Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(487)

Unified Diff: src/ia32/lithium-codegen-ia32.cc

Issue 196133017: Experimental parser: merge r19949 (Closed) Base URL: https://v8.googlecode.com/svn/branches/experimental/parser
Patch Set: Created 6 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/ia32/lithium-codegen-ia32.h ('k') | src/ia32/lithium-ia32.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/ia32/lithium-codegen-ia32.cc
diff --git a/src/ia32/lithium-codegen-ia32.cc b/src/ia32/lithium-codegen-ia32.cc
index 5f03146d5d88852fd73498b07b8a43b5810b1088..36e876dc22c19841d27f87bdadb9adf8df6c2f14 100644
--- a/src/ia32/lithium-codegen-ia32.cc
+++ b/src/ia32/lithium-codegen-ia32.cc
@@ -175,11 +175,11 @@ bool LCodeGen::GeneratePrologue() {
}
#endif
- // Classic mode functions and builtins need to replace the receiver with the
+ // Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info_->this_has_uses() &&
- info_->is_classic_mode() &&
+ info_->strict_mode() == SLOPPY &&
!info_->is_native()) {
Label ok;
// +1 for return address.
@@ -390,6 +390,9 @@ void LCodeGen::GenerateOsrPrologue() {
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+ if (!instr->IsLazyBailout() && !instr->IsGap()) {
+ safepoints_.BumpLastLazySafepointIndex();
+ }
if (!CpuFeatures::IsSupported(SSE2)) FlushX87StackIfNecessary(instr);
}
@@ -952,10 +955,6 @@ void LCodeGen::AddToTranslation(LEnvironment* environment,
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
- } else if (op->IsArgument()) {
- ASSERT(is_tagged);
- int src_index = GetStackSlotCount() + op->index();
- translation->StoreStackSlot(src_index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
@@ -1372,286 +1371,307 @@ void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
}
-void LCodeGen::DoModI(LModI* instr) {
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
+
+ // Theoretically, a variation of the branch-free code for integer division by
+ // a power of 2 (calculating the remainder via an additional multiplication
+ // (which gets simplified to an 'and') and subtraction) should be faster, and
+ // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+ // indicate that positive dividends are heavily favored, so the branching
+ // version performs better.
HMod* hmod = instr->hydrogen();
- HValue* left = hmod->left();
- HValue* right = hmod->right();
- if (hmod->RightIsPowerOf2()) {
- // TODO(svenpanne) We should really do the strength reduction on the
- // Hydrogen level.
- Register left_reg = ToRegister(instr->left());
- ASSERT(left_reg.is(ToRegister(instr->result())));
-
- // Note: The code below even works when right contains kMinInt.
- int32_t divisor = Abs(right->GetInteger32Constant());
-
- Label left_is_not_negative, done;
- if (left->CanBeNegative()) {
- __ test(left_reg, Operand(left_reg));
- __ j(not_sign, &left_is_not_negative, Label::kNear);
- __ neg(left_reg);
- __ and_(left_reg, divisor - 1);
- __ neg(left_reg);
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- __ jmp(&done, Label::kNear);
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ Label dividend_is_not_negative, done;
+ if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+ __ test(dividend, dividend);
+ __ j(not_sign, &dividend_is_not_negative, Label::kNear);
+ // Note that this is correct even for kMinInt operands.
+ __ neg(dividend);
+ __ and_(dividend, mask);
+ __ neg(dividend);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
}
+ __ jmp(&done, Label::kNear);
+ }
- __ bind(&left_is_not_negative);
- __ and_(left_reg, divisor - 1);
- __ bind(&done);
- } else {
- Register left_reg = ToRegister(instr->left());
- ASSERT(left_reg.is(eax));
- Register right_reg = ToRegister(instr->right());
- ASSERT(!right_reg.is(eax));
- ASSERT(!right_reg.is(edx));
- Register result_reg = ToRegister(instr->result());
- ASSERT(result_reg.is(edx));
+ __ bind(&dividend_is_not_negative);
+ __ and_(dividend, mask);
+ __ bind(&done);
+}
- Label done;
- // Check for x % 0, idiv would signal a divide error. We have to
- // deopt in this case because we can't return a NaN.
