Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(617)

Unified Diff: src/wasm/wasm-interpreter.cc

Issue 1972153002: [wasm] Implement an interpreter for WASM. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Rebase Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/wasm/wasm-interpreter.h ('k') | src/wasm/wasm-macro-gen.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/wasm/wasm-interpreter.cc
diff --git a/src/wasm/wasm-interpreter.cc b/src/wasm/wasm-interpreter.cc
new file mode 100644
index 0000000000000000000000000000000000000000..b2552e2ba4d9a1d054014381e7bd685943cd8f06
--- /dev/null
+++ b/src/wasm/wasm-interpreter.cc
@@ -0,0 +1,1787 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/wasm/wasm-interpreter.h"
+#include "src/wasm/ast-decoder.h"
+#include "src/wasm/decoder.h"
+#include "src/wasm/wasm-external-refs.h"
+#include "src/wasm/wasm-module.h"
+
+#include "src/base/accounting-allocator.h"
+#include "src/zone-containers.h"
+
+namespace v8 {
+namespace internal {
+namespace wasm {
+
+#if DEBUG
+#define TRACE(...) \
+ do { \
+ if (FLAG_trace_wasm_interpreter) PrintF(__VA_ARGS__); \
+ } while (false)
+#else
+#define TRACE(...)
+#endif
+
+#define FOREACH_INTERNAL_OPCODE(V) V(Breakpoint, 0xFF)
+
+#define FOREACH_SIMPLE_BINOP(V) \
+ V(I32Add, uint32_t, +) \
+ V(I32Sub, uint32_t, -) \
+ V(I32Mul, uint32_t, *) \
+ V(I32And, uint32_t, &) \
+ V(I32Ior, uint32_t, |) \
+ V(I32Xor, uint32_t, ^) \
+ V(I32Eq, uint32_t, ==) \
+ V(I32Ne, uint32_t, !=) \
+ V(I32LtU, uint32_t, <) \
+ V(I32LeU, uint32_t, <=) \
+ V(I32GtU, uint32_t, >) \
+ V(I32GeU, uint32_t, >=) \
+ V(I32LtS, int32_t, <) \
+ V(I32LeS, int32_t, <=) \
+ V(I32GtS, int32_t, >) \
+ V(I32GeS, int32_t, >=) \
+ V(I64Add, uint64_t, +) \
+ V(I64Sub, uint64_t, -) \
+ V(I64Mul, uint64_t, *) \
+ V(I64And, uint64_t, &) \
+ V(I64Ior, uint64_t, |) \
+ V(I64Xor, uint64_t, ^) \
+ V(I64Eq, uint64_t, ==) \
+ V(I64Ne, uint64_t, !=) \
+ V(I64LtU, uint64_t, <) \
+ V(I64LeU, uint64_t, <=) \
+ V(I64GtU, uint64_t, >) \
+ V(I64GeU, uint64_t, >=) \
+ V(I64LtS, int64_t, <) \
+ V(I64LeS, int64_t, <=) \
+ V(I64GtS, int64_t, >) \
+ V(I64GeS, int64_t, >=) \
+ V(F32Add, float, +) \
+ V(F32Sub, float, -) \
+ V(F32Mul, float, *) \
+ V(F32Div, float, /) \
+ V(F32Eq, float, ==) \
+ V(F32Ne, float, !=) \
+ V(F32Lt, float, <) \
+ V(F32Le, float, <=) \
+ V(F32Gt, float, >) \
+ V(F32Ge, float, >=) \
+ V(F64Add, double, +) \
+ V(F64Sub, double, -) \
+ V(F64Mul, double, *) \
+ V(F64Div, double, /) \
+ V(F64Eq, double, ==) \
+ V(F64Ne, double, !=) \
+ V(F64Lt, double, <) \
+ V(F64Le, double, <=) \
+ V(F64Gt, double, >) \
+ V(F64Ge, double, >=)
+
+#define FOREACH_OTHER_BINOP(V) \
+ V(I32DivS, int32_t) \
+ V(I32DivU, uint32_t) \
+ V(I32RemS, int32_t) \
+ V(I32RemU, uint32_t) \
+ V(I32Shl, uint32_t) \
+ V(I32ShrU, uint32_t) \
+ V(I32ShrS, int32_t) \
+ V(I64DivS, int64_t) \
+ V(I64DivU, uint64_t) \
+ V(I64RemS, int64_t) \
+ V(I64RemU, uint64_t) \
+ V(I64Shl, uint64_t) \
+ V(I64ShrU, uint64_t) \
+ V(I64ShrS, int64_t) \
+ V(I32Ror, int32_t) \
+ V(I32Rol, int32_t) \
+ V(I64Ror, int64_t) \
+ V(I64Rol, int64_t) \
+ V(F32Min, float) \
+ V(F32Max, float) \
+ V(F32CopySign, float) \
+ V(F64Min, double) \
+ V(F64Max, double) \
+ V(F64CopySign, double) \
+ V(I32AsmjsDivS, int32_t) \
+ V(I32AsmjsDivU, uint32_t) \
+ V(I32AsmjsRemS, int32_t) \
+ V(I32AsmjsRemU, uint32_t)
+
+#define FOREACH_OTHER_UNOP(V) \
+ V(I32Clz, uint32_t) \
+ V(I32Ctz, uint32_t) \
+ V(I32Popcnt, uint32_t) \
+ V(I32Eqz, uint32_t) \
+ V(I64Clz, uint64_t) \
+ V(I64Ctz, uint64_t) \
+ V(I64Popcnt, uint64_t) \
+ V(I64Eqz, uint64_t) \
+ V(F32Abs, float) \
+ V(F32Neg, float) \
+ V(F32Ceil, float) \
+ V(F32Floor, float) \
+ V(F32Trunc, float) \
+ V(F32NearestInt, float) \
+ V(F32Sqrt, float) \
+ V(F64Abs, double) \
+ V(F64Neg, double) \
+ V(F64Ceil, double) \
+ V(F64Floor, double) \
+ V(F64Trunc, double) \
+ V(F64NearestInt, double) \
+ V(F64Sqrt, double) \
+ V(I32SConvertF32, float) \
+ V(I32SConvertF64, double) \
+ V(I32UConvertF32, float) \
+ V(I32UConvertF64, double) \
+ V(I32ConvertI64, int64_t) \
+ V(I64SConvertF32, float) \
+ V(I64SConvertF64, double) \
+ V(I64UConvertF32, float) \
+ V(I64UConvertF64, double) \
+ V(I64SConvertI32, int32_t) \
+ V(I64UConvertI32, uint32_t) \
+ V(F32SConvertI32, int32_t) \
+ V(F32UConvertI32, uint32_t) \
+ V(F32SConvertI64, int64_t) \
+ V(F32UConvertI64, uint64_t) \
+ V(F32ConvertF64, double) \
+ V(F32ReinterpretI32, int32_t) \
+ V(F64SConvertI32, int32_t) \
+ V(F64UConvertI32, uint32_t) \
+ V(F64SConvertI64, int64_t) \
+ V(F64UConvertI64, uint64_t) \
+ V(F64ConvertF32, float) \
+ V(F64ReinterpretI64, int64_t) \
+ V(I32ReinterpretF32, float) \
+ V(I64ReinterpretF64, double) \
+ V(I32AsmjsSConvertF32, float) \
+ V(I32AsmjsUConvertF32, float) \
+ V(I32AsmjsSConvertF64, double) \
+ V(I32AsmjsUConvertF64, double)
+
+static inline int32_t ExecuteI32DivS(int32_t a, int32_t b, TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapDivByZero;
+ return 0;
+ }
+ if (b == -1 && a == std::numeric_limits<int32_t>::min()) {
+ *trap = kTrapDivUnrepresentable;
+ return 0;
+ }
+ return a / b;
+}
+
+static inline uint32_t ExecuteI32DivU(uint32_t a, uint32_t b,
+ TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapDivByZero;
+ return 0;
+ }
+ return a / b;
+}
+
+static inline int32_t ExecuteI32RemS(int32_t a, int32_t b, TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapRemByZero;
+ return 0;
+ }
+ if (b == -1) return 0;
+ return a % b;
+}
+
+static inline uint32_t ExecuteI32RemU(uint32_t a, uint32_t b,
+ TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapRemByZero;
+ return 0;
+ }
+ return a % b;
+}
+
+static inline uint32_t ExecuteI32Shl(uint32_t a, uint32_t b, TrapReason* trap) {
+ return a << (b & 0x1f);
+}
+
+static inline uint32_t ExecuteI32ShrU(uint32_t a, uint32_t b,
+ TrapReason* trap) {
+ return a >> (b & 0x1f);
+}
+
+static inline int32_t ExecuteI32ShrS(int32_t a, int32_t b, TrapReason* trap) {
+ return a >> (b & 0x1f);
+}
+
+static inline int64_t ExecuteI64DivS(int64_t a, int64_t b, TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapDivByZero;
+ return 0;
+ }
+ if (b == -1 && a == std::numeric_limits<int64_t>::min()) {
+ *trap = kTrapDivUnrepresentable;
+ return 0;
+ }
+ return a / b;
+}
+
+static inline uint64_t ExecuteI64DivU(uint64_t a, uint64_t b,
+ TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapDivByZero;
