| Index: test/codegen/lib/math/math2_test.dart
|
| diff --git a/test/codegen/lib/math/math2_test.dart b/test/codegen/lib/math/math2_test.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..7ba8c3f4d7209345c802e80ca56763969bd89e45
|
| --- /dev/null
|
| +++ b/test/codegen/lib/math/math2_test.dart
|
| @@ -0,0 +1,265 @@
|
| +// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +// We temporarily test both the new math library and the old Math
|
| +// class. This can easily be simplified once we get rid of the Math
|
| +// class entirely.
|
| +library math_test;
|
| +import "package:expect/expect.dart";
|
| +import 'dart:math' as math;
|
| +
|
| +class MathLibraryTest {
|
| + static void testConstants() {
|
| + // Source for mathematical constants is Wolfram Alpha.
|
| + Expect.equals(2.7182818284590452353602874713526624977572470936999595749669,
|
| + math.E);
|
| + Expect.equals(2.3025850929940456840179914546843642076011014886287729760333,
|
| + math.LN10);
|
| + Expect.equals(0.6931471805599453094172321214581765680755001343602552541206,
|
| + math.LN2);
|
| + Expect.equals(1.4426950408889634073599246810018921374266459541529859341354,
|
| + math.LOG2E);
|
| + Expect.equals(0.4342944819032518276511289189166050822943970058036665661144,
|
| + math.LOG10E);
|
| + Expect.equals(3.1415926535897932384626433832795028841971693993751058209749,
|
| + math.PI);
|
| + Expect.equals(0.7071067811865475244008443621048490392848359376884740365883,
|
| + math.SQRT1_2);
|
| + Expect.equals(1.4142135623730950488016887242096980785696718753769480731766,
|
| + math.SQRT2);
|
| + }
|
| +
|
| + static checkClose(double a, double b, EPSILON) {
|
| + Expect.equals(true, a - EPSILON <= b);
|
| + Expect.equals(true, b <= a + EPSILON);
|
| + }
|
| +
|
| + static void testSin() {
|
| + // Given the imprecision of PI we can't expect better results than this.
|
| + final double EPSILON = 1e-15;
|
| + checkClose(0.0, math.sin(0.0), EPSILON);
|
| + checkClose(0.0, math.sin(math.PI), EPSILON);
|
| + checkClose(0.0, math.sin(2.0 * math.PI), EPSILON);
|
| + checkClose(1.0, math.sin(math.PI / 2.0), EPSILON);
|
| + checkClose(-1.0, math.sin(math.PI * (3.0 / 2.0)), EPSILON);
|
| + }
|
| +
|
| + static void testCos() {
|
| + // Given the imprecision of PI we can't expect better results than this.
|
| + final double EPSILON = 1e-15;
|
| + checkClose(1.0, math.cos(0.0), EPSILON);
|
| + checkClose(-1.0, math.cos(math.PI), EPSILON);
|
| + checkClose(1.0, math.cos(2.0 * math.PI), EPSILON);
|
| + checkClose(0.0, math.cos(math.PI / 2.0), EPSILON);
|
| + checkClose(0.0, math.cos(math.PI * (3.0 / 2.0)), EPSILON);
|
| + }
|
| +
|
| + static void testTan() {
|
| + // Given the imprecision of PI we can't expect better results than this.
|
| + final double EPSILON = 1e-15;
|
| + checkClose(0.0, math.tan(0.0), EPSILON);
|
| + checkClose(0.0, math.tan(math.PI), EPSILON);
|
| + checkClose(0.0, math.tan(2.0 * math.PI), EPSILON);
|
| + checkClose(1.0, math.tan(math.PI / 4.0), EPSILON);
|
| + }
|
| +
|
| + static void testAsin() {
|
| + // Given the imprecision of PI we can't expect better results than this.
|
| + final double EPSILON = 1e-15;
|
| + checkClose(0.0, math.asin(0.0), EPSILON);
|
| + checkClose(math.PI / 2.0, math.asin(1.0), EPSILON);
|
| + checkClose(-math.PI / 2.0, math.asin(-1.0), EPSILON);
|
| + }
|
| +
|
| +
|
| + static void testAcos() {
|
| + // Given the imprecision of PI we can't expect better results than this.
|
| + final double EPSILON = 1e-15;
|
| + checkClose(0.0, math.acos(1.0), EPSILON);
|
| + checkClose(math.PI, math.acos(-1.0), EPSILON);
|
| + checkClose(math.PI / 2.0, math.acos(0.0), EPSILON);
|
| + }
|
| +
|
| + static void testAtan() {
|
| + // Given the imprecision of PI we can't expect better results than this.
|
| + final double EPSILON = 1e-15;
|
| + checkClose(0.0, math.atan(0.0), EPSILON);
|
| + checkClose(math.PI / 4.0, math.atan(1.0), EPSILON);
|
| + checkClose(-math.PI / 4.0, math.atan(-1.0), EPSILON);
|
| + }
|
| +
|
| + static void testAtan2() {
|
| + // Given the imprecision of PI we can't expect better results than this.