- if (right->CanBeZero()) {
- __ test(right_reg, Operand(right_reg));
- DeoptimizeIf(zero, instr->environment());
- }
- // Check for kMinInt % -1, idiv would signal a divide error. We
- // have to deopt if we care about -0, because we can't return that.
- if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
- Label no_overflow_possible;
- __ cmp(left_reg, kMinInt);
- __ j(not_equal, &no_overflow_possible, Label::kNear);
- __ cmp(right_reg, -1);
- if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(equal, instr->environment());
- } else {
- __ j(not_equal, &no_overflow_possible, Label::kNear);
- __ Set(result_reg, Immediate(0));
- __ jmp(&done, Label::kNear);
- }
- __ bind(&no_overflow_possible);
- }
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(ToRegister(instr->result()).is(eax));
- // Sign extend dividend in eax into edx:eax.
- __ cdq();
-
- // If we care about -0, test if the dividend is <0 and the result is 0.
- if (left->CanBeNegative() &&
- hmod->CanBeZero() &&
- hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
- Label positive_left;
- __ test(left_reg, Operand(left_reg));
- __ j(not_sign, &positive_left, Label::kNear);
- __ idiv(right_reg);
- __ test(result_reg, Operand(result_reg));
- DeoptimizeIf(zero, instr->environment());
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr->environment());
+ return;
+ }
+
+ __ FlooringDiv(dividend, Abs(divisor));
+ __ mov(eax, dividend);
+ __ shr(eax, 31);
+ __ add(edx, eax);
+ __ imul(edx, edx, Abs(divisor));
+ __ mov(eax, dividend);
+ __ sub(eax, edx);
+
+ // Check for negative zero.
+ HMod* hmod = instr->hydrogen();
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label remainder_not_zero;
+ __ j(not_zero, &remainder_not_zero, Label::kNear);
+ __ cmp(dividend, Immediate(0));
+ DeoptimizeIf(less, instr->environment());
+ __ bind(&remainder_not_zero);
+ }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+ HMod* hmod = instr->hydrogen();
+
+ Register left_reg = ToRegister(instr->left());
+ ASSERT(left_reg.is(eax));
+ Register right_reg = ToRegister(instr->right());
+ ASSERT(!right_reg.is(eax));
+ ASSERT(!right_reg.is(edx));
+ Register result_reg = ToRegister(instr->result());
+ ASSERT(result_reg.is(edx));
+
+ Label done;
+ // Check for x % 0, idiv would signal a divide error. We have to
+ // deopt in this case because we can't return a NaN.
+ if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(right_reg, Operand(right_reg));
+ DeoptimizeIf(zero, instr->environment());
+ }
+
+ // Check for kMinInt % -1, idiv would signal a divide error. We
+ // have to deopt if we care about -0, because we can't return that.
+ if (hmod->CheckFlag(HValue::kCanOverflow)) {
+ Label no_overflow_possible;
+ __ cmp(left_reg, kMinInt);
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ cmp(right_reg, -1);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(equal, instr->environment());
+ } else {
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ Set(result_reg, Immediate(0));
__ jmp(&done, Label::kNear);
- __ bind(&positive_left);
}
+ __ bind(&no_overflow_possible);
+ }
+
+ // Sign extend dividend in eax into edx:eax.
+ __ cdq();
+
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label positive_left;
+ __ test(left_reg, Operand(left_reg));
+ __ j(not_sign, &positive_left, Label::kNear);
__ idiv(right_reg);
- __ bind(&done);
+ __ test(result_reg, Operand(result_reg));
+ DeoptimizeIf(zero, instr->environment());
+ __ jmp(&done, Label::kNear);
+ __ bind(&positive_left);
}
+ __ idiv(right_reg);
+ __ bind(&done);
}
-void LCodeGen::DoDivI(LDivI* instr) {
- if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
- Register dividend = ToRegister(instr->left());
- HDiv* hdiv = instr->hydrogen();
- int32_t divisor = hdiv->right()->GetInteger32Constant();
- Register result = ToRegister(instr->result());
- ASSERT(!result.is(dividend));
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
+ ASSERT(!result.is(dividend));
- // Check for (0 / -x) that will produce negative zero.
