OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkQuadTree.h" | 8 #include "SkQuadTree.h" |
9 #include "SkTSort.h" | 9 #include "SkTSort.h" |
10 #include <stdio.h> | 10 #include <stdio.h> |
11 #include <vector> | 11 #include <vector> |
12 | 12 |
13 static const int kSplitThreshold = 8; | 13 static const int kSplitThreshold = 8; |
14 static const int kMinDimensions = 128; | 14 |
| 15 enum { |
| 16 kTopLeft, |
| 17 kTopRight, |
| 18 kBottomLeft, |
| 19 kBottomRight, |
| 20 }; |
| 21 enum { |
| 22 kTopLeft_Bit = 1 << kTopLeft, |
| 23 kTopRight_Bit = 1 << kTopRight, |
| 24 kBottomLeft_Bit = 1 << kBottomLeft, |
| 25 kBottomRight_Bit = 1 << kBottomRight, |
| 26 }; |
| 27 enum { |
| 28 kMaskLeft = kTopLeft_Bit | kBottomLeft_Bit, |
| 29 kMaskRight = kTopRight_Bit | kBottomRight_Bit, |
| 30 kMaskTop = kTopLeft_Bit | kTopRight_Bit, |
| 31 kMaskBottom = kBottomLeft_Bit | kBottomRight_Bit, |
| 32 }; |
| 33 |
| 34 static U8CPU child_intersect(const SkIRect& query, const SkIPoint& split) { |
| 35 // fast quadrant test |
| 36 U8CPU intersect = 0xf; |
| 37 if (query.fRight < split.fX) { |
| 38 intersect &= ~kMaskRight; |
| 39 } else if(query.fLeft >= split.fX) { |
| 40 intersect &= ~kMaskLeft; |
| 41 } |
| 42 if (query.fBottom < split.fY) { |
| 43 intersect &= ~kMaskBottom; |
| 44 } else if(query.fTop >= split.fY) { |
| 45 intersect &= ~kMaskTop; |
| 46 } |
| 47 return intersect; |
| 48 } |
15 | 49 |
16 SkQuadTree::SkQuadTree(const SkIRect& bounds) | 50 SkQuadTree::SkQuadTree(const SkIRect& bounds) |
17 : fEntryCount(0) | 51 : fRoot(NULL) { |
18 , fRoot(NULL) { | |
19 SkASSERT((bounds.width() * bounds.height()) > 0); | 52 SkASSERT((bounds.width() * bounds.height()) > 0); |
20 fRoot = fNodePool.acquire(); | 53 fRootBounds = bounds; |
21 fRoot->fBounds = bounds; | |
22 } | 54 } |
23 | 55 |
24 SkQuadTree::~SkQuadTree() { | 56 SkQuadTree::~SkQuadTree() { |
25 } | 57 } |
26 | 58 |
27 SkQuadTree::Node* SkQuadTree::pickChild(Node* node, | |
28 const SkIRect& bounds) const { | |
29 // is it entirely to the left? | |
30 int index = 0; | |
31 if (bounds.fRight < node->fSplitPoint.fX) { | |
32 // Inside the left side | |
33 } else if(bounds.fLeft >= node->fSplitPoint.fX) { | |
34 // Inside the right side | |
35 index |= 1; | |
36 } else { | |
37 // Not inside any children | |
38 return NULL; | |
39 } | |
40 if (bounds.fBottom < node->fSplitPoint.fY) { | |
41 // Inside the top side | |
42 } else if(bounds.fTop >= node->fSplitPoint.fY) { | |
43 // Inside the bottom side | |
44 index |= 2; | |
45 } else { | |
46 // Not inside any children | |
47 return NULL; | |
48 } | |
49 return node->fChildren[index]; | |
50 } | |
51 | |
52 void SkQuadTree::insert(Node* node, Entry* entry) { | 59 void SkQuadTree::insert(Node* node, Entry* entry) { |
53 // does it belong in a child? | 60 // does it belong in a child? |
54 if (NULL != node->fChildren[0]) { | 61 if (NULL != node->fChildren[0]) { |
55 Node* child = pickChild(node, entry->fBounds); | 62 switch(child_intersect(entry->fBounds, node->fSplitPoint)) { |
56 if (NULL != child) { | 63 case kTopLeft_Bit: |
57 insert(child, entry); | 64 this->insert(node->fChildren[kTopLeft], entry); |
58 } else { | 65 return; |
59 node->fEntries.push(entry); | 66 case kTopRight_Bit: |