+ return 0;
+ }
+ return a / b;
+}
+
+static inline int64_t ExecuteI64RemS(int64_t a, int64_t b, TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapRemByZero;
+ return 0;
+ }
+ if (b == -1) return 0;
+ return a % b;
+}
+
+static inline uint64_t ExecuteI64RemU(uint64_t a, uint64_t b,
+ TrapReason* trap) {
+ if (b == 0) {
+ *trap = kTrapRemByZero;
+ return 0;
+ }
+ return a % b;
+}
+
+static inline uint64_t ExecuteI64Shl(uint64_t a, uint64_t b, TrapReason* trap) {
+ return a << (b & 0x3f);
+}
+
+static inline uint64_t ExecuteI64ShrU(uint64_t a, uint64_t b,
+ TrapReason* trap) {
+ return a >> (b & 0x3f);
+}
+
+static inline int64_t ExecuteI64ShrS(int64_t a, int64_t b, TrapReason* trap) {
+ return a >> (b & 0x3f);
+}
+
+static inline uint32_t ExecuteI32Ror(uint32_t a, uint32_t b, TrapReason* trap) {
+ uint32_t shift = (b & 0x1f);
+ return (a >> shift) | (a << (32 - shift));
+}
+
+static inline uint32_t ExecuteI32Rol(uint32_t a, uint32_t b, TrapReason* trap) {
+ uint32_t shift = (b & 0x1f);
+ return (a << shift) | (a >> (32 - shift));
+}
+
+static inline uint64_t ExecuteI64Ror(uint64_t a, uint64_t b, TrapReason* trap) {
+ uint32_t shift = (b & 0x3f);
+ return (a >> shift) | (a << (64 - shift));
+}
+
+static inline uint64_t ExecuteI64Rol(uint64_t a, uint64_t b, TrapReason* trap) {
+ uint32_t shift = (b & 0x3f);
+ return (a << shift) | (a >> (64 - shift));
+}
+
+static float quiet(float a) {
+ static const uint32_t kSignalingBit = 1 << 22;
+ uint32_t q = bit_cast<uint32_t>(std::numeric_limits<float>::quiet_NaN());
+ if ((q & kSignalingBit) != 0) {
+ // On some machines, the signaling bit set indicates it's a quiet NaN.
+ return bit_cast<float>(bit_cast<uint32_t>(a) | kSignalingBit);
+ } else {
+ // On others, the signaling bit set indicates it's a signaling NaN.
+ return bit_cast<float>(bit_cast<uint32_t>(a) & ~kSignalingBit);
+ }
+}
+
+static double quiet(double a) {
+ static const uint64_t kSignalingBit = 1ULL << 51;
+ uint64_t q = bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN());
+ if ((q & kSignalingBit) != 0) {
+ // On some machines, the signaling bit set indicates it's a quiet NaN.
+ return bit_cast<double>(bit_cast<uint64_t>(a) | kSignalingBit);
+ } else {
+ // On others, the signaling bit set indicates it's a signaling NaN.
+ return bit_cast<double>(bit_cast<uint64_t>(a) & ~kSignalingBit);
+ }
+}
+
+static inline float ExecuteF32Min(float a, float b, TrapReason* trap) {
+ if (std::isnan(a)) return quiet(a);
+ if (std::isnan(b)) return quiet(b);
+ return std::min(a, b);
+}
+
+static inline float ExecuteF32Max(float a, float b, TrapReason* trap) {
+ if (std::isnan(a)) return quiet(a);
+ if (std::isnan(b)) return quiet(b);
+ return std::max(a, b);
+}
+
+static inline float ExecuteF32CopySign(float a, float b, TrapReason* trap) {
+ return copysignf(a, b);
+}
+
+static inline double ExecuteF64Min(double a, double b, TrapReason* trap) {
+ if (std::isnan(a)) return quiet(a);
+ if (std::isnan(b)) return quiet(b);
+ return std::min(a, b);
+}
+
+static inline double ExecuteF64Max(double a, double b, TrapReason* trap) {
+ if (std::isnan(a)) return quiet(a);
+ if (std::isnan(b)) return quiet(b);
+ return std::max(a, b);
+}
+
+static inline double ExecuteF64CopySign(double a, double b, TrapReason* trap) {
+ return copysign(a, b);
+}
+
+static inline int32_t ExecuteI32AsmjsDivS(int32_t a, int32_t b,
+ TrapReason* trap) {
+ if (b == 0) return 0;
+ if (b == -1 && a == std::numeric_limits<int32_t>::min()) {
+ return std::numeric_limits<int32_t>::min();
+ }
+ return a / b;
+}
+
+static inline uint32_t ExecuteI32AsmjsDivU(uint32_t a, uint32_t b,
+ TrapReason* trap) {
+ if (b == 0) return 0;
+ return a / b;
+}
+
+static inline int32_t ExecuteI32AsmjsRemS(int32_t a, int32_t b,
+ TrapReason* trap) {
+ if (b == 0) return 0;
+ if (b == -1) return 0;
+ return a % b;
+}
+
+static inline uint32_t ExecuteI32AsmjsRemU(uint32_t a, uint32_t b,
+ TrapReason* trap) {
+ if (b == 0) return 0;
+ return a % b;
+}
+
+static inline int32_t ExecuteI32AsmjsSConvertF32(float a, TrapReason* trap) {
+ return DoubleToInt32(a);
+}
+
+static inline uint32_t ExecuteI32AsmjsUConvertF32(float a, TrapReason* trap) {
+ return DoubleToUint32(a);
+}
+
+static inline int32_t ExecuteI32AsmjsSConvertF64(double a, TrapReason* trap) {
+ return DoubleToInt32(a);
+}
+
+static inline uint32_t ExecuteI32AsmjsUConvertF64(double a, TrapReason* trap) {
+ return DoubleToUint32(a);
+}
+
+static int32_t ExecuteI32Clz(uint32_t val, TrapReason* trap) {
+ return base::bits::CountLeadingZeros32(val);
+}
+
+static uint32_t ExecuteI32Ctz(uint32_t val, TrapReason* trap) {
+ return base::bits::CountTrailingZeros32(val);
+}
+
+static uint32_t ExecuteI32Popcnt(uint32_t val, TrapReason* trap) {
+ return word32_popcnt_wrapper(&val);
+}
+
+static inline uint32_t ExecuteI32Eqz(uint32_t val, TrapReason* trap) {
+ return val == 0 ? 1 : 0;
+}
+
+static int64_t ExecuteI64Clz(uint64_t val, TrapReason* trap) {
+ return base::bits::CountLeadingZeros64(val);
+}
+
+static inline uint64_t ExecuteI64Ctz(uint64_t val, TrapReason* trap) {
+ return base::bits::CountTrailingZeros64(val);
+}
+
+static inline int64_t ExecuteI64Popcnt(uint64_t val, TrapReason* trap) {
+ return word64_popcnt_wrapper(&val);
+}
+
+static inline int32_t ExecuteI64Eqz(uint64_t val, TrapReason* trap) {
+ return val == 0 ? 1 : 0;
+}
+
+static inline float ExecuteF32Abs(float a, TrapReason* trap) {
+ return bit_cast<float>(bit_cast<uint32_t>(a) & 0x7fffffff);
+}
+
+static inline float ExecuteF32Neg(float a, TrapReason* trap) {
+ return bit_cast<float>(bit_cast<uint32_t>(a) ^ 0x80000000);
+}
+
+static inline float ExecuteF32Ceil(float a, TrapReason* trap) {
+ return ceilf(a);
+}
+
+static inline float ExecuteF32Floor(float a, TrapReason* trap) {
+ return floorf(a);
+}
+
+static inline float ExecuteF32Trunc(float a, TrapReason* trap) {
+ return truncf(a);
+}
+
+static inline float ExecuteF32NearestInt(float a, TrapReason* trap) {
+ return nearbyintf(a);
+}
+
+static inline float ExecuteF32Sqrt(float a, TrapReason* trap) {
+ return sqrtf(a);
+}
+
+static inline double ExecuteF64Abs(double a, TrapReason* trap) {
+ return bit_cast<double>(bit_cast<uint64_t>(a) & 0x7fffffffffffffff);
+}
+
+static inline double ExecuteF64Neg(double a, TrapReason* trap) {
+ return bit_cast<double>(bit_cast<uint64_t>(a) ^ 0x8000000000000000);
+}
+
+static inline double ExecuteF64Ceil(double a, TrapReason* trap) {