- if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
- hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ test(dividend, Operand(dividend));
- DeoptimizeIf(zero, instr->environment());
- }
- // Check for (kMinInt / -1).
- if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
- hdiv->CheckFlag(HValue::kCanOverflow)) {
- __ cmp(dividend, kMinInt);
- DeoptimizeIf(zero, instr->environment());
- }
- // Deoptimize if remainder will not be 0.
- if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
- Abs(divisor) != 1) {
- __ test(dividend, Immediate(Abs(divisor) - 1));
- DeoptimizeIf(not_zero, instr->environment());
- }
- __ Move(result, dividend);
- int32_t shift = WhichPowerOf2(Abs(divisor));
- if (shift > 0) {
- // The arithmetic shift is always OK, the 'if' is an optimization only.
- if (shift > 1) __ sar(result, 31);
- __ shr(result, 32 - shift);
- __ add(result, dividend);
- __ sar(result, shift);
- }
- if (divisor < 0) __ neg(result);
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr->environment());
+ }
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+ __ cmp(dividend, kMinInt);
+ DeoptimizeIf(zero, instr->environment());
+ }
+ // Deoptimize if remainder will not be 0.
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1) {
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ __ test(dividend, Immediate(mask));
+ DeoptimizeIf(not_zero, instr->environment());
+ }
+ __ Move(result, dividend);
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (shift > 0) {
+ // The arithmetic shift is always OK, the 'if' is an optimization only.
+ if (shift > 1) __ sar(result, 31);
+ __ shr(result, 32 - shift);
+ __ add(result, dividend);
+ __ sar(result, shift);
+ }
+ if (divisor < 0) __ neg(result);
+}
+
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(ToRegister(instr->result()).is(edx));
+
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr->environment());
return;
}
- LOperand* right = instr->right();
- ASSERT(ToRegister(instr->result()).is(eax));
- ASSERT(ToRegister(instr->left()).is(eax));
- ASSERT(!ToRegister(instr->right()).is(eax));
- ASSERT(!ToRegister(instr->right()).is(edx));
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr->environment());
+ }
- Register left_reg = eax;
+ __ FlooringDiv(dividend, Abs(divisor));
+ __ mov(eax, dividend);
+ __ shr(eax, 31);
+ __ add(edx, eax);
+ if (divisor < 0) __ neg(edx);
+
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+ __ mov(eax, edx);
+ __ imul(eax, eax, divisor);
+ __ sub(eax, dividend);
+ DeoptimizeIf(not_equal, instr->environment());
+ }
+}
+
+
+void LCodeGen::DoDivI(LDivI* instr) {
+ HBinaryOperation* hdiv = instr->hydrogen();
+ Register dividend = ToRegister(instr->left());
+ Register divisor = ToRegister(instr->right());
+ Register remainder = ToRegister(instr->temp());
+ Register result = ToRegister(instr->result());
+ ASSERT(dividend.is(eax));
+ ASSERT(remainder.is(edx));
+ ASSERT(result.is(eax));
+ ASSERT(!divisor.is(eax));
+ ASSERT(!divisor.is(edx));
// Check for x / 0.
- Register right_reg = ToRegister(right);
- if (instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
- __ test(right_reg, ToOperand(right));
+ if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(divisor, divisor);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
- if (instr->hydrogen_value()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- Label left_not_zero;
- __ test(left_reg, Operand(left_reg));
- __ j(not_zero, &left_not_zero, Label::kNear);
- __ test(right_reg, ToOperand(right));
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label dividend_not_zero;
+ __ test(dividend, dividend);
+ __ j(not_zero, &dividend_not_zero, Label::kNear);
+ __ test(divisor, divisor);
DeoptimizeIf(sign, instr->environment());
- __ bind(&left_not_zero);
+ __ bind(&dividend_not_zero);
}
// Check for (kMinInt / -1).