| 67 this->insert(node->fChildren[kTopRight], entry); |
| 68 return; |
| 69 case kBottomLeft_Bit: |
| 70 this->insert(node->fChildren[kBottomLeft], entry); |
| 71 return; |
| 72 case kBottomRight_Bit: |
| 73 this->insert(node->fChildren[kBottomRight], entry); |
| 74 return; |
| 75 default: |
| 76 node->fEntries.push(entry); |
| 77 return; |
60 } | 78 } |
61 return; | |
62 } | 79 } |
63 // No children yet, add to this node | 80 // No children yet, add to this node |
64 node->fEntries.push(entry); | 81 node->fEntries.push(entry); |
65 // should I split? | 82 // should I split? |
66 if (node->fEntries.getCount() < kSplitThreshold) { | 83 if (node->fEntries.getCount() > kSplitThreshold) { |
67 return; | 84 this->split(node); |
68 } | 85 } |
| 86 } |
69 | 87 |
70 if ((node->fBounds.width() < kMinDimensions) || | 88 void SkQuadTree::split(Node* node) { |
71 (node->fBounds.height() < kMinDimensions)) { | |
72 return; | |
73 } | |
74 | |
75 // Build all the children | 89 // Build all the children |
76 node->fSplitPoint = SkIPoint::Make(node->fBounds.centerX(), | 90 node->fSplitPoint = SkIPoint::Make(node->fBounds.centerX(), |
77 node->fBounds.centerY()); | 91 node->fBounds.centerY()); |
78 for(int index=0; index<kChildCount; ++index) { | 92 for(int index=0; index<kChildCount; ++index) { |
79 node->fChildren[index] = fNodePool.acquire(); | 93 node->fChildren[index] = fNodePool.acquire(); |
80 } | 94 } |
81 node->fChildren[0]->fBounds = SkIRect::MakeLTRB( | 95 node->fChildren[0]->fBounds = SkIRect::MakeLTRB( |
82 node->fBounds.fLeft, node->fBounds.fTop, | 96 node->fBounds.fLeft, node->fBounds.fTop, |
83 node->fSplitPoint.fX, node->fSplitPoint.fY); | 97 node->fSplitPoint.fX, node->fSplitPoint.fY); |
84 node->fChildren[1]->fBounds = SkIRect::MakeLTRB( | 98 node->fChildren[1]->fBounds = SkIRect::MakeLTRB( |
85 node->fSplitPoint.fX, node->fBounds.fTop, | 99 node->fSplitPoint.fX, node->fBounds.fTop, |
86 node->fBounds.fRight, node->fSplitPoint.fY); | 100 node->fBounds.fRight, node->fSplitPoint.fY); |
87 node->fChildren[2]->fBounds = SkIRect::MakeLTRB( | 101 node->fChildren[2]->fBounds = SkIRect::MakeLTRB( |
88 node->fBounds.fLeft, node->fSplitPoint.fY, | 102 node->fBounds.fLeft, node->fSplitPoint.fY, |
89 node->fSplitPoint.fX, node->fBounds.fBottom); | 103 node->fSplitPoint.fX, node->fBounds.fBottom); |
90 node->fChildren[3]->fBounds = SkIRect::MakeLTRB( | 104 node->fChildren[3]->fBounds = SkIRect::MakeLTRB( |
91 node->fSplitPoint.fX, node->fSplitPoint.fY, | 105 node->fSplitPoint.fX, node->fSplitPoint.fY, |
92 node->fBounds.fRight, node->fBounds.fBottom); | 106 node->fBounds.fRight, node->fBounds.fBottom); |
93 // reinsert all the entries of this node to allow child trickle | 107 // reinsert all the entries of this node to allow child trickle |
94 SkTInternalSList<Entry> entries; | 108 SkTInternalSList<Entry> entries; |
95 entries.pushAll(&node->fEntries); | 109 entries.pushAll(&node->fEntries); |
96 while(!entries.isEmpty()) { | 110 while(!entries.isEmpty()) { |
97 insert(node, entries.pop()); | 111 this->insert(node, entries.pop()); |
98 } | 112 } |
99 } | 113 } |
100 | 114 |
101 void SkQuadTree::search(Node* node, const SkIRect& query, | 115 void SkQuadTree::search(Node* node, const SkIRect& query, |
