuffer::MisalignedBuffer(const string& original, size_t offset) { | |
| 285 CHECK_LT(offset, kWordSize); | |
| 286 size_ = original.size(); | |
| 287 | |
| 288 // Allocate aligned buffer two words larger than needed. | |
| 289 const size_t aligned_buffer_size = size_ + 2 * kWordSize; | |
| 290 allocation_.reset(new char[aligned_buffer_size]); | |
| 291 char* aligned_buffer = | |
| 292 allocation_.get() + | |
| 293 (kWordSize - reinterpret_cast<uintptr_t>(allocation_.get()) % kWordSize); | |
| 294 CHECK_EQ(0u, reinterpret_cast<uintptr_t>(aligned_buffer) % kWordSize); | |
| 295 | |
| 296 buffer_ = aligned_buffer + offset; | |
| 297 CHECK_EQ(offset, reinterpret_cast<uintptr_t>(buffer_) % kWordSize); | |
| 298 memcpy(buffer_, original.data(), size_); | |
| 299 } | |
| 300 | |
| 301 // Checks whether XorBuffers works correctly with buffers aligned in various | |
| 302 // ways. | |
| 303 TEST(XorBuffersTest, XorBuffers) { | |
| 304 const string longer_data = | |
| 305 "Having to care about memory alignment can be incredibly frustrating."; | |
| 306 const string shorter_data = "strict aliasing"; | |
| 307 | |
| 308 // Compute the reference XOR using simpler slow way. | |
| 309 string output_reference; | |
| 310 for (size_t i = 0; i < longer_data.size(); i++) { | |
| 311 char shorter_byte = i < shorter_data.size() ? shorter_data[i] : 0; | |
| 312 output_reference.push_back(longer_data[i] ^ shorter_byte); | |
| 313 } | |
| 314 | |
| 315 // Check whether XorBuffers works correctly for all possible misalignments. | |
| 316 for (size_t offset_shorter = 0; offset_shorter < kWordSize; | |
| 317 offset_shorter++) { | |
| 318 for (size_t offset_longer = 0; offset_longer < kWordSize; offset_longer++) { | |
| 319 // Prepare the misaligned buffer. | |
| 320 MisalignedBuffer longer(longer_data, offset_longer); | |
| 321 MisalignedBuffer shorter(shorter_data, offset_shorter); | |
| 322 | |
| 323 // XOR the buffers and compare the result with the reference. | |
| 324 QuicFecGroup::XorBuffers(shorter.buffer(), shorter.size(), | |
| 325 longer.buffer()); | |
| 326 EXPECT_EQ(output_reference, longer.AsStringPiece()); | |
| 327 } | |
| 328 } | |
| 329 } | |
| 330 | |
| 331 } // namespace net | |
| OLD | NEW |