Index: third_party/WebKit/LayoutTests/webaudio/audioparam-automation-clamping.html |
diff --git a/third_party/WebKit/LayoutTests/webaudio/audioparam-automation-clamping.html b/third_party/WebKit/LayoutTests/webaudio/audioparam-automation-clamping.html |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5b9d562299f7895416dd02df3d62c0599c83cae9 |
--- /dev/null |
+++ b/third_party/WebKit/LayoutTests/webaudio/audioparam-automation-clamping.html |
@@ -0,0 +1,132 @@ |
+<!doctype html> |
+<html> |
+ <head> |
+ <script src="../resources/js-test.js"></script> |
+ <script src="resources/compatibility.js"></script> |
+ <script src="resources/audio-testing.js"></script> |
+ <title>Test Clamping of Automations</title> |
+ </head> |
+ |
+ <body> |
+ <script> |
+ description("Test Clamping of Automations."); |
+ window.jsTestIsAsync = true; |
+ |
+ // Some arbitrary sample rate for the offline context. |
+ var sampleRate = 48000; |
+ |
+ // Duration of test (fairly arbitrary). |
+ var renderDuration = 1; |
+ var renderFrames = renderDuration * sampleRate; |
+ |
+ var audit = Audit.createTaskRunner(); |
+ |
+ audit.defineTask("clamp", function (done) { |
+ // Test clamping of automations. Most AudioParam limits are essentially |
+ // unbounded, so clamping doesn't happen. For most other AudioParams, |
+ // the behavior is sufficiently complicated with complicated outputs |
+ // that testing them is hard. However the output behavior of the |
+ // frequency parameter for a BiquadFilter is relatively simple. Use |
+ // that as the test. |
+ var context = new OfflineAudioContext(1, renderFrames, sampleRate); |
+ |
+ var source = context.createBufferSource(); |
+ source.buffer = createConstantBuffer(context, 1, 1); |
+ source.loop = true; |
+ |
+ var filter = context.createBiquadFilter(); |
+ filter.type = "lowpass"; |
+ |
+ source.connect(filter); |
+ filter.connect(context.destination); |
+ |
+ var V0 = 880; |
+ var T0 = 0; |
+ filter.frequency.setValueAtTime(V0, T0); |
+ |
+ var V1 = -1000; |
+ var T1 = renderDuration / 4; |
+ filter.frequency.linearRampToValueAtTime(V1, T1); |
+ |
+ var V2 = 880; |
+ var T2 = renderDuration / 2; |
+ filter.frequency.linearRampToValueAtTime(V2, T2); |
+ |
+ source.start(); |
+ |
+ context.startRendering().then(function (buffer) { |
+ var result = buffer.getChannelData(0); |
+ var success = true; |
+ |
+ // When the cutoff frequency of a lowpass filter is 0, nothing gets |
+ // through. Hence the output of the filter between the clamping |
+ // period should be exactly zero. This tests passes if the output is 0 |
+ // during the expected range. |
+ // |
+ // Compute when the frequency value of the biquad goes to 0. In |
+ // general, t = (T0*V1 -T1*V0)/(V1-V0) (using the notation from the |
+ // spec.) |
+ var clampStartTime = solveLinearRamp(0, V0, T0, V1, T1); |
+ var clampEndTime = solveLinearRamp(0, V1, T1, V2, T2); |
+ |
+ var clampStartFrame = Math.ceil(clampStartTime * sampleRate); |
+ var clampEndFrame = Math.floor(clampEndTime * sampleRate); |
+ |
+ var clampedSignal = result.slice(clampStartFrame, clampEndFrame + 1); |
+ var expectedSignal = new Float32Array(clampedSignal.length); |
+ expectedSignal.fill(0); |
+ |
+ // Output should be zero. |
+ success = Should("Clamped signal in frame range [" + clampStartFrame + ", " + |
+ clampEndFrame + "]", |
+ clampedSignal, { |
+ verbose: true, |
+ }).beCloseToArray(expectedSignal, 0); |
+ |
+ // Find the actual clamp range based on the output values. |
+ var actualClampStart = result.findIndex(x => x === 0); |
+ var actualClampEnd = actualClampStart + result.slice(actualClampStart).findIndex( |
+ x => x != 0); |
+ |
+ // Verify that the expected clamping range is a subset of the actual range. |
+ success = Should("Actual Clamp start (" + actualClampStart + ")", |
+ actualClampStart).beLessThanOrEqualTo(clampStartFrame) && success; |
+ success == Should("Actual Clamp end (" + actualClampEnd + ")", |
+ actualClampEnd).beGreaterThanOrEqualTo(clampEndFrame) && success; |
+ |
+ if (success) |
+ testPassed("Clamping of BiquadFilter.frequency automation performed correctly.") |
+ else |
+ testFailed( |
+ "Clamping of BiquadFilter.frequency automation performed incorrectly.") |
+ |
+ }).then(done); |
+ }); |
+ |
+ // All done! |
+ audit.defineTask("finish", function (done) { |
+ finishJSTest(); |
+ done(); |
+ }); |
+ |
+ audit.runTasks(); |
+ |
+ function solveLinearRamp(v, v0, t0, v1, t1) { |
+ // Solve the linear ramp equation for the time t at which the ramp |
+ // reaches the value v. The linear ramp equation (from the spec) is |
+ // |
+ // v(t) = v0 + (v1 - v0) * (t - t0)/(t1 - t0) |
+ // |
+ // Find t such that |
+ // |
+ // v = v0 + (v1 - v0) * (t - t0)/(t1 - t0) |
+ // |
+ // Then |
+ // |
+ // t = (t0 * v1 - t1 * v0 + (t1 - t0) * v) / (v1 - v0) |
+ // |
+ return (t0 * v1 - t1 * v0 + (t1 - t0) * v) / (v1 - v0); |
+ } |
+ </script> |
+ </body> |
+</html> |