| Index: src/core/SkLatticeIter.cpp
|
| diff --git a/src/core/SkLatticeIter.cpp b/src/core/SkLatticeIter.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..24ab3f1cbc29a11af6ded16de3965c93ac76b292
|
| --- /dev/null
|
| +++ b/src/core/SkLatticeIter.cpp
|
| @@ -0,0 +1,230 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "SkLatticeIter.h"
|
| +#include "SkRect.h"
|
| +
|
| +/**
|
| + * Divs must be in increasing order with no duplicates.
|
| + */
|
| +static bool valid_divs(const int* divs, int count, int len) {
|
| + if (count <= 0) {
|
| + return false;
|
| + }
|
| +
|
| + int prev = -1;
|
| + for (int i = 0; i < count; i++) {
|
| + if (prev >= divs[i] || divs[i] > len) {
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
|
| + return valid_divs(lattice.fXDivs, lattice.fXCount, width) &&
|
| + valid_divs(lattice.fYDivs, lattice.fYCount, height);
|
| +}
|
| +
|
| +/**
|
| + * Count the number of pixels that are in "scalable" patches.
|
| + */
|
| +static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
|
| + int length) {
|
| + if (0 == numDivs) {
|
| + return firstIsScalable ? length : 0;
|
| + }
|
| +
|
| + int i;
|
| + int count;
|
| + if (firstIsScalable) {
|
| + count = divs[0];
|
| + i = 1;
|
| + } else {
|
| + count = 0;
|
| + i = 0;
|
| + }
|
| +
|
| + for (; i < numDivs; i += 2) {
|
| + // Alternatively, we could use |top| and |bottom| as variable names, instead of
|
| + // |left| and |right|.
|
| + int left = divs[i];
|
| + int right = (i + 1 < numDivs) ? divs[i + 1] : length;
|
| + count += right - left;
|
| + }
|
| +
|
| + return count;
|
| +}
|
| +
|
| +/**
|
| + * Set points for the src and dst rects on subsequent draw calls.
|
| + */
|
| +static void set_points(float* dst, float* src, const int* divs, int divCount, int srcFixed,
|
| + int srcScalable, float dstStart, float dstStop, bool isScalable) {
|
| +
|
| + float dstLen = dstStop - dstStart;
|
| + int srcLen = srcFixed + srcScalable;
|
| + float scale;
|
| + if (srcFixed <= dstLen) {
|
| + // This is the "normal" case, where we scale the "scalable" patches and leave
|
| + // the other patches fixed.
|
| + scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
|
| + } else {
|
| + // In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
|
| + scale = dstLen / ((float) srcFixed);
|
| + }
|
| +
|
| + src[0] = 0.0f;
|
| + dst[0] = dstStart;
|
| + for (int i = 0; i < divCount; i++) {
|
| + src[i + 1] = (float) (divs[i]);
|
| + float srcDelta = src[i + 1] - src[i];
|
| + float dstDelta;
|
| + if (srcFixed <= dstLen) {
|
| + dstDelta = isScalable ? scale * srcDelta : srcDelta;
|
| + } else {
|
| + dstDelta = isScalable ? 0.0f : scale * srcDelta;
|
| + }
|
| + dst[i + 1] = dst[i] + dstDelta;
|
| +
|
| + // Alternate between "scalable" and "fixed" patches.
|
| + isScalable = !isScalable;
|
| + }
|
| +
|
| + src[divCount + 1] = (float) srcLen;
|
| + dst[divCount + 1] = dstStop;
|
| +}
|
| +
|
| +SkLatticeIter::SkLatticeIter(int srcWidth, int srcHeight, const SkCanvas::Lattice& lattice,
|
| + const SkRect& dst)
|
| +{
|
| + const int* xDivs = lattice.fXDivs;
|
| + int xCount = lattice.fXCount;
|
| + const int* yDivs = lattice.fYDivs;
|
| + int yCount = lattice.fYCount;
|
| +
|
| + // In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
|
| + // If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
|
| + // first real rectangle "scalable" in the x-direction.
|
| + //
|
| + // The same interpretation applies to the y-dimension.
|
| + //
|
| + // As we move left to right across the image, alternating patches will be "fixed" or
|
| + // "scalable" in the x-direction. Similarly, as move top to bottom, alternating
|
| + // patches will be "fixed" or "scalable" in the y-direction.
