Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(91)

Side by Side Diff: experimental/skpdiff/SkPMetric.cpp

Issue 19671002: migrate skpdiff to tools (Closed) Base URL: https://skia.googlecode.com/svn/trunk
Patch Set: i shake my fist at Visual Studio's default use of tabs Created 7 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « experimental/skpdiff/SkPMetric.h ('k') | experimental/skpdiff/SkPMetricUtil_generated.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 #include <cmath>
2
3 #include "SkBitmap.h"
4 #include "skpdiff_util.h"
5 #include "SkPMetric.h"
6 #include "SkPMetricUtil_generated.h"
7
8 struct RGB {
9 float r, g, b;
10 };
11
12 struct LAB {
13 float l, a, b;
14 };
15
16 template<class T>
17 struct Image2D {
18 int width;
19 int height;
20 T* image;
21
22 Image2D(int w, int h)
23 : width(w),
24 height(h) {
25 SkASSERT(w > 0);
26 SkASSERT(h > 0);
27 image = SkNEW_ARRAY(T, w * h);
28 }
29
30 ~Image2D() {
31 SkDELETE_ARRAY(image);
32 }
33
34 void readPixel(int x, int y, T* pixel) const {
35 SkASSERT(x >= 0);
36 SkASSERT(y >= 0);
37 SkASSERT(x < width);
38 SkASSERT(y < height);
39 *pixel = image[y * width + x];
40 }
41
42 T* getRow(int y) const {
43 return &image[y * width];
44 }
45
46 void writePixel(int x, int y, const T& pixel) {
47 SkASSERT(x >= 0);
48 SkASSERT(y >= 0);
49 SkASSERT(x < width);
50 SkASSERT(y < height);
51 image[y * width + x] = pixel;
52 }
53 };
54
55 typedef Image2D<float> ImageL;
56 typedef Image2D<RGB> ImageRGB;
57 typedef Image2D<LAB> ImageLAB;
58
59 template<class T>
60 struct ImageArray
61 {
62 int slices;
63 Image2D<T>** image;
64
65 ImageArray(int w, int h, int s)
66 : slices(s) {
67 SkASSERT(s > 0);
68 image = SkNEW_ARRAY(Image2D<T>*, s);
69 for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
70 image[sliceIndex] = SkNEW_ARGS(Image2D<T>, (w, h));
71 }
72 }
73
74 ~ImageArray() {
75 for (int sliceIndex = 0; sliceIndex < slices; sliceIndex++) {
76 SkDELETE(image[sliceIndex]);
77 }
78 SkDELETE_ARRAY(image);
79 }
80
81 Image2D<T>* getLayer(int z) const {
82 SkASSERT(z >= 0);
83 SkASSERT(z < slices);
84 return image[z];
85 }
86 };
87
88 typedef ImageArray<float> ImageL3D;
89
90
91 #define MAT_ROW_MULT(rc,gc,bc) r*rc + g*gc + b*bc
92
93
94 void adobergb_to_cielab(float r, float g, float b, LAB* lab) {
95 // Conversion of Adobe RGB to XYZ taken from from "Adobe RGB (1998) ColorIma ge Encoding"
96 // URL:http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
97 // Section: 4.3.5.3
98 // See Also: http://en.wikipedia.org/wiki/Adobe_rgb
99 float x = MAT_ROW_MULT(0.57667f, 0.18556f, 0.18823f);
100 float y = MAT_ROW_MULT(0.29734f, 0.62736f, 0.07529f);
101 float z = MAT_ROW_MULT(0.02703f, 0.07069f, 0.99134f);
102
103 // The following is the white point in XYZ, so it's simply the row wise addi tion of the above
104 // matrix.
