Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2016 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "src/compiler/memory-optimizer.h" | |
| 6 | |
| 7 #include "src/compiler/js-graph.h" | |
| 8 #include "src/compiler/linkage.h" | |
| 9 #include "src/compiler/node-matchers.h" | |
| 10 #include "src/compiler/node-properties.h" | |
| 11 #include "src/compiler/node.h" | |
| 12 #include "src/compiler/simplified-operator.h" | |
| 13 | |
| 14 namespace v8 { | |
| 15 namespace internal { | |
| 16 namespace compiler { | |
| 17 | |
| 18 MemoryOptimizer::MemoryOptimizer(JSGraph* jsgraph, Zone* zone) | |
| 19 : jsgraph_(jsgraph), | |
| 20 empty_state_(new (zone) AllocationState()), | |
| 21 pending_(zone), | |
| 22 tokens_(zone), | |
| 23 zone_(zone) {} | |
| 24 | |
| 25 void MemoryOptimizer::Optimize() { | |
| 26 EnqueueUses(graph()->start(), empty_state()); | |
| 27 while (!tokens_.empty()) { | |
| 28 Token const token = tokens_.front(); | |
| 29 tokens_.pop(); | |
| 30 VisitNode(token.node, token.state); | |
| 31 } | |
| 32 DCHECK(pending_.empty()); | |
| 33 DCHECK(tokens_.empty()); | |
| 34 } | |
| 35 | |
| 36 MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node, | |
| 37 PretenureFlag pretenure, | |
| 38 Zone* zone) | |
| 39 : node_ids_(zone), pretenure_(pretenure), size_(nullptr) { | |
| 40 node_ids_.insert(node->id()); | |
| 41 } | |
| 42 | |
| 43 MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node, | |
| 44 PretenureFlag pretenure, | |
| 45 Node* size, Zone* zone) | |
| 46 : node_ids_(zone), pretenure_(pretenure), size_(size) { | |
| 47 node_ids_.insert(node->id()); | |
| 48 } | |
| 49 | |
| 50 void MemoryOptimizer::AllocationGroup::Add(Node* node) { | |
| 51 node_ids_.insert(node->id()); | |
| 52 } | |
| 53 | |
| 54 bool MemoryOptimizer::AllocationGroup::Contains(Node* node) const { | |
| 55 return node_ids_.find(node->id()) != node_ids_.end(); | |
| 56 } | |
| 57 | |
| 58 MemoryOptimizer::AllocationState::AllocationState() | |
| 59 : group_(nullptr), size_(std::numeric_limits<int>::max()), top_(nullptr) {} | |
| 60 | |
| 61 MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group) | |
| 62 : group_(group), size_(std::numeric_limits<int>::max()), top_(nullptr) {} | |
| 63 | |
| 64 MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group, | |
| 65 int size, Node* top) | |
| 66 : group_(group), size_(size), top_(top) {} | |
| 67 | |
| 68 bool MemoryOptimizer::AllocationState::IsNewSpaceAllocation() const { | |
| 69 return group() && group()->IsNewSpaceAllocation(); | |
| 70 } | |
| 71 | |
| 72 void MemoryOptimizer::VisitNode(Node* node, AllocationState const* state) { | |
| 73 DCHECK(!node->IsDead()); | |
| 74 DCHECK_LT(0, node->op()->EffectInputCount()); | |
| 75 switch (node->opcode()) { | |
| 76 case IrOpcode::kAllocate: | |
| 77 return VisitAllocate(node, state); | |
| 78 case IrOpcode::kCall: | |
| 79 return VisitCall(node, state); | |
| 80 case IrOpcode::kLoadElement: | |
| 81 return VisitLoadElement(node, state); | |
| 82 case IrOpcode::kLoadField: | |
| 83 return VisitLoadField(node, state); | |
| 84 case IrOpcode::kStoreElement: | |
| 85 return VisitStoreElement(node, state); | |
| 86 case IrOpcode::kStoreField: | |
| 87 return VisitStoreField(node, state); | |
| 88 case IrOpcode::kCheckedLoad: | |
| 89 case IrOpcode::kCheckedStore: | |
| 90 case IrOpcode::kIfException: | |
| 91 case IrOpcode::kLoad: | |
| 92 case IrOpcode::kStore: | |
| 93 return VisitOtherEffect(node, state); | |
| 94 default: | |
| 95 break; | |
| 96 } | |
| 97 DCHECK_EQ(0, node->op()->EffectOutputCount()); | |
| 98 } | |
| 99 | |
| 100 void MemoryOptimizer::VisitAllocate(Node* node, AllocationState const* state) { | |