+ return ceil(a);
+}
+
+static inline double ExecuteF64Floor(double a, TrapReason* trap) {
+ return floor(a);
+}
+
+static inline double ExecuteF64Trunc(double a, TrapReason* trap) {
+ return trunc(a);
+}
+
+static inline double ExecuteF64NearestInt(double a, TrapReason* trap) {
+ return nearbyint(a);
+}
+
+static inline double ExecuteF64Sqrt(double a, TrapReason* trap) {
+ return sqrt(a);
+}
+
+static int32_t ExecuteI32SConvertF32(float a, TrapReason* trap) {
+ if (a < static_cast<float>(INT32_MAX) && a >= static_cast<float>(INT32_MIN)) {
+ return static_cast<int32_t>(a);
+ }
+ *trap = kTrapFloatUnrepresentable;
+ return 0;
+}
+
+static int32_t ExecuteI32SConvertF64(double a, TrapReason* trap) {
+ if (a < (static_cast<double>(INT32_MAX) + 1.0) &&
+ a > (static_cast<double>(INT32_MIN) - 1.0)) {
+ return static_cast<int32_t>(a);
+ }
+ *trap = kTrapFloatUnrepresentable;
+ return 0;
+}
+
+static uint32_t ExecuteI32UConvertF32(float a, TrapReason* trap) {
+ if (a < (static_cast<float>(UINT32_MAX) + 1.0) && a > -1) {
+ return static_cast<uint32_t>(a);
+ }
+ *trap = kTrapFloatUnrepresentable;
+ return 0;
+}
+
+static uint32_t ExecuteI32UConvertF64(double a, TrapReason* trap) {
+ if (a < (static_cast<float>(UINT32_MAX) + 1.0) && a > -1) {
+ return static_cast<uint32_t>(a);
+ }
+ *trap = kTrapFloatUnrepresentable;
+ return 0;
+}
+
+static inline uint32_t ExecuteI32ConvertI64(int64_t a, TrapReason* trap) {
+ return static_cast<uint32_t>(a & 0xFFFFFFFF);
+}
+
+static int64_t ExecuteI64SConvertF32(float a, TrapReason* trap) {
+ int64_t output;
+ if (!float32_to_int64_wrapper(&a, &output)) {
+ *trap = kTrapFloatUnrepresentable;
+ }
+ return output;
+}
+
+static int64_t ExecuteI64SConvertF64(double a, TrapReason* trap) {
+ int64_t output;
+ if (!float64_to_int64_wrapper(&a, &output)) {
+ *trap = kTrapFloatUnrepresentable;
+ }
+ return output;
+}
+
+static uint64_t ExecuteI64UConvertF32(float a, TrapReason* trap) {
+ uint64_t output;
+ if (!float32_to_uint64_wrapper(&a, &output)) {
+ *trap = kTrapFloatUnrepresentable;
+ }
+ return output;
+}
+
+static uint64_t ExecuteI64UConvertF64(double a, TrapReason* trap) {
+ uint64_t output;
+ if (!float64_to_uint64_wrapper(&a, &output)) {
+ *trap = kTrapFloatUnrepresentable;
+ }
+ return output;
+}
+
+static inline int64_t ExecuteI64SConvertI32(int32_t a, TrapReason* trap) {
+ return static_cast<int64_t>(a);
+}
+
+static inline int64_t ExecuteI64UConvertI32(uint32_t a, TrapReason* trap) {
+ return static_cast<uint64_t>(a);
+}
+
+static inline float ExecuteF32SConvertI32(int32_t a, TrapReason* trap) {
+ return static_cast<float>(a);
+}
+
+static inline float ExecuteF32UConvertI32(uint32_t a, TrapReason* trap) {
+ return static_cast<float>(a);
+}
+
+static inline float ExecuteF32SConvertI64(int64_t a, TrapReason* trap) {
+ float output;
+ int64_to_float32_wrapper(&a, &output);
+ return output;
+}
+
+static inline float ExecuteF32UConvertI64(uint64_t a, TrapReason* trap) {
+ float output;
+ uint64_to_float32_wrapper(&a, &output);
+ return output;
+}
+
+static inline float ExecuteF32ConvertF64(double a, TrapReason* trap) {
+ return static_cast<float>(a);
+}
+
+static inline float ExecuteF32ReinterpretI32(int32_t a, TrapReason* trap) {
+ return bit_cast<float>(a);
+}
+
+static inline double ExecuteF64SConvertI32(int32_t a, TrapReason* trap) {
+ return static_cast<double>(a);
+}
+
+static inline double ExecuteF64UConvertI32(uint32_t a, TrapReason* trap) {
+ return static_cast<double>(a);
+}
+
+static inline double ExecuteF64SConvertI64(int64_t a, TrapReason* trap) {
+ double output;
+ int64_to_float64_wrapper(&a, &output);
+ return output;
+}
+
+static inline double ExecuteF64UConvertI64(uint64_t a, TrapReason* trap) {
+ double output;
+ uint64_to_float64_wrapper(&a, &output);
+ return output;
+}
+
+static inline double ExecuteF64ConvertF32(float a, TrapReason* trap) {
+ return static_cast<double>(a);
+}
+
+static inline double ExecuteF64ReinterpretI64(int64_t a, TrapReason* trap) {
+ return bit_cast<double>(a);
+}
+
+static inline int32_t ExecuteI32ReinterpretF32(float a, TrapReason* trap) {
+ return bit_cast<int32_t>(a);
+}
+
+static inline int64_t ExecuteI64ReinterpretF64(double a, TrapReason* trap) {
+ return bit_cast<int64_t>(a);
+}
+
+enum InternalOpcode {
+#define DECL_INTERNAL_ENUM(name, value) kInternal##name = value,
+ FOREACH_INTERNAL_OPCODE(DECL_INTERNAL_ENUM)
+#undef DECL_INTERNAL_ENUM
+};
+
+static const char* OpcodeName(uint32_t val) {
+ switch (val) {
+#define DECL_INTERNAL_CASE(name, value) \
+ case kInternal##name: \
+ return "Internal" #name;
+ FOREACH_INTERNAL_OPCODE(DECL_INTERNAL_CASE)
+#undef DECL_INTERNAL_CASE
+ }
+ return WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(val));
+}
+
+static const int kRunSteps = 1000;
+
+// A helper class to compute the control transfers for each bytecode offset.
+// Control transfers allow Br, BrIf, BrTable, If, Else, and End bytecodes to
+// be directly executed without the need to dynamically track blocks.
+class ControlTransfers : public ZoneObject {
+ public:
+ ControlTransferMap map_;
+
+ ControlTransfers(Zone* zone, size_t locals_encoded_size, const byte* start,
+ const byte* end)
+ : map_(zone) {
+ // A control reference including from PC, from value depth, and whether
+ // a value is explicitly passed (e.g. br/br_if/br_table with value).
+ struct CRef {
+ const byte* pc;
+ sp_t value_depth;
+ bool explicit_value;
+ };
+
+ // Represents a control flow label.
+ struct CLabel : public ZoneObject {
+ const byte* target;
+ size_t value_depth;
+ ZoneVector<CRef> refs;
+
+ CLabel(Zone* zone, size_t v)
+ : target(nullptr), value_depth(v), refs(zone) {}
+
+ // Bind this label to the given PC.
+ void Bind(ControlTransferMap* map, const byte* start, const byte* pc,
+ bool expect_value) {
+ DCHECK_NULL(target);
+ target = pc;
+ for (auto from : refs) {
+ auto pcdiff = static_cast<pcdiff_t>(target - from.pc);
+ auto spdiff = static_cast<spdiff_t>(from.value_depth - value_depth);
+ ControlTransfer::StackAction action = ControlTransfer::kNoAction;
+ if (expect_value && !from.explicit_value) {
+ action = spdiff == 0 ? ControlTransfer::kPushVoid
+ : ControlTransfer::kPopAndRepush;
+ }
+ pc_t offset = static_cast<size_t>(from.pc - start);
+ (*map)[offset] = {pcdiff, spdiff, action};
+ }
+ }
+
+ // Reference this label from the given location.