102 SkTDArray<void*>* results) const { | 116 SkTDArray<void*>* results) const { |
103 for (Entry* entry = node->fEntries.head(); NULL != entry; | 117 for (Entry* entry = node->fEntries.head(); NULL != entry; |
104 entry = entry->getSListNext()) { | 118 entry = entry->getSListNext()) { |
105 if (SkIRect::IntersectsNoEmptyCheck(entry->fBounds, query)) { | 119 if (SkIRect::IntersectsNoEmptyCheck(entry->fBounds, query)) { |
106 results->push(entry->fData); | 120 results->push(entry->fData); |
107 } | 121 } |
108 } | 122 } |
109 if (NULL == node->fChildren[0]) { | 123 if (NULL == node->fChildren[0]) { |
110 return; | 124 return; |
111 } | 125 } |
112 // fast quadrant test | 126 U8CPU intersect = child_intersect(query, node->fSplitPoint); |
113 bool left = true; | 127 for(int index=0; index<kChildCount; ++index) { |
114 bool right = true; | 128 if (intersect & (1 << index)) { |
115 if (query.fRight < node->fSplitPoint.fX) { | 129 this->search(node->fChildren[index], query, results); |
116 right = false; | 130 } |
117 } else if(query.fLeft >= node->fSplitPoint.fX) { | |
118 left = false; | |
119 } | |
120 bool top = true; | |
121 bool bottom = true; | |
122 if (query.fBottom < node->fSplitPoint.fY) { | |
123 bottom = false; | |
124 } else if(query.fTop >= node->fSplitPoint.fY) { | |
125 top = false; | |
126 } | |
127 // search all the active quadrants | |
128 if (top && left) { | |
129 search(node->fChildren[0], query, results); | |
130 } | |
131 if (top && right) { | |
132 search(node->fChildren[1], query, results); | |
133 } | |
134 if (bottom && left) { | |
135 search(node->fChildren[2], query, results); | |
136 } | |
137 if (bottom && right) { | |
138 search(node->fChildren[3], query, results); | |
139 } | 131 } |
140 } | 132 } |
141 | 133 |
142 void SkQuadTree::clear(Node* node) { | 134 void SkQuadTree::clear(Node* node) { |
143 // first clear the entries of this node | 135 // first clear the entries of this node |
144 fEntryPool.releaseAll(&node->fEntries); | 136 fEntryPool.releaseAll(&node->fEntries); |
145 // recurse into and clear all child nodes | 137 // recurse into and clear all child nodes |
146 for(int index=0; index<kChildCount; ++index) { | 138 for(int index=0; index<kChildCount; ++index) { |
147 Node* child = node->fChildren[index]; | 139 Node* child = node->fChildren[index]; |
148 node->fChildren[index] = NULL; | 140 node->fChildren[index] = NULL; |
149 if (NULL != child) { | 141 if (NULL != child) { |
150 clear(child); | 142 this->clear(child); |
151 fNodePool.release(child); | 143 fNodePool.release(child); |
152 } | 144 } |
153 } | 145 } |
154 } | 146 } |
155 | 147 |
156 int SkQuadTree::getDepth(Node* node) const { | 148 int SkQuadTree::getDepth(Node* node) const { |
157 int maxDepth = 0; | 149 int maxDepth = 0; |
158 if (NULL != node->fChildren[0]) { | 150 if (NULL != node) { |
159 for(int index=0; index<kChildCount; ++index) { | 151 for(int index=0; index<kChildCount; ++index) { |
160 maxDepth = SkMax32(maxDepth, getDepth(node->fChildren[index])); | 152 maxDepth = SkMax32(maxDepth, getDepth(node->fChildren[index])); |
161 } | 153 } |
162 } | 154 } |
163 return maxDepth + 1; | 155 return maxDepth + 1; |