| 101 DCHECK_EQ(IrOpcode::kAllocate, node->opcode()); | |
| 102 Node* value; | |
| 103 Node* size = node->InputAt(0); | |
| 104 Node* effect = node->InputAt(1); | |
| 105 Node* control = node->InputAt(2); | |
| 106 PretenureFlag pretenure = OpParameter<PretenureFlag>(node->op()); | |
| 107 | |
| 108 // Determine the top/limit addresses. | |
| 109 Node* top_address = jsgraph()->ExternalConstant( | |
| 110 pretenure == NOT_TENURED | |
| 111 ? ExternalReference::new_space_allocation_top_address(isolate()) | |
| 112 : ExternalReference::old_space_allocation_top_address(isolate())); | |
| 113 Node* limit_address = jsgraph()->ExternalConstant( | |
| 114 pretenure == NOT_TENURED | |
| 115 ? ExternalReference::new_space_allocation_limit_address(isolate()) | |
| 116 : ExternalReference::old_space_allocation_limit_address(isolate())); | |
| 117 | |
| 118 // Check if we can fold this allocation into a previous allocation represented | |
| 119 // by the incoming {state}. | |
| 120 Int32Matcher m(size); | |
| 121 if (m.HasValue() && m.Value() < Page::kMaxRegularHeapObjectSize) { | |
| 122 int32_t const object_size = m.Value(); | |
| 123 if (state->size() <= Page::kMaxRegularHeapObjectSize - object_size && | |
| 124 state->group()->pretenure() == pretenure) { | |
| 125 // We can fold this Allocate {node} into the allocation {group} | |
| 126 // represented by the given {state}. Compute the upper bound for | |
| 127 // the new {state}. | |
| 128 int32_t const state_size = state->size() + object_size; | |
|
Hannes Payer (out of office)
2016/05/10 07:49:33
Hoist this computation and use state_size already
Benedikt Meurer
2016/05/10 08:01:45
Cannot do because state->size() + object_size can
| |
| 129 | |
| 130 // Update the reservation check to the actual maximum upper bound. | |
| 131 AllocationGroup* const group = state->group(); | |
| 132 if (OpParameter<int32_t>(group->size()) < state_size) { | |
| 133 NodeProperties::ChangeOp(group->size(), | |
| 134 common()->Int32Constant(state_size)); | |
| 135 } | |
| 136 | |
| 137 // Update the allocation top with the new object allocation. | |
| 138 // TODO(bmeurer): Defer writing back top as much as possible. | |
| 139 Node* top = graph()->NewNode(machine()->IntAdd(), state->top(), | |
| 140 jsgraph()->IntPtrConstant(object_size)); | |
| 141 effect = graph()->NewNode( | |
| 142 machine()->Store(StoreRepresentation( | |
| 143 MachineType::PointerRepresentation(), kNoWriteBarrier)), | |
| 144 top_address, jsgraph()->IntPtrConstant(0), top, effect, control); | |
| 145 | |
| 146 // Compute the effective inner allocated address. | |
| 147 value = graph()->NewNode( | |
| 148 machine()->BitcastWordToTagged(), | |
| 149 graph()->NewNode(machine()->IntAdd(), state->top(), | |
| 150 jsgraph()->IntPtrConstant(kHeapObjectTag))); | |
| 151 | |
| 152 // Extend the allocation {group}. | |
| 153 group->Add(value); | |
| 154 state = new (zone()) AllocationState(group, state_size, top); | |
| 155 } else { | |
| 156 // Setup a mutable reservation size node; will be patched as we fold | |
| 157 // additional allocations into this new group. | |
| 158 Node* size = graph()->NewNode(common()->Int32Constant(object_size)); | |
| 159 | |
| 160 // Load allocation top and limit. | |
| 161 Node* top = effect = | |
| 162 graph()->NewNode(machine()->Load(MachineType::Pointer()), top_address, | |
| 163 jsgraph()->IntPtrConstant(0), effect, control); | |
| 164 Node* limit = effect = graph()->NewNode( | |
| 165 machine()->Load(MachineType::Pointer()), limit_address, | |
| 166 jsgraph()->IntPtrConstant(0), effect, control); | |
| 167 | |