+ void Ref(ControlTransferMap* map, const byte* start, CRef from) {
+ DCHECK_GE(from.value_depth, value_depth);
+ if (target) {
+ auto pcdiff = static_cast<pcdiff_t>(target - from.pc);
+ auto spdiff = static_cast<spdiff_t>(from.value_depth - value_depth);
+ pc_t offset = static_cast<size_t>(from.pc - start);
+ (*map)[offset] = {pcdiff, spdiff, ControlTransfer::kNoAction};
+ } else {
+ refs.push_back(from);
+ }
+ }
+ };
+
+ // An entry in the control stack.
+ struct Control {
+ const byte* pc;
+ CLabel* end_label;
+ CLabel* else_label;
+
+ void Ref(ControlTransferMap* map, const byte* start, const byte* from_pc,
+ size_t from_value_depth, bool explicit_value) {
+ end_label->Ref(map, start, {from_pc, from_value_depth, explicit_value});
+ }
+ };
+
+ // Compute the ControlTransfer map.
+ // This works by maintaining a stack of control constructs similar to the
+ // AST decoder. The {control_stack} allows matching {br,br_if,br_table}
+ // bytecodes with their target, as well as determining whether the current
+ // bytecodes are within the true or false block of an else.
+ // The value stack depth is tracked as {value_depth} and is needed to
+ // determine how many values to pop off the stack for explicit and
+ // implicit control flow.
+
+ std::vector<Control> control_stack;
+ size_t value_depth = 0;
+ Decoder decoder(start, end); // for reading operands.
+ const byte* pc = start + locals_encoded_size;
+
+ while (pc < end) {
+ WasmOpcode opcode = static_cast<WasmOpcode>(*pc);
+ TRACE("@%td: control %s (depth = %zu)\n", (pc - start),
+ WasmOpcodes::OpcodeName(opcode), value_depth);
+ switch (opcode) {
+ case kExprBlock: {
+ TRACE("control @%td $%zu: Block\n", (pc - start), value_depth);
+ CLabel* label = new (zone) CLabel(zone, value_depth);
+ control_stack.push_back({pc, label, nullptr});
+ break;
+ }
+ case kExprLoop: {
+ TRACE("control @%td $%zu: Loop\n", (pc - start), value_depth);
+ CLabel* label1 = new (zone) CLabel(zone, value_depth);
+ CLabel* label2 = new (zone) CLabel(zone, value_depth);
+ control_stack.push_back({pc, label1, nullptr});
+ control_stack.push_back({pc, label2, nullptr});
+ label2->Bind(&map_, start, pc, false);
+ break;
+ }
+ case kExprIf: {
+ TRACE("control @%td $%zu: If\n", (pc - start), value_depth);
+ value_depth--;
+ CLabel* end_label = new (zone) CLabel(zone, value_depth);
+ CLabel* else_label = new (zone) CLabel(zone, value_depth);
+ control_stack.push_back({pc, end_label, else_label});
+ else_label->Ref(&map_, start, {pc, value_depth, false});
+ break;
+ }
+ case kExprElse: {
+ Control* c = &control_stack.back();
+ TRACE("control @%td $%zu: Else\n", (pc - start), value_depth);
+ c->end_label->Ref(&map_, start, {pc, value_depth, false});
+ value_depth = c->end_label->value_depth;
+ DCHECK_NOT_NULL(c->else_label);
+ c->else_label->Bind(&map_, start, pc + 1, false);
+ c->else_label = nullptr;
+ break;
+ }
+ case kExprEnd: {
+ Control* c = &control_stack.back();
+ TRACE("control @%td $%zu: End\n", (pc - start), value_depth);
+ if (c->end_label->target) {
+ // only loops have bound labels.
+ DCHECK_EQ(kExprLoop, *c->pc);
+ control_stack.pop_back();
+ c = &control_stack.back();
+ }
+ if (c->else_label) c->else_label->Bind(&map_, start, pc + 1, true);
+ c->end_label->Ref(&map_, start, {pc, value_depth, false});
+ c->end_label->Bind(&map_, start, pc + 1, true);
+ value_depth = c->end_label->value_depth + 1;
+ control_stack.pop_back();
+ break;
+ }
+ case kExprBr: {
+ BreakDepthOperand operand(&decoder, pc);
+ TRACE("control @%td $%zu: Br[arity=%u, depth=%u]\n", (pc - start),
+ value_depth, operand.arity, operand.depth);
+ value_depth -= operand.arity;
+ control_stack[control_stack.size() - operand.depth - 1].Ref(
+ &map_, start, pc, value_depth, operand.arity > 0);
+ value_depth++;
+ break;
+ }
+ case kExprBrIf: {
+ BreakDepthOperand operand(&decoder, pc);
+ TRACE("control @%td $%zu: BrIf[arity=%u, depth=%u]\n", (pc - start),
+ value_depth, operand.arity, operand.depth);
+ value_depth -= (operand.arity + 1);
+ control_stack[control_stack.size() - operand.depth - 1].Ref(
+ &map_, start, pc, value_depth, operand.arity > 0);
+ value_depth++;
+ break;
+ }
+ case kExprBrTable: {
+ BranchTableOperand operand(&decoder, pc);
+ TRACE("control @%td $%zu: BrTable[arity=%u count=%u]\n", (pc - start),
+ value_depth, operand.arity, operand.table_count);
+ value_depth -= (operand.arity + 1);
+ for (uint32_t i = 0; i < operand.table_count + 1; i++) {
+ uint32_t target = operand.read_entry(&decoder, i);
+ control_stack[control_stack.size() - target - 1].Ref(
+ &map_, start, pc + i, value_depth, operand.arity > 0);
+ }
+ value_depth++;
+ break;
+ }
+ default: {
+ value_depth = value_depth - OpcodeArity(pc, end) + 1;
+ break;
+ }
+ }
+
+ pc += OpcodeLength(pc, end);
+ }
+ }
+
+ ControlTransfer Lookup(pc_t from) {
+ auto result = map_.find(from);
+ if (result == map_.end()) {
+ V8_Fatal(__FILE__, __LINE__, "no control target for pc %zu", from);
+ }
+ return result->second;
+ }
+};
+
+// Code and metadata needed to execute a function.
+struct InterpreterCode {
+ const WasmFunction* function; // wasm function
+ AstLocalDecls locals; // local declarations
+ const byte* orig_start; // start of original code
+ const byte* orig_end; // end of original code
+ byte* start; // start of (maybe altered) code
+ byte* end; // end of (maybe altered) code
+ ControlTransfers* targets; // helper for control flow.
+
+ const byte* at(pc_t pc) { return start + pc; }
+};
+
+// The main storage for interpreter code. It maps {WasmFunction} to the
+// metadata needed to execute each function.
+class CodeMap {
+ public:
+ Zone* zone_;
+ const WasmModule* module_;
+ ZoneVector<InterpreterCode> interpreter_code_;
+
+ CodeMap(const WasmModule* module, Zone* zone)
+ : zone_(zone), module_(module), interpreter_code_(zone) {
+ if (module == nullptr) return;
+ for (size_t i = 0; i < module->functions.size(); i++) {
+ const WasmFunction* function = &module->functions[i];
+ const byte* code_start =
+ module->module_start + function->code_start_offset;
+ const byte* code_end = module->module_start + function->code_end_offset;
+ AddFunction(function, code_start, code_end);
+ }
+ }
+
+ InterpreterCode* FindCode(const WasmFunction* function) {
+ if (function->func_index < interpreter_code_.size()) {
+ InterpreterCode* code = &interpreter_code_[function->func_index];
+ DCHECK_EQ(function, code->function);
+ return code;
+ }
+ return nullptr;
+ }
+
+ InterpreterCode* GetCode(uint32_t function_index) {
+ CHECK_LT(function_index, interpreter_code_.size());
+ return Preprocess(&interpreter_code_[function_index]);
+ }
+
+ InterpreterCode* GetIndirectCode(uint32_t indirect_index) {
+ if (indirect_index >= module_->function_table.size()) return nullptr;
+ uint32_t index = module_->function_table[indirect_index];
+ if (index >= interpreter_code_.size()) return nullptr;
+ return GetCode(index);
+ }
+
+ InterpreterCode* Preprocess(InterpreterCode* code) {
+ if (code->targets == nullptr && code->start) {
+ // Compute the control targets map and the local declarations.
+ CHECK(DecodeLocalDecls(code->locals, code->start, code->end));
+ code->targets =
+ new (zone_) ControlTransfers(zone_, code->locals.decls_encoded_size,
+ code->orig_start, code->orig_end);
+ }
+ return code;
+ }
+
+ int AddFunction(const WasmFunction* function, const byte* code_start,
+ const byte* code_end) {
+ InterpreterCode code = {
+ function, AstLocalDecls(zone_), code_start,
+ code_end, const_cast<byte*>(code_start), const_cast<byte*>(code_end),
+ nullptr};
+
+ DCHECK_EQ(interpreter_code_.size(), function->func_index);
+ interpreter_code_.push_back(code);
+ return static_cast<int>(interpreter_code_.size()) - 1;
+ }
+
+ bool SetFunctionCode(const WasmFunction* function, const byte* start,
+ const byte* end) {
+ InterpreterCode* code = FindCode(function);
+ if (code == nullptr) return false;
+ code->targets = nullptr;
+ code->orig_start = start;
+ code->orig_end = end;
+ code->start = const_cast<byte*>(start);
+ code->end = const_cast<byte*>(end);
+ Preprocess(code);
+ return true;
+ }
+};
+
+// Responsible for executing code directly.