164 } | 156 } |
165 | 157 |
166 void SkQuadTree::insert(void* data, const SkIRect& bounds, bool) { | 158 void SkQuadTree::insert(void* data, const SkIRect& bounds, bool) { |
167 if (bounds.isEmpty()) { | 159 if (bounds.isEmpty()) { |
168 SkASSERT(false); | 160 SkASSERT(false); |
169 return; | 161 return; |
170 } | 162 } |
171 Entry* entry = fEntryPool.acquire(); | 163 Entry* entry = fEntryPool.acquire(); |
172 entry->fData = data; | 164 entry->fData = data; |
173 entry->fBounds = bounds; | 165 entry->fBounds = bounds; |
174 ++fEntryCount; | 166 if (NULL == fRoot) { |
175 if (fRoot->fEntries.isEmpty() && (NULL == fRoot->fChildren[0])) { | |
176 fDeferred.push(entry); | 167 fDeferred.push(entry); |
177 } else { | 168 } else { |
178 insert(fRoot, entry); | 169 this->insert(fRoot, entry); |
179 } | 170 } |
180 } | 171 } |
181 | 172 |
182 void SkQuadTree::search(const SkIRect& query, SkTDArray<void*>* results) { | 173 void SkQuadTree::search(const SkIRect& query, SkTDArray<void*>* results) { |
183 SkASSERT(fDeferred.isEmpty()); | 174 SkASSERT(NULL != fRoot); |
184 SkASSERT(NULL != results); | 175 SkASSERT(NULL != results); |
185 if (SkIRect::Intersects(fRoot->fBounds, query)) { | 176 if (SkIRect::Intersects(fRootBounds, query)) { |
186 search(fRoot, query, results); | 177 this->search(fRoot, query, results); |
187 } | 178 } |
188 } | 179 } |
189 | 180 |
190 void SkQuadTree::clear() { | 181 void SkQuadTree::clear() { |
191 fEntryCount = 0; | 182 if (NULL != fRoot) { |
192 clear(fRoot); | 183 this->clear(fRoot); |
| 184 fNodePool.release(fRoot); |
| 185 fRoot = NULL; |
| 186 } |
193 } | 187 } |
194 | 188 |
195 int SkQuadTree::getDepth() const { | 189 int SkQuadTree::getDepth() const { |
196 return getDepth(fRoot); | 190 return this->getDepth(fRoot); |
197 } | 191 } |
198 | 192 |
199 void SkQuadTree::rewindInserts() { | 193 void SkQuadTree::rewindInserts() { |
200 SkASSERT(fClient); | 194 SkASSERT(fClient); |
201 // Currently only supports deferred inserts | 195 // Currently only supports deferred inserts |
202 SkASSERT(fRoot->fEntries.isEmpty() && fRoot->fChildren[0] == NULL); | 196 SkASSERT(NULL == fRoot); |
203 SkTInternalSList<Entry> entries; | 197 SkTInternalSList<Entry> entries; |
204 entries.pushAll(&fDeferred); | 198 entries.pushAll(&fDeferred); |
205 while(!entries.isEmpty()) { | 199 while(!entries.isEmpty()) { |
206 Entry* entry = entries.pop(); | 200 Entry* entry = entries.pop(); |
207 if (fClient->shouldRewind(entry->fData)) { | 201 if (fClient->shouldRewind(entry->fData)) { |
208 entry->fData = NULL; | 202 entry->fData = NULL; |
209 fEntryPool.release(entry); | 203 fEntryPool.release(entry); |
210 --fEntryCount; | |
211 } else { | 204 } else { |
212 fDeferred.push(entry); | 205 fDeferred.push(entry); |
213 } | 206 } |
214 } | 207 } |
215 } | 208 } |
216 | 209 |
217 void SkQuadTree::flushDeferredInserts() { | 210 void SkQuadTree::flushDeferredInserts() { |
| 211 if (NULL == fRoot) { |
| 212 fRoot = fNodePool.acquire(); |
| 213 fRoot->fBounds = fRootBounds; |
| 214 } |
218 while(!fDeferred.isEmpty()) { | 215 while(!fDeferred.isEmpty()) { |
219 insert(fRoot, fDeferred.pop()); | 216 this->insert(fRoot, fDeferred.pop()); |
220 } | 217 } |
221 } | 218 } |
OLD | NEW |