105 const float xw = 0.5767f + 0.185556f + 0.188212f;
106 const float yw = 0.297361f + 0.627355f + 0.0752847f;
107 const float zw = 0.0270328f + 0.0706879f + 0.991248f;
108
109 // This is the XYZ color point relative to the white point
110 float f[3] = { x / xw, y / yw, z / zw };
111
112 // Conversion from XYZ to LAB taken from
113 // http://en.wikipedia.org/wiki/CIELAB#Forward_transformation
114 for (int i = 0; i < 3; i++) {
115 if (f[i] >= 0.008856f) {
116 f[i] = SkPMetricUtil::get_cube_root(f[i]);
117 } else {
118 f[i] = 7.787f * f[i] + 4.0f / 29.0f;
119 }
120 }
121 lab->l = 116.0f * f[1] - 16.0f;
122 lab->a = 500.0f * (f[0] - f[1]);
123 lab->b = 200.0f * (f[1] - f[2]);
124 }
125
126 /// Converts a 8888 bitmap to LAB color space and puts it into the output
127 static void bitmap_to_cielab(const SkBitmap* bitmap, ImageLAB* outImageLAB) {
128 SkASSERT(bitmap->config() == SkBitmap::kARGB_8888_Config);
129
130 int width = bitmap->width();
131 int height = bitmap->height();
132 SkASSERT(outImageLAB->width == width);
133 SkASSERT(outImageLAB->height == height);
134
135 bitmap->lockPixels();
136 RGB rgb;
137 LAB lab;
138 for (int y = 0; y < height; y++) {
139 unsigned char* row = (unsigned char*)bitmap->getAddr(0, y);
140 for (int x = 0; x < width; x++) {
141 // Perform gamma correction which is assumed to be 2.2
142 rgb.r = SkPMetricUtil::get_gamma(row[x * 4 + 2]);
143 rgb.g = SkPMetricUtil::get_gamma(row[x * 4 + 1]);
144 rgb.b = SkPMetricUtil::get_gamma(row[x * 4 + 0]);
145 adobergb_to_cielab(rgb.r, rgb.g, rgb.b, &lab);
146 outImageLAB->writePixel(x, y, lab);
147 }
148 }
149 bitmap->unlockPixels();
150 }
151
152 // From Barten SPIE 1989
153 static float contrast_sensitivity(float cyclesPerDegree, float luminance) {
154 float a = 440.0f * powf(1.0f + 0.7f / luminance, -0.2f);
155 float b = 0.3f * powf(1 + 100.0 / luminance, 0.15f);
156 return a *
157 cyclesPerDegree *
158 expf(-b * cyclesPerDegree) *
159 sqrtf(1.0f + 0.06f * expf(b * cyclesPerDegree));
160 }
161
162 #if 0
163 // We're keeping these around for reference and in case the lookup tables are no longer desired.
164 // They are no longer called by any code in this file.
165
166 // From Daly 1993
167 static float visual_mask(float contrast) {
168 float x = powf(392.498f * contrast, 0.7f);
169 x = powf(0.0153f * x, 4.0f);
170 return powf(1.0f + x, 0.25f);
171 }
172
173 // From Ward Larson Siggraph 1997
174 static float threshold_vs_intensity(float adaptationLuminance) {
175 float logLum = log10f(adaptationLuminance);
176 float x;
177 if (logLum < -3.94f) {
178 x = -2.86f;
179 } else if (logLum < -1.44f) {
180 x = powf(0.405f * logLum + 1.6f, 2.18) - 2.86f;
181 } else if (logLum < -0.0184f) {
182 x = logLum - 0.395f;
183 } else if (logLum < 1.9f) {
184 x = powf(0.249f * logLum + 0.65f, 2.7f) - 0.72f;
185 } else {
186 x = logLum - 1.255f;
187 }
188 return powf(10.0f, x);
189 }
190
191 #endif
192
193 /// Simply takes the L channel from the input and puts it into the output
194 static void lab_to_l(const ImageLAB* imageLAB, ImageL* outImageL) {
195 for (int y = 0; y < imageLAB->height; y++) {
196 for (int x = 0; x < imageLAB->width; x++) {
197 LAB lab;
198 imageLAB->readPixel(x, y, &lab);
199 outImageL->writePixel(x, y, lab.l);
200 }
201 }
202 }
203
204 /// Convolves an image with the given filter in one direction and saves it to th e output image
205 static void convolve(const ImageL* imageL, bool vertical, ImageL* outImageL) {
206 SkASSERT(imageL->width == outImageL->width);
207 SkASSERT(imageL->height == outImageL->height);
208
209 const float matrix[] = { 0.05f, 0.25f, 0.4f, 0.25f, 0.05f };
210 const int matrixCount = sizeof(matrix) / sizeof(float);
211 const int radius = matrixCount / 2;
212
213 // Keep track of what rows are being operated on for quick access.
214 float* rowPtrs[matrixCount]; // Because matrixCount is constant, this won't create a VLA
215 for (int y = radius; y < matrixCount; y++) {
216 rowPtrs[y] = imageL->getRow(y - radius);
217 }
218 float* writeRow = outImageL->getRow(0);
219
220 for (int y = 0; y < imageL->height; y++) {
221 for (int x = 0; x < imageL->width; x++) {
222 float lSum = 0.0f;
223 for (int xx = -radius; xx <= radius; xx++) {
224 int nx = x;
225 int ny = y;
226
227 // We mirror at edges so that edge pixels that the filter weight ing still makes
228 // sense.