| 168 // Check if we need to collect garbage before we can start bump pointer | |
| 169 // allocation (always done for folded allocations). | |
| 170 Node* check = graph()->NewNode( | |
| 171 machine()->UintLessThan(), | |
| 172 graph()->NewNode( | |
| 173 machine()->IntAdd(), top, | |
| 174 machine()->Is64() | |
| 175 ? graph()->NewNode(machine()->ChangeInt32ToInt64(), size) | |
| 176 : size), | |
| 177 limit); | |
| 178 Node* branch = | |
| 179 graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control); | |
| 180 | |
| 181 Node* if_true = graph()->NewNode(common()->IfTrue(), branch); | |
| 182 Node* etrue = effect; | |
| 183 Node* vtrue = top; | |
| 184 | |
| 185 Node* if_false = graph()->NewNode(common()->IfFalse(), branch); | |
| 186 Node* efalse = effect; | |
| 187 Node* vfalse; | |
| 188 { | |
| 189 Node* target = pretenure == NOT_TENURED | |
| 190 ? jsgraph()->AllocateInNewSpaceStubConstant() | |
| 191 : jsgraph()->AllocateInOldSpaceStubConstant(); | |
| 192 if (!allocate_operator_.is_set()) { | |
| 193 CallDescriptor* descriptor = | |
| 194 Linkage::GetAllocateCallDescriptor(graph()->zone()); | |
| 195 allocate_operator_.set(common()->Call(descriptor)); | |
| 196 } | |
| 197 vfalse = efalse = graph()->NewNode(allocate_operator_.get(), target, | |
| 198 size, efalse, if_false); | |
| 199 vfalse = graph()->NewNode(machine()->IntSub(), vfalse, | |
| 200 jsgraph()->IntPtrConstant(kHeapObjectTag)); | |
| 201 } | |
| 202 | |
| 203 control = graph()->NewNode(common()->Merge(2), if_true, if_false); | |
| 204 effect = graph()->NewNode(common()->EffectPhi(2), etrue, efalse, control); | |
| 205 value = graph()->NewNode( | |
| 206 common()->Phi(MachineType::PointerRepresentation(), 2), vtrue, vfalse, | |
| 207 control); | |
| 208 | |
| 209 // Compute the new top and write it back. | |
| 210 top = graph()->NewNode(machine()->IntAdd(), value, | |
| 211 jsgraph()->IntPtrConstant(object_size)); | |
| 212 effect = graph()->NewNode( | |
| 213 machine()->Store(StoreRepresentation( | |
| 214 MachineType::PointerRepresentation(), kNoWriteBarrier)), | |
| 215 top_address, jsgraph()->IntPtrConstant(0), top, effect, control); | |
| 216 | |
| 217 // Compute the initial object address. | |
| 218 value = graph()->NewNode( | |
| 219 machine()->BitcastWordToTagged(), | |
| 220 graph()->NewNode(machine()->IntAdd(), value, | |
| 221 jsgraph()->IntPtrConstant(kHeapObjectTag))); | |
| 222 | |
| 223 // Start a new allocation group. | |
| 224 AllocationGroup* group = | |
| 225 new (zone()) AllocationGroup(value, pretenure, size, zone()); | |
| 226 state = new (zone()) AllocationState(group, object_size, top); | |
| 227 } | |
| 228 } else { | |
| 229 // Load allocation top and limit. | |
|
Hannes Payer (out of office)
2016/05/10 07:49:33
This code is similar to the one in the else case a
Benedikt Meurer
2016/05/10 08:01:45
It's just almost the same, but not 100%. For now I
| |
| 230 Node* top = effect = | |
| 231 graph()->NewNode(machine()->Load(MachineType::Pointer()), top_address, | |
| 232 jsgraph()->IntPtrConstant(0), effect, control); | |
| 233 Node* limit = effect = | |
| 234 graph()->NewNode(machine()->Load(MachineType::Pointer()), limit_address, | |
| 235 jsgraph()->IntPtrConstant(0), effect, control); | |
| 236 | |
| 237 // Compute the new top. | |
| 238 Node* new_top = graph()->NewNode( | |
| 239 machine()->IntAdd(), top, | |
| 240 machine()->Is64() | |
| 241 ? graph()->NewNode(machine()->ChangeInt32ToInt64(), size) | |
| 242 : size); | |
| 243 | |
| 244 // Check if we can do bump pointer allocation here. | |
| 245 Node* check = graph()->NewNode(machine()->UintLessThan(), new_top, limit); | |