|
| + final double EPSILON = 1e-15;
|
| + checkClose(0.0, math.atan2(0.0, 5.0), EPSILON);
|
| + checkClose(math.PI / 4.0, math.atan2(2.0, 2.0), EPSILON);
|
| + checkClose(3 * math.PI / 4.0, math.atan2(0.5, -0.5), EPSILON);
|
| + checkClose(-3 * math.PI / 4.0, math.atan2(-2.5, -2.5), EPSILON);
|
| + }
|
| +
|
| + static checkVeryClose(double a, double b) {
|
| + // We find a ulp (unit in the last place) by shifting the original number
|
| + // to the right. This only works if we are not too close to infinity or if
|
| + // we work with denormals.
|
| + // We special case or 0.0, but not for infinity.
|
| + if (a == 0.0) {
|
| + final minimalDouble = 4.9406564584124654e-324;
|
| + Expect.equals(true, b.abs() <= minimalDouble);
|
| + return;
|
| + }
|
| + if (b == 0.0) {
|
| + // No need to look if they are close. Otherwise the check for 'a' above
|
| + // whould have triggered.
|
| + Expect.equals(a, b);
|
| + }
|
| + final double shiftRightBy52 = 2.220446049250313080847263336181640625e-16;
|
| + final double shiftedA = (a * shiftRightBy52).abs();
|
| + // Compared to 'a', 'shiftedA' is now ~1-2 ulp.
|
| +
|
| + final double limitLow = a - shiftedA;
|
| + final double limitHigh = a + shiftedA;
|
| + Expect.equals(false, a == limitLow);
|
| + Expect.equals(false, a == limitHigh);
|
| + Expect.equals(true, limitLow <= b);
|
| + Expect.equals(true, b <= limitHigh);
|
| + }
|
| +
|
| + static void testSqrt() {
|
| + checkVeryClose(2.0, math.sqrt(4.0));
|
| + checkVeryClose(math.SQRT2, math.sqrt(2.0));
|
| + checkVeryClose(math.SQRT1_2, math.sqrt(0.5));
|
| + checkVeryClose(1e50, math.sqrt(1e100));
|
| + checkVeryClose(1.1111111061110855443054405046358901279277111935183977e56,
|
| + math.sqrt(12345678901234e99));
|
| + }
|
| +
|
| + static void testExp() {
|
| + checkVeryClose(math.E, math.exp(1.0));
|
| + final EPSILON = 1e-15;
|
| + checkClose(10.0, math.exp(math.LN10), EPSILON);
|
| + checkClose(2.0, math.exp(math.LN2), EPSILON);
|
| + }
|
| +
|
| + static void testLog() {
|
| + // Even though E is imprecise, it is good enough to get really close to 1.
|
| + // We still provide an epsilon.
|
| + checkClose(1.0, math.log(math.E), 1e-16);
|
| + checkVeryClose(math.LN10, math.log(10.0));
|
| + checkVeryClose(math.LN2, math.log(2.0));
|
| + }
|
| +
|
| + static void testPow() {
|
| + checkVeryClose(16.0, math.pow(4.0, 2.0));
|
| + checkVeryClose(math.SQRT2, math.pow(2.0, 0.5));
|
| + checkVeryClose(math.SQRT1_2, math.pow(0.5, 0.5));
|
| + }
|
| +
|
| + static bool parseIntThrowsFormatException(str) {
|
| + try {
|
| + int.parse(str);
|
| + return false;
|
| + } on FormatException catch (e) {
|
| + return true;
|
| + }
|
| + }
|
| +
|
| + static void testParseInt() {
|
| + Expect.equals(499, int.parse("499"));
|
| + Expect.equals(499, int.parse("+499"));
|
| + Expect.equals(-499, int.parse("-499"));
|
| + Expect.equals(499, int.parse(" 499 "));
|
| + Expect.equals(499, int.parse(" +499 "));
|
| + Expect.equals(-499, int.parse(" -499 "));
|
| + Expect.equals(0, int.parse("0"));
|
| + Expect.equals(0, int.parse("+0"));
|
| + Expect.equals(0, int.parse("-0"));
|
| + Expect.equals(0, int.parse(" 0 "));
|
| + Expect.equals(0, int.parse(" +0 "));
|
| + Expect.equals(0, int.parse(" -0 "));
|
| + Expect.equals(0x1234567890, int.parse("0x1234567890"));
|
| + Expect.equals(-0x1234567890, int.parse("-0x1234567890"));
|
| + Expect.equals(0x1234567890, int.parse(" 0x1234567890 "));
|
| + Expect.equals(-0x1234567890, int.parse(" -0x1234567890 "));
|
| + Expect.equals(256, int.parse("0x100"));
|
| + Expect.equals(-256, int.parse("-0x100"));
|
| + Expect.equals(256, int.parse(" 0x100 "));
|
| + Expect.equals(-256, int.parse(" -0x100 "));