229 if (vertical) {
230 ny += xx;
231 if (ny < 0) {
232 ny = -ny;
233 }
234 if (ny >= imageL->height) {
235 ny = imageL->height + (imageL->height - ny - 1);
236 }
237 } else {
238 nx += xx;
239 if (nx < 0) {
240 nx = -nx;
241 }
242 if (nx >= imageL->width) {
243 nx = imageL->width + (imageL->width - nx - 1);
244 }
245 }
246
247 float weight = matrix[xx + radius];
248 lSum += rowPtrs[ny - y + radius][nx] * weight;
249 }
250 writeRow[x] = lSum;
251 }
252 // As we move down, scroll the row pointers down with us
253 for (int y = 0; y < matrixCount - 1; y++)
254 {
255 rowPtrs[y] = rowPtrs[y + 1];
256 }
257 rowPtrs[matrixCount - 1] += imageL->width;
258 writeRow += imageL->width;
259 }
260 }
261
262 float pmetric(const ImageLAB* baselineLAB, const ImageLAB* testLAB, SkTDArray<Sk IPoint>* poi) {
263 int width = baselineLAB->width;
264 int height = baselineLAB->height;
265 int maxLevels = (int)log2(width < height ? width : height);
266
267 const float fov = M_PI / 180.0f * 45.0f;
268 float contrastSensitivityMax = contrast_sensitivity(3.248f, 100.0f);
269 float pixelsPerDegree = width / (2.0f * tanf(fov * 0.5f) * 180.0f / M_PI);
270
271 ImageL3D baselineL(width, height, maxLevels);
272 ImageL3D testL(width, height, maxLevels);
273 ImageL scratchImageL(width, height);
274 float* cyclesPerDegree = SkNEW_ARRAY(float, maxLevels);
275 float* thresholdFactorFrequency = SkNEW_ARRAY(float, maxLevels - 2);
276 float* contrast = SkNEW_ARRAY(float, maxLevels - 2);
277
278 lab_to_l(baselineLAB, baselineL.getLayer(0));
279 lab_to_l(testLAB, testL.getLayer(0));
280
281 // Compute cpd - Cycles per degree on the pyramid
282 cyclesPerDegree[0] = 0.5f * pixelsPerDegree;
283 for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
284 cyclesPerDegree[levelIndex] = cyclesPerDegree[levelIndex - 1] * 0.5f;
285 }
286
287 // Contrast sensitivity is based on image dimensions. Therefore it cannot be statically
288 // generated.
289 float* contrastSensitivityTable = SkNEW_ARRAY(float, maxLevels * 1000);
290 for (int levelIndex = 0; levelIndex < maxLevels; levelIndex++) {
291 for (int csLum = 0; csLum < 1000; csLum++) {
292 contrastSensitivityTable[levelIndex * 1000 + csLum] =
293 contrast_sensitivity(cyclesPerDegree[levelIndex], (float)csLum / 10.0 f + 1e-5f);
294 }
295 }
296
297 // Compute G - The convolved lum for the baseline
298 for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
299 convolve(baselineL.getLayer(levelIndex - 1), false, &scratchImageL);
300 convolve(&scratchImageL, true, baselineL.getLayer(levelIndex));
301 }
302 for (int levelIndex = 1; levelIndex < maxLevels; levelIndex++) {
303 convolve(testL.getLayer(levelIndex - 1), false, &scratchImageL);
304 convolve(&scratchImageL, true, testL.getLayer(levelIndex));
305 }
306
307 // Compute F_freq - The elevation f
308 for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
309 float cpd = cyclesPerDegree[levelIndex];
310 thresholdFactorFrequency[levelIndex] = contrastSensitivityMax /
311 contrast_sensitivity(cpd, 100.0f) ;
312 }
313
314 int failures = 0;
315 // Calculate F
316 for (int y = 0; y < height; y++) {
317 for (int x = 0; x < width; x++) {
318 float lBaseline;
319 float lTest;
320 baselineL.getLayer(0)->readPixel(x, y, &lBaseline);
321 testL.getLayer(0)->readPixel(x, y, &lTest);
322
323 float avgLBaseline;
324 float avgLTest;
325 baselineL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLBaseline);
326 testL.getLayer(maxLevels - 1)->readPixel(x, y, &avgLTest);
327
328 float lAdapt = 0.5f * (avgLBaseline + avgLTest);
329 if (lAdapt < 1e-5) {
330 lAdapt = 1e-5;
331 }
332
333 float contrastSum = 0.0f;
334 for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
335 float baselineL0, baselineL1, baselineL2;
336 float testL0, testL1, testL2;
337 baselineL.getLayer(levelIndex + 0)->readPixel(x, y, &baselineL0) ;
338 testL. getLayer(levelIndex + 0)->readPixel(x, y, &testL0);
339 baselineL.getLayer(levelIndex + 1)->readPixel(x, y, &baselineL1) ;
340 testL. getLayer(levelIndex + 1)->readPixel(x, y, &testL1);
341 baselineL.getLayer(levelIndex + 2)->readPixel(x, y, &baselineL2) ;
342 testL. getLayer(levelIndex + 2)->readPixel(x, y, &testL2);
343
344 float baselineContrast1 = fabsf(baselineL0 - baselineL1);
345 float testContrast1 = fabsf(testL0 - testL1);
346 float numerator = (baselineContrast1 > testContrast1) ?