- if (instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)) {
- Label left_not_min_int;
- __ cmp(left_reg, kMinInt);
- __ j(not_zero, &left_not_min_int, Label::kNear);
- __ cmp(right_reg, -1);
+ if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+ Label dividend_not_min_int;
+ __ cmp(dividend, kMinInt);
+ __ j(not_zero, &dividend_not_min_int, Label::kNear);
+ __ cmp(divisor, -1);
DeoptimizeIf(zero, instr->environment());
- __ bind(&left_not_min_int);
+ __ bind(&dividend_not_min_int);
}
- // Sign extend to edx.
+ // Sign extend to edx (= remainder).
__ cdq();
- __ idiv(right_reg);
+ __ idiv(divisor);
- if (instr->is_flooring()) {
+ if (hdiv->IsMathFloorOfDiv()) {
Label done;
- __ test(edx, edx);
+ __ test(remainder, remainder);
__ j(zero, &done, Label::kNear);
- __ xor_(edx, right_reg);
- __ sar(edx, 31);
- __ add(eax, edx);
+ __ xor_(remainder, divisor);
+ __ sar(remainder, 31);
+ __ add(result, remainder);
__ bind(&done);
- } else if (!instr->hydrogen()->CheckFlag(
- HInstruction::kAllUsesTruncatingToInt32)) {
+ } else if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
- __ test(edx, Operand(edx));
+ __ test(remainder, remainder);
DeoptimizeIf(not_zero, instr->environment());
}
}
-void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
- ASSERT(instr->right()->IsConstantOperand());
-
- Register dividend = ToRegister(instr->left());
- int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
- Register result = ToRegister(instr->result());
-
- switch (divisor) {
- case 0:
- DeoptimizeIf(no_condition, instr->environment());
- return;
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(dividend.is(ToRegister(instr->result())));
- case 1:
- __ Move(result, dividend);
+ // If the divisor is positive, things are easy: There can be no deopts and we
+ // can simply do an arithmetic right shift.
+ if (divisor == 1) return;
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (divisor > 1) {
+ __ sar(dividend, shift);
return;
+ }
- case -1:
- __ Move(result, dividend);
- __ neg(result);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ // If the divisor is negative, we have to negate and handle edge cases.
+ Label not_kmin_int, done;
+ __ neg(dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr->environment());
+ }
+ if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+ // Note that we could emit branch-free code, but that would need one more
+ // register.
+ if (divisor == -1) {
DeoptimizeIf(overflow, instr->environment());
+ } else {
+ __ j(no_overflow, &not_kmin_int, Label::kNear);
+ __ mov(dividend, Immediate(kMinInt / divisor));
+ __ jmp(&done, Label::kNear);
}
+ }
+ __ bind(&not_kmin_int);
+ __ sar(dividend, shift);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ ASSERT(ToRegister(instr->result()).is(edx));
+
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr->environment());
return;
}
- uint32_t divisor_abs = abs(divisor);
- if (IsPowerOf2(divisor_abs)) {
- int32_t power = WhichPowerOf2(divisor_abs);
- if (divisor < 0) {
- // Input[dividend] is clobbered.
- // The sequence is tedious because neg(dividend) might overflow.
- __ mov(result, dividend);
- __ sar(dividend, 31);
- __ neg(result);
- if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- DeoptimizeIf(zero, instr->environment());
- }
- __ shl(dividend, 32 - power);
- __ sar(result, power);
- __ not_(dividend);
- // Clear result.sign if dividend.sign is set.
- __ and_(result, dividend);
- } else {
- __ Move(result, dividend);
- __ sar(result, power);
- }
- } else {
- ASSERT(ToRegister(instr->left()).is(eax));
- ASSERT(ToRegister(instr->result()).is(edx));
- Register scratch = ToRegister(instr->temp());
-
- // Find b which: 2^b < divisor_abs < 2^(b+1).
- unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
- unsigned shift = 32 + b; // Precision +1bit (effectively).
- double multiplier_f =
- static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
- int64_t multiplier;
- if (multiplier_f - std::floor(multiplier_f) < 0.5) {
- multiplier = static_cast<int64_t>(std::floor(multiplier_f));
- } else {
- multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
- }
- // The multiplier is a uint32.