| 246 Node* branch = | |
| 247 graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control); | |
| 248 | |
| 249 Node* if_true = graph()->NewNode(common()->IfTrue(), branch); | |
| 250 Node* etrue = effect; | |
| 251 Node* vtrue; | |
| 252 { | |
| 253 etrue = graph()->NewNode( | |
| 254 machine()->Store(StoreRepresentation( | |
| 255 MachineType::PointerRepresentation(), kNoWriteBarrier)), | |
| 256 top_address, jsgraph()->IntPtrConstant(0), new_top, etrue, if_true); | |
| 257 vtrue = graph()->NewNode( | |
| 258 machine()->BitcastWordToTagged(), | |
| 259 graph()->NewNode(machine()->IntAdd(), top, | |
| 260 jsgraph()->IntPtrConstant(kHeapObjectTag))); | |
| 261 } | |
| 262 | |
| 263 Node* if_false = graph()->NewNode(common()->IfFalse(), branch); | |
| 264 Node* efalse = effect; | |
| 265 Node* vfalse; | |
| 266 { | |
| 267 Node* target = pretenure == NOT_TENURED | |
| 268 ? jsgraph()->AllocateInNewSpaceStubConstant() | |
| 269 : jsgraph()->AllocateInOldSpaceStubConstant(); | |
| 270 if (!allocate_operator_.is_set()) { | |
| 271 CallDescriptor* descriptor = | |
| 272 Linkage::GetAllocateCallDescriptor(graph()->zone()); | |
| 273 allocate_operator_.set(common()->Call(descriptor)); | |
| 274 } | |
| 275 vfalse = efalse = graph()->NewNode(allocate_operator_.get(), target, size, | |
| 276 efalse, if_false); | |
| 277 } | |
| 278 | |
| 279 control = graph()->NewNode(common()->Merge(2), if_true, if_false); | |
| 280 effect = graph()->NewNode(common()->EffectPhi(2), etrue, efalse, control); | |
| 281 value = graph()->NewNode(common()->Phi(MachineRepresentation::kTagged, 2), | |
| 282 vtrue, vfalse, control); | |
| 283 | |
| 284 // Create an unfoldable allocation group. | |
| 285 AllocationGroup* group = | |
| 286 new (zone()) AllocationGroup(value, pretenure, zone()); | |
| 287 state = new (zone()) AllocationState(group); | |
| 288 } | |
| 289 | |
| 290 // Replace all effect uses of {node} with the {effect}, enqueue the | |
| 291 // effect uses for further processing, and replace all value uses of | |
| 292 // {node} with the {value}. | |
| 293 for (Edge edge : node->use_edges()) { | |
| 294 if (NodeProperties::IsEffectEdge(edge)) { | |
| 295 EnqueueUse(edge.from(), edge.index(), state); | |
| 296 edge.UpdateTo(effect); | |
| 297 } else { | |
| 298 DCHECK(NodeProperties::IsValueEdge(edge)); | |
| 299 edge.UpdateTo(value); | |
| 300 } | |
| 301 } | |
| 302 | |
| 303 // Kill the {node} to make sure we don't leave dangling dead uses. | |
| 304 node->Kill(); | |
| 305 } | |
| 306 | |
| 307 void MemoryOptimizer::VisitCall(Node* node, AllocationState const* state) { | |
| 308 DCHECK_EQ(IrOpcode::kCall, node->opcode()); | |
| 309 // If the call can allocate, we start with a fresh state. | |
| 310 if (!(CallDescriptorOf(node->op())->flags() & CallDescriptor::kNoAllocate)) { | |
| 311 state = empty_state(); | |
| 312 } | |
| 313 EnqueueUses(node, state); | |
| 314 } | |
| 315 | |
| 316 void MemoryOptimizer::VisitLoadElement(Node* node, | |
| 317 AllocationState const* state) { | |
| 318 DCHECK_EQ(IrOpcode::kLoadElement, node->opcode()); | |
| 319 ElementAccess const& access = ElementAccessOf(node->op()); | |
| 320 Node* index = node->InputAt(1); | |
| 321 node->ReplaceInput(1, ComputeIndex(access, index)); | |
| 322 NodeProperties::ChangeOp(node, machine()->Load(access.machine_type)); | |
| 323 EnqueueUses(node, state); | |
| 324 } | |
| 325 | |
| 326 void MemoryOptimizer::VisitLoadField(Node* node, AllocationState const* state) { | |
| 327 DCHECK_EQ(IrOpcode::kLoadField, node->opcode()); | |
| 328 FieldAccess const& access = FieldAccessOf(node->op()); | |