+class ThreadImpl : public WasmInterpreter::Thread {
+ public:
+ ThreadImpl(Zone* zone, CodeMap* codemap, WasmModuleInstance* instance)
+ : codemap_(codemap),
+ instance_(instance),
+ stack_(zone),
+ frames_(zone),
+ state_(WasmInterpreter::STOPPED),
+ trap_reason_(kTrapCount) {}
+
+ virtual ~ThreadImpl() {}
+
+ //==========================================================================
+ // Implementation of public interface for WasmInterpreter::Thread.
+ //==========================================================================
+
+ virtual WasmInterpreter::State state() { return state_; }
+
+ virtual void PushFrame(const WasmFunction* function, WasmVal* args) {
+ InterpreterCode* code = codemap()->FindCode(function);
+ CHECK_NOT_NULL(code);
+ frames_.push_back({code, 0, 0, stack_.size()});
+ for (size_t i = 0; i < function->sig->parameter_count(); i++) {
+ stack_.push_back(args[i]);
+ }
+ frames_.back().ret_pc = InitLocals(code);
+ TRACE(" => push func#%u @%zu\n", code->function->func_index,
+ frames_.back().ret_pc);
+ }
+
+ virtual WasmInterpreter::State Run() {
+ do {
+ if (state_ == WasmInterpreter::STOPPED ||
+ state_ == WasmInterpreter::PAUSED) {
+ state_ = WasmInterpreter::RUNNING;
+ Execute(frames_.back().code, frames_.back().ret_pc, kRunSteps);
+ }
+ } while (state_ == WasmInterpreter::STOPPED);
+ return state_;
+ }
+
+ virtual WasmInterpreter::State Step() {
+ UNIMPLEMENTED();
+ return WasmInterpreter::STOPPED;
+ }
+
+ virtual void Pause() { UNIMPLEMENTED(); }
+
+ virtual void Reset() {
+ TRACE("----- RESET -----\n");
+ stack_.clear();
+ frames_.clear();
+ state_ = WasmInterpreter::STOPPED;
+ trap_reason_ = kTrapCount;
+ }
+
+ virtual int GetFrameCount() { return static_cast<int>(frames_.size()); }
+
+ virtual const WasmFrame* GetFrame(int index) {
+ UNIMPLEMENTED();
+ return nullptr;
+ }
+
+ virtual WasmFrame* GetMutableFrame(int index) {
+ UNIMPLEMENTED();
+ return nullptr;
+ }
+
+ virtual WasmVal GetReturnValue() {
+ if (state_ == WasmInterpreter::TRAPPED) return WasmVal(0xdeadbeef);
+ CHECK_EQ(WasmInterpreter::FINISHED, state_);
+ CHECK_EQ(1, stack_.size());
+ return stack_[0];
+ }
+
+ bool Terminated() {
+ return state_ == WasmInterpreter::TRAPPED ||
+ state_ == WasmInterpreter::FINISHED;
+ }
+
+ private:
+ // Entries on the stack of functions being evaluated.
+ struct Frame {
+ InterpreterCode* code;
+ pc_t call_pc;
+ pc_t ret_pc;
+ sp_t sp;
+
+ // Limit of parameters.
+ sp_t plimit() { return sp + code->function->sig->parameter_count(); }
+ // Limit of locals.
+ sp_t llimit() { return plimit() + code->locals.total_local_count; }
+ };
+
+ CodeMap* codemap_;
+ WasmModuleInstance* instance_;
+ ZoneVector<WasmVal> stack_;
+ ZoneVector<Frame> frames_;
+ WasmInterpreter::State state_;
+ TrapReason trap_reason_;
+
+ CodeMap* codemap() { return codemap_; }
+ WasmModuleInstance* instance() { return instance_; }
+ const WasmModule* module() { return instance_->module; }
+
+ void DoTrap(TrapReason trap, pc_t pc) {
+ state_ = WasmInterpreter::TRAPPED;
+ trap_reason_ = trap;
+ CommitPc(pc);
+ }
+
+ // Push a frame with arguments already on the stack.
+ void PushFrame(InterpreterCode* code, pc_t call_pc, pc_t ret_pc) {
+ CHECK_NOT_NULL(code);
+ DCHECK(!frames_.empty());
+ frames_.back().call_pc = call_pc;
+ frames_.back().ret_pc = ret_pc;
+ size_t arity = code->function->sig->parameter_count();
+ DCHECK_GE(stack_.size(), arity);
+ // The parameters will overlap the arguments already on the stack.
+ frames_.push_back({code, 0, 0, stack_.size() - arity});
+ frames_.back().ret_pc = InitLocals(code);
+ TRACE(" => push func#%u @%zu\n", code->function->func_index,
+ frames_.back().ret_pc);
+ }
+
+ pc_t InitLocals(InterpreterCode* code) {
+ for (auto p : code->locals.local_types) {
+ WasmVal val;
+ switch (p.first) {
+ case kAstI32:
+ val = WasmVal(static_cast<int32_t>(0));
+ break;
+ case kAstI64:
+ val = WasmVal(static_cast<int64_t>(0));
+ break;
+ case kAstF32:
+ val = WasmVal(static_cast<float>(0));
+ break;
+ case kAstF64:
+ val = WasmVal(static_cast<double>(0));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ stack_.insert(stack_.end(), p.second, val);
+ }
+ return code->locals.decls_encoded_size;
+ }
+
+ void CommitPc(pc_t pc) {
+ if (!frames_.empty()) {
+ frames_.back().ret_pc = pc;
+ }
+ }
+
+ bool SkipBreakpoint(InterpreterCode* code, pc_t pc) {
+ // TODO(titzer): skip a breakpoint if we are resuming from it, or it
+ // is set for another thread only.
+ return false;
+ }
+
+ bool DoReturn(InterpreterCode** code, pc_t* pc, pc_t* limit, WasmVal val) {
+ DCHECK_GT(frames_.size(), 0u);
+ stack_.resize(frames_.back().sp);
+ frames_.pop_back();
+ if (frames_.size() == 0) {
+ // A return from the top frame terminates the execution.
+ state_ = WasmInterpreter::FINISHED;
+ stack_.clear();
+ stack_.push_back(val);
+ TRACE(" => finish\n");
+ return false;
+ } else {
+ // Return to caller frame.
+ Frame* top = &frames_.back();
+ *code = top->code;
+ *pc = top->ret_pc;
+ *limit = top->code->end - top->code->start;
+ if (top->code->start[top->call_pc] == kExprCallIndirect ||
+ (top->code->orig_start &&
+ top->code->orig_start[top->call_pc] == kExprCallIndirect)) {
+ // UGLY: An indirect call has the additional function index on the
+ // stack.
+ stack_.pop_back();
+ }
+ TRACE(" => pop func#%u @%zu\n", (*code)->function->func_index, *pc);
+
+ stack_.push_back(val);
+ return true;
+ }
+ }
+
+ void DoCall(InterpreterCode* target, pc_t* pc, pc_t ret_pc, pc_t* limit) {
+ PushFrame(target, *pc, ret_pc);
+ *pc = frames_.back().ret_pc;
+ *limit = target->end - target->start;
+ }
+
+ // Adjust the program counter {pc} and the stack contents according to the
+ // code's precomputed control transfer map. Returns the different between
+ // the new pc and the old pc.
+ int DoControlTransfer(InterpreterCode* code, pc_t pc) {
+ auto target = code->targets->Lookup(pc);
+ switch (target.action) {
+ case ControlTransfer::kNoAction:
+ TRACE(" action [sp-%u]\n", target.spdiff);
+ PopN(target.spdiff);
+ break;
+ case ControlTransfer::kPopAndRepush: {
+ WasmVal val = Pop();
+ TRACE(" action [pop x, sp-%u, push x]\n", target.spdiff - 1);
+ DCHECK_GE(target.spdiff, 1u);
+ PopN(target.spdiff - 1);
+ Push(pc, val);
+ break;
+ }
+ case ControlTransfer::kPushVoid:
+ TRACE(" action [sp-%u, push void]\n", target.spdiff);
+ PopN(target.spdiff);
+ Push(pc, WasmVal());
+ break;
+ }
+ return target.pcdiff;
+ }
+
+ void Execute(InterpreterCode* code, pc_t pc, int max) {
+ Decoder decoder(code->start, code->end);
+ pc_t limit = code->end - code->start;
+ while (true) {
+ if (max-- <= 0) {
+ // Maximum number of instructions reached.
