| Index: tools/visualize_color_gamut.cpp
|
| diff --git a/tools/visualize_color_gamut.cpp b/tools/visualize_color_gamut.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8fdd9621853402278b0a349768250899c7c29b91
|
| --- /dev/null
|
| +++ b/tools/visualize_color_gamut.cpp
|
| @@ -0,0 +1,135 @@
|
| +/*
|
| + * Copyright 2016 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "Resources.h"
|
| +
|
| +#include "SkBitmap.h"
|
| +#include "SkCanvas.h"
|
| +#include "SkCodec.h"
|
| +#include "SkColorSpace.h"
|
| +#include "SkCommandLineFlags.h"
|
| +#include "SkForceLinking.h"
|
| +#include "SkImageEncoder.h"
|
| +#include "SkMatrix44.h"
|
| +#include "SkOSFile.h"
|
| +
|
| +__SK_FORCE_IMAGE_DECODER_LINKING;
|
| +
|
| +DEFINE_string2(input, i, "input.png", "A path to the input image.");
|
| +DEFINE_string2(output, o, "output.png", "A path to the output image.");
|
| +
|
| +/**
|
| + * Loads the triangular gamut as a set of three points.
|
| + */
|
| +static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
|
| + // rx = rX / (rX + rY + rZ)
|
| + // ry = rX / (rX + rY + rZ)
|
| + // gx, gy, bx, and gy are calulcated similarly.
|
| + float rSum = xyz.get(0, 0) + xyz.get(0, 1) + xyz.get(0, 2);
|
| + float gSum = xyz.get(1, 0) + xyz.get(1, 1) + xyz.get(1, 2);
|
| + float bSum = xyz.get(2, 0) + xyz.get(2, 1) + xyz.get(2, 2);
|
| + rgb[0].fX = xyz.get(0, 0) / rSum;
|
| + rgb[0].fY = xyz.get(0, 1) / rSum;
|
| + rgb[1].fX = xyz.get(1, 0) / gSum;
|
| + rgb[1].fY = xyz.get(1, 1) / gSum;
|
| + rgb[2].fX = xyz.get(2, 0) / bSum;
|
| + rgb[2].fY = xyz.get(2, 1) / bSum;
|
| +}
|
| +
|
| +/**
|
| + * Calculates the area of the triangular gamut.
|
| + */
|
| +float calculate_area(SkPoint abc[]) {
|
| + SkPoint a = abc[0];
|
| + SkPoint b = abc[1];
|
| + SkPoint c = abc[2];
|
| + return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
|
| +}
|
| +
|
| +int main(int argc, char** argv) {
|
| + SkCommandLineFlags::SetUsage(
|
| + "Usage: visualize_color_gamut --input <path to input image>"
|
| + "--output <path to output image>\n"
|
| + "Description: Writes a visualization of the color gamut to the output image\n");
|
| + SkCommandLineFlags::Parse(argc, argv);
|
| + const char* input = FLAGS_input[0];
|
| + const char* output = FLAGS_output[0];
|
| + if (!input || !output) {
|
| + SkCommandLineFlags::PrintUsage();
|
| + return -1;
|
| + }
|
| +
|
| + SkAutoTUnref<SkData> data(SkData::NewFromFileName(input));
|
| + if (!data) {
|
| + SkDebugf("Cannot find input image.\n");
|
| + return -1;
|
| + }
|
| + SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(data));
|
| + if (!codec) {
|
| + SkDebugf("Invalid input image.\n");
|
| + return -1;
|
| + }
|
| +
|
| + // Load a graph of the CIE XYZ color gamut.
|
| + SkBitmap bitmap;
|
| + if (!GetResourceAsBitmap("gamut.png", &bitmap)) {
|
| + SkDebugf("Program failure.\n");
|
| + return -1;
|
| + }
|
| + SkCanvas canvas(bitmap);
|
| +
|
| + sk_sp<SkColorSpace> colorSpace = sk_ref_sp(codec->getColorSpace());
|
| + if (!colorSpace) {
|
| + SkDebugf("Image had no embedded color space information. Defaulting to sRGB.\n");
|
| + colorSpace = SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named);
|
| + }
|
| +
|
| + // Calculate the points in the gamut from the XYZ values.
|
| + SkMatrix44 xyz = colorSpace->xyz();
|
| + SkPoint rgb[4];
|
| + load_gamut(rgb, xyz);
|
| +
|
| + // Report the XYZ values.
|
| + SkDebugf(" X Y Z\n");
|
| + SkDebugf("Red %.2f %.2f %.2f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
|
| + SkDebugf("Green %.2f %.2f %.2f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
|
| + SkDebugf("Blue %.2f %.2f %.2f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));
|
| +
|
| + // Report the area of the gamut.
|
| + SkDebugf("Area of Gamut: %g\n", calculate_area(rgb));
|
| +
|
| + // Now transform the points so they can be drawn on our canvas. We use 1000 pixels
|
| + // to represent the space from 0 to 1. Note that the graph is at an offset of (50, 50).
|
| + // Also note that y increases as we move down the canvas.
|
| + rgb[0].fX = 50 + 1000*rgb[0].fX;
|
| + rgb[0].fY = 50 + 1000*(1 - rgb[0].fY);
|
| + rgb[1].fX = 50 + 1000*rgb[1].fX;
|
| + rgb[1].fY = 50 + 1000*(1 - rgb[1].fY);
|
| + rgb[2].fX = 50 + 1000*rgb[2].fX;
|
| + rgb[2].fY = 50 + 1000*(1 - rgb[2].fY);
|
| +
|
| + // Repeat the first point to connect the polygon.
|
| + rgb[3] = rgb[0];
|
| +
|
| + SkPaint paint;
|
| + canvas.drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
|
| +
|
| + // Finally, encode the result to out.png.
|
| + SkAutoTUnref<SkData> out(SkImageEncoder::EncodeData(bitmap, SkImageEncoder::kPNG_Type, 100));
|
| + if (!out) {
|
| + SkDebugf("Failed to encode output.\n");
|
| + return -1;
|
| + }
|
| + SkFILEWStream stream(output);
|
| + bool result = stream.write(out->data(), out->size());
|
| + if (!result) {
|
| + SkDebugf("Failed to write output.\n");
|
| + return -1;
|
| + }
|
| +
|
| + return 0;
|
| +}
|
|
|