| 329 Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag()); | |
| 330 node->InsertInput(graph()->zone(), 1, offset); | |
| 331 NodeProperties::ChangeOp(node, machine()->Load(access.machine_type)); | |
| 332 EnqueueUses(node, state); | |
| 333 } | |
| 334 | |
| 335 void MemoryOptimizer::VisitStoreElement(Node* node, | |
| 336 AllocationState const* state) { | |
| 337 DCHECK_EQ(IrOpcode::kStoreElement, node->opcode()); | |
| 338 ElementAccess const& access = ElementAccessOf(node->op()); | |
| 339 Node* object = node->InputAt(0); | |
| 340 Node* index = node->InputAt(1); | |
| 341 WriteBarrierKind write_barrier_kind = | |
| 342 ComputeWriteBarrierKind(object, state, access.write_barrier_kind); | |
| 343 node->ReplaceInput(1, ComputeIndex(access, index)); | |
| 344 NodeProperties::ChangeOp( | |
| 345 node, machine()->Store(StoreRepresentation( | |
| 346 access.machine_type.representation(), write_barrier_kind))); | |
| 347 EnqueueUses(node, state); | |
| 348 } | |
| 349 | |
| 350 void MemoryOptimizer::VisitStoreField(Node* node, | |
| 351 AllocationState const* state) { | |
| 352 DCHECK_EQ(IrOpcode::kStoreField, node->opcode()); | |
| 353 FieldAccess const& access = FieldAccessOf(node->op()); | |
| 354 Node* object = node->InputAt(0); | |
| 355 WriteBarrierKind write_barrier_kind = | |
| 356 ComputeWriteBarrierKind(object, state, access.write_barrier_kind); | |
| 357 Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag()); | |
| 358 node->InsertInput(graph()->zone(), 1, offset); | |
| 359 NodeProperties::ChangeOp( | |
| 360 node, machine()->Store(StoreRepresentation( | |
| 361 access.machine_type.representation(), write_barrier_kind))); | |
| 362 EnqueueUses(node, state); | |
| 363 } | |
| 364 | |
| 365 void MemoryOptimizer::VisitOtherEffect(Node* node, | |
| 366 AllocationState const* state) { | |
| 367 EnqueueUses(node, state); | |
| 368 } | |
| 369 | |
| 370 Node* MemoryOptimizer::ComputeIndex(ElementAccess const& access, Node* key) { | |
| 371 Node* index = key; | |
| 372 int element_size_shift = | |
| 373 ElementSizeLog2Of(access.machine_type.representation()); | |
| 374 if (element_size_shift) { | |
| 375 index = graph()->NewNode(machine()->Word32Shl(), index, | |
| 376 jsgraph()->Int32Constant(element_size_shift)); | |
| 377 } | |
| 378 const int fixed_offset = access.header_size - access.tag(); | |
| 379 if (fixed_offset) { | |
| 380 index = graph()->NewNode(machine()->Int32Add(), index, | |
| 381 jsgraph()->Int32Constant(fixed_offset)); | |
| 382 } | |
| 383 if (machine()->Is64()) { | |
| 384 // TODO(turbofan): This is probably only correct for typed arrays, and only | |
| 385 // if the typed arrays are at most 2GiB in size, which happens to match | |
| 386 // exactly our current situation. | |
| 387 index = graph()->NewNode(machine()->ChangeUint32ToUint64(), index); | |
| 388 } | |
| 389 return index; | |
| 390 } | |
| 391 | |
| 392 WriteBarrierKind MemoryOptimizer::ComputeWriteBarrierKind( | |
| 393 Node* object, AllocationState const* state, | |
| 394 WriteBarrierKind write_barrier_kind) { | |
| 395 if (state->IsNewSpaceAllocation() && state->group()->Contains(object)) { | |
| 396 write_barrier_kind = kNoWriteBarrier; | |
| 397 } | |
| 398 return write_barrier_kind; | |
| 399 } | |
| 400 | |
| 401 MemoryOptimizer::AllocationState const* MemoryOptimizer::MergeStates( | |
| 402 AllocationStates const& states) { | |
| 403 // Check if all states are the same; or at least if all allocation | |
| 404 // states belong to the same allocation group. | |
| 405 AllocationState const* state = states.front(); | |
| 406 AllocationGroup* group = state->group(); | |
| 407 for (size_t i = 1; i < states.size(); ++i) { | |