- ASSERT(multiplier > 0 &&
- multiplier < (static_cast<int64_t>(1) << 32));
- __ mov(scratch, dividend);
- if (divisor < 0 &&
- instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
- __ test(dividend, dividend);
- DeoptimizeIf(zero, instr->environment());
- }
- __ mov(edx, static_cast<int32_t>(multiplier));
- __ imul(edx);
- if (static_cast<int32_t>(multiplier) < 0) {
- __ add(edx, scratch);
- }
- Register reg_lo = eax;
- Register reg_byte_scratch = scratch;
- if (!reg_byte_scratch.is_byte_register()) {
- __ xchg(reg_lo, reg_byte_scratch);
- reg_lo = scratch;
- reg_byte_scratch = eax;
- }
- if (divisor < 0) {
- __ xor_(reg_byte_scratch, reg_byte_scratch);
- __ cmp(reg_lo, 0x40000000);
- __ setcc(above, reg_byte_scratch);
- __ neg(edx);
- __ sub(edx, reg_byte_scratch);
- } else {
- __ xor_(reg_byte_scratch, reg_byte_scratch);
- __ cmp(reg_lo, 0xC0000000);
- __ setcc(above_equal, reg_byte_scratch);
- __ add(edx, reg_byte_scratch);
- }
- __ sar(edx, shift - 32);
+ // Check for (0 / -x) that will produce negative zero.
+ HMathFloorOfDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr->environment());
}
+
+ __ FlooringDiv(dividend, divisor);
}
@@ -2268,7 +2288,6 @@ void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
BinaryOpICStub stub(instr->op(), NO_OVERWRITE);
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
- __ nop(); // Signals no inlined code.
}
@@ -3401,7 +3420,7 @@ void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
- case NON_STRICT_ARGUMENTS_ELEMENTS:
+ case SLOPPY_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
@@ -4196,8 +4215,9 @@ void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->result()).is(eax));
// No cell in ebx for construct type feedback in optimized code
- Handle<Object> undefined_value(isolate()->factory()->undefined_value());
- __ mov(ebx, Immediate(undefined_value));
+ Handle<Object> megamorphic_symbol =
+ TypeFeedbackInfo::MegamorphicSentinel(isolate());
+ __ mov(ebx, Immediate(megamorphic_symbol));
CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
__ Set(eax, Immediate(instr->arity()));
CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
@@ -4210,7 +4230,7 @@ void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
ASSERT(ToRegister(instr->result()).is(eax));
__ Set(eax, Immediate(instr->arity()));
- __ mov(ebx, factory()->undefined_value());
+ __ mov(ebx, TypeFeedbackInfo::MegamorphicSentinel(isolate()));
ElementsKind kind = instr->hydrogen()->elements_kind();
AllocationSiteOverrideMode override_mode =
(AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
@@ -4302,14 +4322,14 @@ void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
instr->hydrogen()->value()->IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
- if (FLAG_track_fields && representation.IsSmi()) {
+ if (representation.IsSmi()) {
if (instr->value()->IsConstantOperand()) {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (!IsSmi(operand_value)) {
DeoptimizeIf(no_condition, instr->environment());
}
}
- } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
+ } else if (representation.IsHeapObject()) {
if (instr->value()->IsConstantOperand()) {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (IsInteger32(operand_value)) {
@@ -4407,8 +4427,7 @@ void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
ASSERT(ToRegister(instr->value()).is(eax));
__ mov(ecx, instr->name());
- Handle<Code> ic = StoreIC::initialize_stub(isolate(),
- instr->strict_mode_flag());
+ Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
@@ -4513,7 +4532,7 @@ void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
- case NON_STRICT_ARGUMENTS_ELEMENTS:
+ case SLOPPY_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
@@ -4659,7 +4678,7 @@ void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
ASSERT(ToRegister(instr->key()).is(ecx));
ASSERT(ToRegister(instr->value()).is(eax));
- Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
+ Handle<Code> ic = instr->strict_mode() == STRICT
? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
: isolate()->builtins()->KeyedStoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
@@ -4856,16 +4875,6 @@ void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
}
-void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) {
- Register input = ToRegister(instr->value());