+ state_ = WasmInterpreter::PAUSED;
+ return CommitPc(pc);
+ }
+
+ if (pc >= limit) {
+ // Fell off end of code; do an implicit return.
+ TRACE("@%-3zu: ImplicitReturn\n", pc);
+ WasmVal val = PopArity(code->function->sig->return_count());
+ if (!DoReturn(&code, &pc, &limit, val)) return;
+ decoder.Reset(code->start, code->end);
+ continue;
+ }
+
+ const char* skip = "";
+ int len = 1;
+ byte opcode = code->start[pc];
+ byte orig = opcode;
+ if (opcode == kInternalBreakpoint) {
+ if (SkipBreakpoint(code, pc)) {
+ // skip breakpoint by switching on original code.
+ orig = code->orig_start[pc];
+ skip = "[skip] ";
+ } else {
+ state_ = WasmInterpreter::PAUSED;
+ return CommitPc(pc);
+ }
+ }
+
+ USE(skip);
+ TRACE("@%-3zu: %s%-24s:", pc, skip,
+ WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(orig)));
+ TraceValueStack();
+ TRACE("\n");
+
+ switch (orig) {
+ case kExprNop:
+ Push(pc, WasmVal());
+ break;
+ case kExprBlock:
+ case kExprLoop: {
+ // Do nothing.
+ break;
+ }
+ case kExprIf: {
+ WasmVal cond = Pop();
+ bool is_true = cond.to<uint32_t>() != 0;
+ if (is_true) {
+ // fall through to the true block.
+ TRACE(" true => fallthrough\n");
+ } else {
+ len = DoControlTransfer(code, pc);
+ TRACE(" false => @%zu\n", pc + len);
+ }
+ break;
+ }
+ case kExprElse: {
+ len = DoControlTransfer(code, pc);
+ TRACE(" end => @%zu\n", pc + len);
+ break;
+ }
+ case kExprSelect: {
+ WasmVal cond = Pop();
+ WasmVal fval = Pop();
+ WasmVal tval = Pop();
+ Push(pc, cond.to<int32_t>() != 0 ? tval : fval);
+ break;
+ }
+ case kExprBr: {
+ BreakDepthOperand operand(&decoder, code->at(pc));
+ WasmVal val = PopArity(operand.arity);
+ len = DoControlTransfer(code, pc);
+ TRACE(" br => @%zu\n", pc + len);
+ if (operand.arity > 0) Push(pc, val);
+ break;
+ }
+ case kExprBrIf: {
+ BreakDepthOperand operand(&decoder, code->at(pc));
+ WasmVal cond = Pop();
+ WasmVal val = PopArity(operand.arity);
+ bool is_true = cond.to<uint32_t>() != 0;
+ if (is_true) {
+ len = DoControlTransfer(code, pc);
+ TRACE(" br_if => @%zu\n", pc + len);
+ if (operand.arity > 0) Push(pc, val);
+ } else {
+ TRACE(" false => fallthrough\n");
+ len = 1 + operand.length;
+ Push(pc, WasmVal());
+ }
+ break;
+ }
+ case kExprBrTable: {
+ BranchTableOperand operand(&decoder, code->at(pc));
+ uint32_t key = Pop().to<uint32_t>();
+ WasmVal val = PopArity(operand.arity);
+ if (key >= operand.table_count) key = operand.table_count;
+ len = DoControlTransfer(code, pc + key) + key;
+ TRACE(" br[%u] => @%zu\n", key, pc + len);
+ if (operand.arity > 0) Push(pc, val);
+ break;
+ }
+ case kExprReturn: {
+ ReturnArityOperand operand(&decoder, code->at(pc));
+ WasmVal val = PopArity(operand.arity);
+ if (!DoReturn(&code, &pc, &limit, val)) return;
+ decoder.Reset(code->start, code->end);
+ continue;
+ }
+ case kExprUnreachable: {
+ DoTrap(kTrapUnreachable, pc);
+ return CommitPc(pc);
+ }
+ case kExprEnd: {
+ len = DoControlTransfer(code, pc);
+ DCHECK_EQ(1, len);
+ break;
+ }
+ case kExprI8Const: {
+ ImmI8Operand operand(&decoder, code->at(pc));
+ Push(pc, WasmVal(operand.value));
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprI32Const: {
+ ImmI32Operand operand(&decoder, code->at(pc));
+ Push(pc, WasmVal(operand.value));
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprI64Const: {
+ ImmI64Operand operand(&decoder, code->at(pc));
+ Push(pc, WasmVal(operand.value));
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprF32Const: {
+ ImmF32Operand operand(&decoder, code->at(pc));
+ Push(pc, WasmVal(operand.value));
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprF64Const: {
+ ImmF64Operand operand(&decoder, code->at(pc));
+ Push(pc, WasmVal(operand.value));
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprGetLocal: {
+ LocalIndexOperand operand(&decoder, code->at(pc));
+ Push(pc, stack_[frames_.back().sp + operand.index]);
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprSetLocal: {
+ LocalIndexOperand operand(&decoder, code->at(pc));
+ WasmVal val = Pop();
+ stack_[frames_.back().sp + operand.index] = val;
+ Push(pc, val);
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprCallFunction: {
+ CallFunctionOperand operand(&decoder, code->at(pc));
+ InterpreterCode* target = codemap()->GetCode(operand.index);
+ DoCall(target, &pc, pc + 1 + operand.length, &limit);
+ code = target;
+ decoder.Reset(code->start, code->end);
+ continue;
+ }
+ case kExprCallIndirect: {
+ CallIndirectOperand operand(&decoder, code->at(pc));
+ size_t index = stack_.size() - operand.arity - 1;
+ DCHECK_LT(index, stack_.size());
+ uint32_t table_index = stack_[index].to<uint32_t>();
+ if (table_index >= module()->function_table.size()) {
+ return DoTrap(kTrapFuncInvalid, pc);
+ }
+ uint16_t function_index = module()->function_table[table_index];
+ InterpreterCode* target = codemap()->GetCode(function_index);
+ DCHECK(target);
+ if (target->function->sig_index != operand.index) {
+ return DoTrap(kTrapFuncSigMismatch, pc);
+ }
+
+ DoCall(target, &pc, pc + 1 + operand.length, &limit);
+ code = target;
+ decoder.Reset(code->start, code->end);
+ continue;
+ }
+ case kExprCallImport: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case kExprLoadGlobal: {
+ GlobalIndexOperand operand(&decoder, code->at(pc));
+ const WasmGlobal* global = &module()->globals[operand.index];
+ byte* ptr = instance()->globals_start + global->offset;
+ MachineType type = global->type;
+ WasmVal val;
+ if (type == MachineType::Int8()) {
+ val =
+ WasmVal(static_cast<int32_t>(*reinterpret_cast<int8_t*>(ptr)));
+ } else if (type == MachineType::Uint8()) {
+ val =
+ WasmVal(static_cast<int32_t>(*reinterpret_cast<uint8_t*>(ptr)));
+ } else if (type == MachineType::Int16()) {
+ val =
+ WasmVal(static_cast<int32_t>(*reinterpret_cast<int16_t*>(ptr)));
+ } else if (type == MachineType::Uint16()) {
+ val = WasmVal(
+ static_cast<int32_t>(*reinterpret_cast<uint16_t*>(ptr)));
+ } else if (type == MachineType::Int32()) {
+ val = WasmVal(*reinterpret_cast<int32_t*>(ptr));
+ } else if (type == MachineType::Uint32()) {
+ val = WasmVal(*reinterpret_cast<uint32_t*>(ptr));
+ } else if (type == MachineType::Int64()) {
+ val = WasmVal(*reinterpret_cast<int64_t*>(ptr));
+ } else if (type == MachineType::Uint64()) {
+ val = WasmVal(*reinterpret_cast<uint64_t*>(ptr));
+ } else if (type == MachineType::Float32()) {
+ val = WasmVal(*reinterpret_cast<float*>(ptr));
+ } else if (type == MachineType::Float64()) {
+ val = WasmVal(*reinterpret_cast<double*>(ptr));
+ } else {
+ UNREACHABLE();
+ }
+ Push(pc, val);
+ len = 1 + operand.length;
+ break;
+ }
+ case kExprStoreGlobal: {
+ GlobalIndexOperand operand(&decoder, code->at(pc));
+ const WasmGlobal* global = &module()->globals[operand.index];
+ byte* ptr = instance()->globals_start + global->offset;