|
| + Expect.equals(0xabcdef, int.parse("0xabcdef"));
|
| + Expect.equals(0xABCDEF, int.parse("0xABCDEF"));
|
| + Expect.equals(0xabcdef, int.parse("0xabCDEf"));
|
| + Expect.equals(-0xabcdef, int.parse("-0xabcdef"));
|
| + Expect.equals(-0xABCDEF, int.parse("-0xABCDEF"));
|
| + Expect.equals(0xabcdef, int.parse(" 0xabcdef "));
|
| + Expect.equals(0xABCDEF, int.parse(" 0xABCDEF "));
|
| + Expect.equals(-0xabcdef, int.parse(" -0xabcdef "));
|
| + Expect.equals(-0xABCDEF, int.parse(" -0xABCDEF "));
|
| + Expect.equals(0xabcdef, int.parse("0x00000abcdef"));
|
| + Expect.equals(0xABCDEF, int.parse("0x00000ABCDEF"));
|
| + Expect.equals(-0xabcdef, int.parse("-0x00000abcdef"));
|
| + Expect.equals(-0xABCDEF, int.parse("-0x00000ABCDEF"));
|
| + Expect.equals(0xabcdef, int.parse(" 0x00000abcdef "));
|
| + Expect.equals(0xABCDEF, int.parse(" 0x00000ABCDEF "));
|
| + Expect.equals(-0xabcdef, int.parse(" -0x00000abcdef "));
|
| + Expect.equals(-0xABCDEF, int.parse(" -0x00000ABCDEF "));
|
| + Expect.equals(10, int.parse("010"));
|
| + Expect.equals(-10, int.parse("-010"));
|
| + Expect.equals(10, int.parse(" 010 "));
|
| + Expect.equals(-10, int.parse(" -010 "));
|
| + Expect.equals(9, int.parse("09"));
|
| + Expect.equals(9, int.parse(" 09 "));
|
| + Expect.equals(-9, int.parse("-09"));
|
| + Expect.equals(0x1234567890, int.parse("+0x1234567890"));
|
| + Expect.equals(0x1234567890, int.parse(" +0x1234567890 "));
|
| + Expect.equals(0x100, int.parse("+0x100"));
|
| + Expect.equals(0x100, int.parse(" +0x100 "));
|
| +
|
| + Expect.equals(true, parseIntThrowsFormatException("1b"));
|
| + Expect.equals(true, parseIntThrowsFormatException(" 1b "));
|
| + Expect.equals(true, parseIntThrowsFormatException(" 1 b "));
|
| + Expect.equals(true, parseIntThrowsFormatException("1e2"));
|
| + Expect.equals(true, parseIntThrowsFormatException(" 1e2 "));
|
| + Expect.equals(true, parseIntThrowsFormatException("00x12"));
|
| + Expect.equals(true, parseIntThrowsFormatException(" 00x12 "));
|
| + Expect.equals(true, parseIntThrowsFormatException("-1b"));
|
| + Expect.equals(true, parseIntThrowsFormatException(" -1b "));
|
| + Expect.equals(true, parseIntThrowsFormatException(" -1 b "));
|
| + Expect.equals(true, parseIntThrowsFormatException("-1e2"));
|
| + Expect.equals(true, parseIntThrowsFormatException(" -1e2 "));
|
| + Expect.equals(true, parseIntThrowsFormatException("-00x12"));
|
| + Expect.equals(true, parseIntThrowsFormatException(" -00x12 "));
|
| + Expect.equals(true, parseIntThrowsFormatException(" -00x12 "));
|
| + Expect.equals(true, parseIntThrowsFormatException("0x0x12"));
|
| + Expect.equals(true, parseIntThrowsFormatException("0.1"));
|
| + Expect.equals(true, parseIntThrowsFormatException("0x3.1"));
|
| + Expect.equals(true, parseIntThrowsFormatException("5."));
|
| + Expect.equals(true, parseIntThrowsFormatException("+-5"));
|
| + Expect.equals(true, parseIntThrowsFormatException("-+5"));
|
| + Expect.equals(true, parseIntThrowsFormatException("--5"));
|
| + Expect.equals(true, parseIntThrowsFormatException("++5"));
|
| + Expect.equals(true, parseIntThrowsFormatException("+ 5"));
|
| + Expect.equals(true, parseIntThrowsFormatException("- 5"));
|
| + Expect.equals(true, parseIntThrowsFormatException(""));
|
| + Expect.equals(true, parseIntThrowsFormatException(" "));
|
| + }
|
| +
|
| + static testMain() {
|
| + testConstants();
|
| + testSin();
|
| + testCos();
|
| + testTan();
|
| + testAsin();
|
| + testAcos();
|
| + testAtan();
|
| + testAtan2();
|
| + testSqrt();
|
| + testLog();
|
| + testExp();
|
| + testPow();
|
| + testParseInt();
|
| + }
|
| +}
|
| +
|
| +main() {
|
| + MathLibraryTest.testMain();
|
| +}
|
|
|