- __ SmiTag(input);
- if (!instr->hydrogen()->value()->HasRange() ||
- !instr->hydrogen()->value()->range()->IsInSmiRange()) {
- DeoptimizeIf(overflow, instr->environment());
- }
-}
-
-
void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
LOperand* input = instr->value();
LOperand* output = instr->result();
@@ -4885,17 +4894,6 @@ void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
}
-void LCodeGen::DoUint32ToSmi(LUint32ToSmi* instr) {
- Register input = ToRegister(instr->value());
- if (!instr->hydrogen()->value()->HasRange() ||
- !instr->hydrogen()->value()->range()->IsInSmiRange()) {
- __ test(input, Immediate(0xc0000000));
- DeoptimizeIf(not_zero, instr->environment());
- }
- __ SmiTag(input);
-}
-
-
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI V8_FINAL : public LDeferredCode {
public:
@@ -4904,7 +4902,8 @@ void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
- codegen()->DoDeferredNumberTagI(instr_, instr_->value(), SIGNED_INT32);
+ codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
+ NULL, SIGNED_INT32);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
@@ -4931,7 +4930,8 @@ void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
const X87Stack& x87_stack)
: LDeferredCode(codegen, x87_stack), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
- codegen()->DoDeferredNumberTagI(instr_, instr_->value(), UNSIGNED_INT32);
+ codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
+ instr_->temp2(), UNSIGNED_INT32);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
@@ -4951,19 +4951,16 @@ void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
}
-void LCodeGen::DoDeferredNumberTagI(LInstruction* instr,
- LOperand* value,
- IntegerSignedness signedness) {
- Label slow;
+void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
+ LOperand* value,
+ LOperand* temp1,
+ LOperand* temp2,
+ IntegerSignedness signedness) {
+ Label done, slow;
Register reg = ToRegister(value);
- Register tmp = reg.is(eax) ? ecx : eax;
+ Register tmp = ToRegister(temp1);
XMMRegister xmm_scratch = double_scratch0();
- // Preserve the value of all registers.
- PushSafepointRegistersScope scope(this);
-
- Label done;
-
if (signedness == SIGNED_INT32) {
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
@@ -4981,8 +4978,7 @@ void LCodeGen::DoDeferredNumberTagI(LInstruction* instr,
} else {
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope feature_scope(masm(), SSE2);
- __ LoadUint32(xmm_scratch, reg,
- ToDoubleRegister(LNumberTagU::cast(instr)->temp()));
+ __ LoadUint32(xmm_scratch, reg, ToDoubleRegister(temp2));
} else {
// There's no fild variant for unsigned values, so zero-extend to a 64-bit
// int manually.
@@ -5001,21 +4997,26 @@ void LCodeGen::DoDeferredNumberTagI(LInstruction* instr,
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
+ {
+ // TODO(3095996): Put a valid pointer value in the stack slot where the
+ // result register is stored, as this register is in the pointer map, but
+ // contains an integer value.
+ __ Set(reg, Immediate(0));
- // TODO(3095996): Put a valid pointer value in the stack slot where the result
- // register is stored, as this register is in the pointer map, but contains an
- // integer value.
- __ StoreToSafepointRegisterSlot(reg, Immediate(0));
- // NumberTagI and NumberTagD use the context from the frame, rather than
- // the environment's HContext or HInlinedContext value.
- // They only call Runtime::kAllocateHeapNumber.
- // The corresponding HChange instructions are added in a phase that does
- // not have easy access to the local context.
- __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
- __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
- RecordSafepointWithRegisters(
- instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
- if (!reg.is(eax)) __ mov(reg, eax);
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ // NumberTagI and NumberTagD use the context from the frame, rather than
+ // the environment's HContext or HInlinedContext value.
+ // They only call Runtime::kAllocateHeapNumber.
+ // The corresponding HChange instructions are added in a phase that does
+ // not have easy access to the local context.
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(reg, eax);
+ }
// Done. Put the value in xmm_scratch into the value of the allocated heap
// number.