|
| + SkASSERT(xCount > 0 && yCount > 0);
|
| + bool xIsScalable = (0 == xDivs[0]);
|
| + if (xIsScalable) {
|
| + // Once we've decided that the first patch is "scalable", we don't need the
|
| + // xDiv. It is always implied that we start at zero.
|
| + xDivs++;
|
| + xCount--;
|
| + }
|
| + bool yIsScalable = (0 == yDivs[0]);
|
| + if (yIsScalable) {
|
| + // Once we've decided that the first patch is "scalable", we don't need the
|
| + // yDiv. It is always implied that we start at zero.
|
| + yDivs++;
|
| + yCount--;
|
| + }
|
| +
|
| + // We never need the final xDiv/yDiv if it is equal to the width/height. This is implied.
|
| + if (xCount > 0 && srcWidth == xDivs[xCount - 1]) {
|
| + xCount--;
|
| + }
|
| + if (yCount > 0 && srcHeight == yDivs[yCount - 1]) {
|
| + yCount--;
|
| + }
|
| +
|
| + // Count "scalable" and "fixed" pixels in each dimension.
|
| + int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, srcWidth);
|
| + int xCountFixed = srcWidth - xCountScalable;
|
| + int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, srcHeight);
|
| + int yCountFixed = srcHeight - yCountScalable;
|
| +
|
| + fSrcX.reset(xCount + 2);
|
| + fDstX.reset(xCount + 2);
|
| + set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
|
| + dst.fLeft, dst.fRight, xIsScalable);
|
| +
|
| + fSrcY.reset(yCount + 2);
|
| + fDstY.reset(yCount + 2);
|
| + set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
|
| + dst.fTop, dst.fBottom, yIsScalable);
|
| +
|
| + fCurrX = fCurrY = 0;
|
| + fDone = false;
|
| +}
|
| +
|
| +bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
|
| + return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
|
| +}
|
| +
|
| +SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
|
| + SkASSERT(SkIRect::MakeWH(w, h).contains(c));
|
| +
|
| + fSrcX.reset(4);
|
| + fSrcY.reset(4);
|
| + fDstX.reset(4);
|
| + fDstY.reset(4);
|
| +
|
| + fSrcX[0] = 0;
|
| + fSrcX[1] = SkIntToScalar(c.fLeft);
|
| + fSrcX[2] = SkIntToScalar(c.fRight);
|
| + fSrcX[3] = SkIntToScalar(w);
|
| +
|
| + fSrcY[0] = 0;
|
| + fSrcY[1] = SkIntToScalar(c.fTop);
|
| + fSrcY[2] = SkIntToScalar(c.fBottom);
|
| + fSrcY[3] = SkIntToScalar(h);
|
| +
|
| + fDstX[0] = dst.fLeft;
|
| + fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
|
| + fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
|
| + fDstX[3] = dst.fRight;
|
| +
|
| + fDstY[0] = dst.fTop;
|
| + fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
|
| + fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
|
| + fDstY[3] = dst.fBottom;
|
| +
|
| + if (fDstX[1] > fDstX[2]) {
|
| + fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
|
| + fDstX[2] = fDstX[1];
|
| + }
|
| +
|
| + if (fDstY[1] > fDstY[2]) {
|
| + fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
|
| + fDstY[2] = fDstY[1];
|
| + }
|
| +
|
| + fCurrX = fCurrY = 0;
|
| + fDone = false;
|
| +}
|
| +
|
| +bool SkLatticeIter::next(SkRect* src, SkRect* dst) {
|
| + if (fDone) {
|
| + return false;
|
| + }
|
| +
|
| + const int x = fCurrX;
|
| + const int y = fCurrY;
|
| + SkASSERT(x >= 0 && x < fSrcX.count() - 1);
|
| + SkASSERT(y >= 0 && y < fSrcY.count() - 1);
|
| +
|
| + src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
|
| + dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
|
| + if (fSrcX.count() - 1 == ++fCurrX) {
|
| + fCurrX = 0;
|
| + fCurrY += 1;
|
| + if (fCurrY >= fSrcY.count() - 1) {
|
| + fDone = true;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
|
|