347 baselineContrast1 : testContrast1;
348
349 float baselineContrast2 = fabsf(baselineL2);
350 float testContrast2 = fabsf(testL2);
351 float denominator = (baselineContrast2 > testContrast2) ?
352 baselineContrast2 : testContrast2;
353
354 // Avoid divides by close to zero
355 if (denominator < 1e-5) {
356 denominator = 1e-5;
357 }
358 contrast[levelIndex] = numerator / denominator;
359 contrastSum += contrast[levelIndex];
360 }
361
362 if (contrastSum < 1e-5) {
363 contrastSum = 1e-5;
364 }
365
366 float F = 0.0f;
367 for (int levelIndex = 0; levelIndex < maxLevels - 2; levelIndex++) {
368 float contrastSensitivity = contrastSensitivityTable[levelIndex * 1000 +
369 (int)(lAdap t * 10.0)];
370 float mask = SkPMetricUtil::get_visual_mask(contrast[levelIndex] *
371 contrastSensitivity) ;
372
373 F += contrast[levelIndex] +
374 thresholdFactorFrequency[levelIndex] * mask / contrastSum;
375 }
376
377 if (F < 1.0f) {
378 F = 1.0f;
379 }
380
381 if (F > 10.0f) {
382 F = 10.0f;
383 }
384
385
386 bool isFailure = false;
387 if (fabsf(lBaseline - lTest) > F * SkPMetricUtil::get_threshold_vs_i ntensity(lAdapt)) {
388 isFailure = true;
389 } else {
390 LAB baselineColor;
391 LAB testColor;
392 baselineLAB->readPixel(x, y, &baselineColor);
393 testLAB->readPixel(x, y, &testColor);
394 float contrastA = baselineColor.a - testColor.a;
395 float contrastB = baselineColor.b - testColor.b;
396 float colorScale = 1.0f;
397 if (lAdapt < 10.0f) {
398 colorScale = lAdapt / 10.0f;
399 }
400 colorScale *= colorScale;
401
402 if ((contrastA * contrastA + contrastB * contrastB) * colorScale > F)
403 {
404 isFailure = true;
405 }
406 }
407
408 if (isFailure) {
409 failures++;
410 poi->push()->set(x, y);
411 }
412 }
413 }
414
415 SkDELETE_ARRAY(cyclesPerDegree);
416 SkDELETE_ARRAY(contrast);
417 SkDELETE_ARRAY(thresholdFactorFrequency);
418 SkDELETE_ARRAY(contrastSensitivityTable);
419 return 1.0 - (double)failures / (width * height);
420 }
421
422 const char* SkPMetric::getName() {
423 return "perceptual";
424 }
425
426 int SkPMetric::queueDiff(SkBitmap* baseline, SkBitmap* test) {
427 double startTime = get_seconds();
428 int diffID = fQueuedDiffs.count();
429 QueuedDiff& diff = fQueuedDiffs.push_back();
430 diff.result = 0.0;
431
432 // Ensure the images are comparable
433 if (baseline->width() != test->width() || baseline->height() != test->height () ||
434 baseline->width() <= 0 || baseline->height() <= 0) {
435 diff.finished = true;
436 return diffID;
437 }
438
439 ImageLAB baselineLAB(baseline->width(), baseline->height());
440 ImageLAB testLAB(baseline->width(), baseline->height());
441
442 bitmap_to_cielab(baseline, &baselineLAB);
443 bitmap_to_cielab(test, &testLAB);
444
445 diff.result = pmetric(&baselineLAB, &testLAB, &diff.poi);
446
447 SkDebugf("Time: %f\n", (get_seconds() - startTime));
448
449 return diffID;
450 }
451
452
453 void SkPMetric::deleteDiff(int id) {
454
455 }
456
457 bool SkPMetric::isFinished(int id) {
458 return fQueuedDiffs[id].finished;
459 }
460
461 double SkPMetric::getResult(int id) {
462 return fQueuedDiffs[id].result;
463 }
464
465 int SkPMetric::getPointsOfInterestCount(int id) {
466 return fQueuedDiffs[id].poi.count();
467 }
468
469 SkIPoint* SkPMetric::getPointsOfInterest(int id) {
470 return fQueuedDiffs[id].poi.begin();
471 }
OLDNEW
« no previous file with comments | « experimental/skpdiff/SkPMetric.h ('k') | experimental/skpdiff/SkPMetricUtil_generated.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698