@@ -5026,7 +5027,6 @@ void LCodeGen::DoDeferredNumberTagI(LInstruction* instr,
} else {
__ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
}
- __ StoreToSafepointRegisterSlot(reg, reg);
}
@@ -5095,10 +5095,18 @@ void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
void LCodeGen::DoSmiTag(LSmiTag* instr) {
- LOperand* input = instr->value();
- ASSERT(input->IsRegister() && input->Equals(instr->result()));
- ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
- __ SmiTag(ToRegister(input));
+ HChange* hchange = instr->hydrogen();
+ Register input = ToRegister(instr->value());
+ if (hchange->CheckFlag(HValue::kCanOverflow) &&
+ hchange->value()->CheckFlag(HValue::kUint32)) {
+ __ test(input, Immediate(0xc0000000));
+ DeoptimizeIf(not_zero, instr->environment());
+ }
+ __ SmiTag(input);
+ if (hchange->CheckFlag(HValue::kCanOverflow) &&
+ !hchange->value()->CheckFlag(HValue::kUint32)) {
+ DeoptimizeIf(overflow, instr->environment());
+ }
}
@@ -5251,6 +5259,10 @@ void LCodeGen::EmitNumberUntagD(Register input_reg,
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
Register input_reg = ToRegister(instr->value());
+ // The input was optimistically untagged; revert it.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
+
if (instr->truncating()) {
Label no_heap_number, check_bools, check_false;
@@ -5280,7 +5292,6 @@ void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
__ RecordComment("Deferred TaggedToI: cannot truncate");
DeoptimizeIf(not_equal, instr->environment());
__ Set(input_reg, Immediate(0));
- __ jmp(done);
} else {
Label bailout;
XMMRegister scratch = (instr->temp() != NULL)
@@ -5320,9 +5331,13 @@ void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
} else {
DeferredTaggedToI* deferred =
new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
-
- __ JumpIfNotSmi(input_reg, deferred->entry());
+ // Optimistically untag the input.
+ // If the input is a HeapObject, SmiUntag will set the carry flag.
+ STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ SmiUntag(input_reg);
+ // Branch to deferred code if the input was tagged.
+ // The deferred code will take care of restoring the tag.
+ __ j(carry, deferred->entry());
__ bind(deferred->exit());
}
}
@@ -5754,6 +5769,45 @@ void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
}
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+ CpuFeatureScope scope(masm(), SSE2);
+ XMMRegister value_reg = ToDoubleRegister(instr->value());
+ Register result_reg = ToRegister(instr->result());
+ if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+ if (CpuFeatures::IsSupported(SSE4_1)) {
+ CpuFeatureScope scope2(masm(), SSE4_1);
+ __ pextrd(result_reg, value_reg, 1);
+ } else {
+ XMMRegister xmm_scratch = double_scratch0();
+ __ pshufd(xmm_scratch, value_reg, 1);
+ __ movd(result_reg, xmm_scratch);
+ }
+ } else {
+ __ movd(result_reg, value_reg);
+ }
+}
+
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+ Register hi_reg = ToRegister(instr->hi());
+ Register lo_reg = ToRegister(instr->lo());
+ XMMRegister result_reg = ToDoubleRegister(instr->result());
+ CpuFeatureScope scope(masm(), SSE2);
+
+ if (CpuFeatures::IsSupported(SSE4_1)) {
+ CpuFeatureScope scope2(masm(), SSE4_1);
+ __ movd(result_reg, lo_reg);
+ __ pinsrd(result_reg, hi_reg, 1);
+ } else {
+ XMMRegister xmm_scratch = double_scratch0();
+ __ movd(result_reg, hi_reg);
+ __ psllq(result_reg, 32);
+ __ movd(xmm_scratch, lo_reg);
+ __ orps(result_reg, xmm_scratch);
+ }
+}
+
+
void LCodeGen::DoAllocate(LAllocate* instr) {
class DeferredAllocate V8_FINAL : public LDeferredCode {
public:
@@ -5926,7 +5980,7 @@ void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
// space for nested functions that don't need literals cloning.
bool pretenure = instr->hydrogen()->pretenure();
if (!pretenure && instr->hydrogen()->has_no_literals()) {
- FastNewClosureStub stub(instr->hydrogen()->language_mode(),
+ FastNewClosureStub stub(instr->hydrogen()->strict_mode(),
instr->hydrogen()->is_generator());
__ mov(ebx, Immediate(instr->hydrogen()->shared_info()));
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
« no previous file with comments | « src/ia32/lithium-codegen-ia32.h ('k') | src/ia32/lithium-ia32.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698