+ MachineType type = global->type;
+ WasmVal val = Pop();
+ if (type == MachineType::Int8()) {
+ *reinterpret_cast<int8_t*>(ptr) =
+ static_cast<int8_t>(val.to<int32_t>());
+ } else if (type == MachineType::Uint8()) {
+ *reinterpret_cast<uint8_t*>(ptr) =
+ static_cast<uint8_t>(val.to<uint32_t>());
+ } else if (type == MachineType::Int16()) {
+ *reinterpret_cast<int16_t*>(ptr) =
+ static_cast<int16_t>(val.to<int32_t>());
+ } else if (type == MachineType::Uint16()) {
+ *reinterpret_cast<uint16_t*>(ptr) =
+ static_cast<uint16_t>(val.to<uint32_t>());
+ } else if (type == MachineType::Int32()) {
+ *reinterpret_cast<int32_t*>(ptr) = val.to<int32_t>();
+ } else if (type == MachineType::Uint32()) {
+ *reinterpret_cast<uint32_t*>(ptr) = val.to<uint32_t>();
+ } else if (type == MachineType::Int64()) {
+ *reinterpret_cast<int64_t*>(ptr) = val.to<int64_t>();
+ } else if (type == MachineType::Uint64()) {
+ *reinterpret_cast<uint64_t*>(ptr) = val.to<uint64_t>();
+ } else if (type == MachineType::Float32()) {
+ *reinterpret_cast<float*>(ptr) = val.to<float>();
+ } else if (type == MachineType::Float64()) {
+ *reinterpret_cast<double*>(ptr) = val.to<double>();
+ } else {
+ UNREACHABLE();
+ }
+ Push(pc, val);
+ len = 1 + operand.length;
+ break;
+ }
+
+#define LOAD_CASE(name, ctype, mtype) \
+ case kExpr##name: { \
+ MemoryAccessOperand operand(&decoder, code->at(pc)); \
+ uint32_t index = Pop().to<uint32_t>(); \
+ size_t effective_mem_size = instance()->mem_size - sizeof(mtype); \
+ if (operand.offset > effective_mem_size || \
+ index > (effective_mem_size - operand.offset)) { \
+ return DoTrap(kTrapMemOutOfBounds, pc); \
+ } \
+ byte* addr = instance()->mem_start + operand.offset + index; \
+ /* TODO(titzer): alignment, endianness for load mem */ \
+ WasmVal result(static_cast<ctype>(*reinterpret_cast<mtype*>(addr))); \
+ Push(pc, result); \
+ len = 1 + operand.length; \
+ break; \
+ }
+
+ LOAD_CASE(I32LoadMem8S, int32_t, int8_t);
+ LOAD_CASE(I32LoadMem8U, int32_t, uint8_t);
+ LOAD_CASE(I32LoadMem16S, int32_t, int16_t);
+ LOAD_CASE(I32LoadMem16U, int32_t, uint16_t);
+ LOAD_CASE(I64LoadMem8S, int64_t, int8_t);
+ LOAD_CASE(I64LoadMem8U, int64_t, uint8_t);
+ LOAD_CASE(I64LoadMem16S, int64_t, int16_t);
+ LOAD_CASE(I64LoadMem16U, int64_t, uint16_t);
+ LOAD_CASE(I64LoadMem32S, int64_t, int32_t);
+ LOAD_CASE(I64LoadMem32U, int64_t, uint32_t);
+ LOAD_CASE(I32LoadMem, int32_t, int32_t);
+ LOAD_CASE(I64LoadMem, int64_t, int64_t);
+ LOAD_CASE(F32LoadMem, float, float);
+ LOAD_CASE(F64LoadMem, double, double);
+#undef LOAD_CASE
+
+#define STORE_CASE(name, ctype, mtype) \
+ case kExpr##name: { \
+ MemoryAccessOperand operand(&decoder, code->at(pc)); \
+ WasmVal val = Pop(); \
+ uint32_t index = Pop().to<uint32_t>(); \
+ size_t effective_mem_size = instance()->mem_size - sizeof(mtype); \
+ if (operand.offset > effective_mem_size || \
+ index > (effective_mem_size - operand.offset)) { \
+ return DoTrap(kTrapMemOutOfBounds, pc); \
+ } \
+ byte* addr = instance()->mem_start + operand.offset + index; \
+ /* TODO(titzer): alignment, endianness for store mem */ \
+ *reinterpret_cast<mtype*>(addr) = static_cast<mtype>(val.to<ctype>()); \
+ Push(pc, val); \
+ len = 1 + operand.length; \
+ break; \
+ }
+
+ STORE_CASE(I32StoreMem8, int32_t, int8_t);
+ STORE_CASE(I32StoreMem16, int32_t, int16_t);
+ STORE_CASE(I64StoreMem8, int64_t, int8_t);
+ STORE_CASE(I64StoreMem16, int64_t, int16_t);
+ STORE_CASE(I64StoreMem32, int64_t, int32_t);
+ STORE_CASE(I32StoreMem, int32_t, int32_t);
+ STORE_CASE(I64StoreMem, int64_t, int64_t);
+ STORE_CASE(F32StoreMem, float, float);
+ STORE_CASE(F64StoreMem, double, double);
+#undef STORE_CASE
+
+#define ASMJS_LOAD_CASE(name, ctype, mtype, defval) \
+ case kExpr##name: { \
+ uint32_t index = Pop().to<uint32_t>(); \
+ ctype result; \
+ if (index >= (instance()->mem_size - sizeof(mtype))) { \
+ result = defval; \
+ } else { \
+ byte* addr = instance()->mem_start + index; \
+ /* TODO(titzer): alignment for asmjs load mem? */ \
+ result = static_cast<ctype>(*reinterpret_cast<mtype*>(addr)); \
+ } \
+ Push(pc, WasmVal(result)); \
+ break; \
+ }
+ ASMJS_LOAD_CASE(I32AsmjsLoadMem8S, int32_t, int8_t, 0);
+ ASMJS_LOAD_CASE(I32AsmjsLoadMem8U, int32_t, uint8_t, 0);
+ ASMJS_LOAD_CASE(I32AsmjsLoadMem16S, int32_t, int16_t, 0);
+ ASMJS_LOAD_CASE(I32AsmjsLoadMem16U, int32_t, uint16_t, 0);
+ ASMJS_LOAD_CASE(I32AsmjsLoadMem, int32_t, int32_t, 0);
+ ASMJS_LOAD_CASE(F32AsmjsLoadMem, float, float,
+ std::numeric_limits<float>::quiet_NaN());
+ ASMJS_LOAD_CASE(F64AsmjsLoadMem, double, double,
+ std::numeric_limits<double>::quiet_NaN());
+#undef ASMJS_LOAD_CASE
+
+#define ASMJS_STORE_CASE(name, ctype, mtype) \
+ case kExpr##name: { \
+ WasmVal val = Pop(); \
+ uint32_t index = Pop().to<uint32_t>(); \
+ if (index < (instance()->mem_size - sizeof(mtype))) { \
+ byte* addr = instance()->mem_start + index; \
+ /* TODO(titzer): alignment for asmjs store mem? */ \
+ *(reinterpret_cast<mtype*>(addr)) = static_cast<mtype>(val.to<ctype>()); \
+ } \
+ Push(pc, val); \
+ break; \
+ }
+
+ ASMJS_STORE_CASE(I32AsmjsStoreMem8, int32_t, int8_t);
+ ASMJS_STORE_CASE(I32AsmjsStoreMem16, int32_t, int16_t);
+ ASMJS_STORE_CASE(I32AsmjsStoreMem, int32_t, int32_t);
+ ASMJS_STORE_CASE(F32AsmjsStoreMem, float, float);
+ ASMJS_STORE_CASE(F64AsmjsStoreMem, double, double);
+#undef ASMJS_STORE_CASE
+
+ case kExprMemorySize: {
+ Push(pc, WasmVal(static_cast<uint32_t>(instance()->mem_size)));
+ break;
+ }
+#define EXECUTE_SIMPLE_BINOP(name, ctype, op) \
+ case kExpr##name: { \
+ WasmVal rval = Pop(); \
+ WasmVal lval = Pop(); \
+ WasmVal result(lval.to<ctype>() op rval.to<ctype>()); \
+ Push(pc, result); \
+ break; \
+ }
+ FOREACH_SIMPLE_BINOP(EXECUTE_SIMPLE_BINOP)
+#undef EXECUTE_SIMPLE_BINOP
+
+#define EXECUTE_OTHER_BINOP(name, ctype) \
+ case kExpr##name: { \
+ TrapReason trap = kTrapCount; \
+ volatile ctype rval = Pop().to<ctype>(); \
+ volatile ctype lval = Pop().to<ctype>(); \
+ WasmVal result(Execute##name(lval, rval, &trap)); \
+ if (trap != kTrapCount) return DoTrap(trap, pc); \
+ Push(pc, result); \
+ break; \
+ }
+ FOREACH_OTHER_BINOP(EXECUTE_OTHER_BINOP)
+#undef EXECUTE_OTHER_BINOP
+
+#define EXECUTE_OTHER_UNOP(name, ctype) \
+ case kExpr##name: { \
+ TrapReason trap = kTrapCount; \
+ volatile ctype val = Pop().to<ctype>(); \
+ WasmVal result(Execute##name(val, &trap)); \
+ if (trap != kTrapCount) return DoTrap(trap, pc); \
+ Push(pc, result); \
+ break; \
+ }
+ FOREACH_OTHER_UNOP(EXECUTE_OTHER_UNOP)
+#undef EXECUTE_OTHER_UNOP
+
+ default:
+ V8_Fatal(__FILE__, __LINE__, "Unknown or unimplemented opcode #%d:%s",
+ code->start[pc], OpcodeName(code->start[pc]));
+ UNREACHABLE();
+ }
+
+ pc += len;
+ }
+ UNREACHABLE(); // above decoding loop should run forever.