| 408 if (states[i] != state) state = nullptr; | |
| 409 if (states[i]->group() != group) group = nullptr; | |
| 410 } | |
| 411 if (state == nullptr) { | |
| 412 if (group != nullptr) { | |
| 413 // We cannot fold any more allocations into this group, but we can still | |
| 414 // eliminate write barriers on stores to this group. | |
| 415 // TODO(bmeurer): We could potentially just create a Phi here to merge | |
| 416 // the various tops; but we need to pay special attention not to create | |
| 417 // an unschedulable graph. | |
| 418 state = new (zone()) AllocationState(group); | |
| 419 } else { | |
| 420 // The states are from different allocation groups. | |
| 421 state = empty_state(); | |
| 422 } | |
| 423 } | |
| 424 return state; | |
| 425 } | |
| 426 | |
| 427 void MemoryOptimizer::EnqueueMerge(Node* node, int index, | |
| 428 AllocationState const* state) { | |
| 429 DCHECK_EQ(IrOpcode::kEffectPhi, node->opcode()); | |
| 430 int const input_count = node->InputCount() - 1; | |
| 431 DCHECK_LT(0, input_count); | |
| 432 Node* const control = node->InputAt(input_count); | |
| 433 if (control->opcode() == IrOpcode::kLoop) { | |
| 434 // For loops we always start with an empty state at the beginning. | |
| 435 if (index == 0) EnqueueUses(node, empty_state()); | |
| 436 } else { | |
| 437 DCHECK_EQ(IrOpcode::kMerge, control->opcode()); | |
| 438 // Check if we already know about this pending merge. | |
| 439 NodeId const id = node->id(); | |
| 440 auto it = pending_.find(id); | |
| 441 if (it == pending_.end()) { | |
| 442 // Insert a new pending merge. | |
| 443 it = pending_.insert(std::make_pair(id, AllocationStates(zone()))).first; | |
| 444 } | |
| 445 // Add the next input state. | |
| 446 it->second.push_back(state); | |
| 447 // Check if states for all inputs are available by now. | |
| 448 if (it->second.size() == static_cast<size_t>(input_count)) { | |
| 449 // All inputs to this effect merge are done, merge the states given all | |
| 450 // input constraints, drop the pending merge and enqueue uses of the | |
| 451 // EffectPhi {node}. | |
| 452 state = MergeStates(it->second); | |
| 453 EnqueueUses(node, state); | |
| 454 pending_.erase(it); | |
| 455 } | |
| 456 } | |
| 457 } | |
| 458 | |
| 459 void MemoryOptimizer::EnqueueUses(Node* node, AllocationState const* state) { | |
| 460 for (Edge const edge : node->use_edges()) { | |
| 461 if (NodeProperties::IsEffectEdge(edge)) { | |
| 462 EnqueueUse(edge.from(), edge.index(), state); | |
| 463 } | |
| 464 } | |
| 465 } | |
| 466 | |
| 467 void MemoryOptimizer::EnqueueUse(Node* node, int index, | |
| 468 AllocationState const* state) { | |
| 469 if (node->opcode() == IrOpcode::kEffectPhi) { | |
| 470 // An EffectPhi represents a merge of different effect chains, which | |
| 471 // needs special handling depending on whether the merge is part of a | |
| 472 // loop or just a normal control join. | |
| 473 EnqueueMerge(node, index, state); | |
| 474 } else { | |
| 475 Token token = {node, state}; | |
| 476 tokens_.push(token); | |
| 477 } | |
| 478 } | |
| 479 | |
| 480 Graph* MemoryOptimizer::graph() const { return jsgraph()->graph(); } | |
| 481 | |
| 482 Isolate* MemoryOptimizer::isolate() const { return jsgraph()->isolate(); } | |
| 483 | |
| 484 CommonOperatorBuilder* MemoryOptimizer::common() const { | |
| 485 return jsgraph()->common(); | |
| 486 } | |
| 487 | |
| 488 MachineOperatorBuilder* MemoryOptimizer::machine() const { | |
| 489 return jsgraph()->machine(); | |
| 490 } | |
| 491 | |
| 492 } // namespace compiler | |
| 493 } // namespace internal | |
| 494 } // namespace v8 | |
| OLD | NEW |