+ }
+
+ WasmVal Pop() {
+ DCHECK_GT(stack_.size(), 0u);
+ DCHECK_GT(frames_.size(), 0u);
+ DCHECK_GT(stack_.size(), frames_.back().llimit()); // can't pop into locals
+ WasmVal val = stack_.back();
+ stack_.pop_back();
+ return val;
+ }
+
+ void PopN(int n) {
+ DCHECK_GE(stack_.size(), static_cast<size_t>(n));
+ DCHECK_GT(frames_.size(), 0u);
+ size_t nsize = stack_.size() - n;
+ DCHECK_GE(nsize, frames_.back().llimit()); // can't pop into locals
+ stack_.resize(nsize);
+ }
+
+ WasmVal PopArity(size_t arity) {
+ if (arity == 0) return WasmVal();
+ CHECK_EQ(1, arity);
+ return Pop();
+ }
+
+ void Push(pc_t pc, WasmVal val) {
+ // TODO(titzer): store PC as well?
+ stack_.push_back(val);
+ }
+
+ void TraceStack(const char* phase, pc_t pc) {
+ if (FLAG_trace_wasm_interpreter) {
+ PrintF("%s @%zu", phase, pc);
+ UNIMPLEMENTED();
+ PrintF("\n");
+ }
+ }
+
+ void TraceValueStack() {
+ Frame* top = frames_.size() > 0 ? &frames_.back() : nullptr;
+ sp_t sp = top ? top->sp : 0;
+ sp_t plimit = top ? top->plimit() : 0;
+ sp_t llimit = top ? top->llimit() : 0;
+ if (FLAG_trace_wasm_interpreter) {
+ for (size_t i = sp; i < stack_.size(); i++) {
+ if (i < plimit)
+ PrintF(" p%zu:", i);
+ else if (i < llimit)
+ PrintF(" l%zu:", i);
+ else
+ PrintF(" s%zu:", i);
+ WasmVal val = stack_[i];
+ switch (val.type) {
+ case kAstI32:
+ PrintF("i32:%d", val.to<int32_t>());
+ break;
+ case kAstI64:
+ PrintF("i64:%" PRId64 "", val.to<int64_t>());
+ break;
+ case kAstF32:
+ PrintF("f32:%f", val.to<float>());
+ break;
+ case kAstF64:
+ PrintF("f64:%lf", val.to<double>());
+ break;
+ case kAstStmt:
+ PrintF("void");
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ }
+};
+
+//============================================================================
+// The implementation details of the interpreter.
+//============================================================================
+class WasmInterpreterInternals : public ZoneObject {
+ public:
+ WasmModuleInstance* instance_;
+ CodeMap codemap_;
+ ZoneVector<ThreadImpl> threads_;
+
+ WasmInterpreterInternals(Zone* zone, WasmModuleInstance* instance)
+ : instance_(instance),
+ codemap_(instance_ ? instance_->module : nullptr, zone),
+ threads_(zone) {
+ threads_.push_back(ThreadImpl(zone, &codemap_, instance));
+ }
+};
+
+//============================================================================
+// Implementation of the public interface of the interpreter.
+//============================================================================
+WasmInterpreter::WasmInterpreter(WasmModuleInstance* instance,
+ base::AccountingAllocator* allocator)
+ : zone_(allocator),
+ internals_(new (&zone_) WasmInterpreterInternals(&zone_, instance)) {}
+
+WasmInterpreter::~WasmInterpreter() {}
+
+void WasmInterpreter::Run() { internals_->threads_[0].Run(); }
+
+void WasmInterpreter::Pause() { internals_->threads_[0].Pause(); }
+
+bool WasmInterpreter::SetBreakpoint(const WasmFunction* function, int pc,
+ bool enabled) {
+ InterpreterCode* code = internals_->codemap_.FindCode(function);
+ if (!code) return false;
+ int size = static_cast<int>(code->end - code->start);
+ // Check bounds for {pc}.
+ if (pc < 0 || pc >= size) return false;
+ // Make a copy of the code before enabling a breakpoint.
+ if (enabled && code->orig_start == code->start) {
+ code->start = reinterpret_cast<byte*>(zone_.New(size));
+ memcpy(code->start, code->orig_start, size);
+ code->end = code->start + size;
+ }
+ bool prev = code->start[pc] == kInternalBreakpoint;
+ if (enabled) {
+ code->start[pc] = kInternalBreakpoint;
+ } else {
+ code->start[pc] = code->orig_start[pc];
+ }
+ return prev;
+}
+
+bool WasmInterpreter::GetBreakpoint(const WasmFunction* function, int pc) {
+ InterpreterCode* code = internals_->codemap_.FindCode(function);
+ if (!code) return false;
+ int size = static_cast<int>(code->end - code->start);
+ // Check bounds for {pc}.
+ if (pc < 0 || pc >= size) return false;
+ // Check if a breakpoint is present at that place in the code.
+ return code->start[pc] == kInternalBreakpoint;
+}
+
+bool WasmInterpreter::SetTracing(const WasmFunction* function, bool enabled) {
+ UNIMPLEMENTED();
+ return false;
+}
+
+int WasmInterpreter::GetThreadCount() {
+ return 1; // only one thread for now.
+}
+
+WasmInterpreter::Thread& WasmInterpreter::GetThread(int id) {
+ CHECK_EQ(0, id); // only one thread for now.
+ return internals_->threads_[id];
+}
+
+WasmVal WasmInterpreter::GetLocalVal(const WasmFrame* frame, int index) {
+ CHECK_GE(index, 0);
+ UNIMPLEMENTED();
+ WasmVal none;
+ none.type = kAstStmt;
+ return none;
+}
+
+WasmVal WasmInterpreter::GetExprVal(const WasmFrame* frame, int pc) {
+ UNIMPLEMENTED();
+ WasmVal none;
+ none.type = kAstStmt;
+ return none;
+}
+
+void WasmInterpreter::SetLocalVal(WasmFrame* frame, int index, WasmVal val) {
+ UNIMPLEMENTED();
+}
+
+void WasmInterpreter::SetExprVal(WasmFrame* frame, int pc, WasmVal val) {
+ UNIMPLEMENTED();
+}
+
+size_t WasmInterpreter::GetMemorySize() {
+ return internals_->instance_->mem_size;
+}
+
+WasmVal WasmInterpreter::ReadMemory(size_t offset) {
+ UNIMPLEMENTED();
+ return WasmVal();
+}
+
+void WasmInterpreter::WriteMemory(size_t offset, WasmVal val) {
+ UNIMPLEMENTED();
+}
+
+int WasmInterpreter::AddFunctionForTesting(const WasmFunction* function) {
+ return internals_->codemap_.AddFunction(function, nullptr, nullptr);
+}
+
+bool WasmInterpreter::SetFunctionCodeForTesting(const WasmFunction* function,
+ const byte* start,
+ const byte* end) {
+ return internals_->codemap_.SetFunctionCode(function, start, end);
+}
+
+ControlTransferMap WasmInterpreter::ComputeControlTransfersForTesting(
+ Zone* zone, const byte* start, const byte* end) {
+ ControlTransfers targets(zone, 0, start, end);
+ return targets.map_;
+}
+
+} // namespace wasm
+} // namespace internal
+} // namespace v8
« no previous file with comments | « src/wasm/wasm-interpreter.h ('k') | src/wasm/wasm-macro-gen.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698