Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(34)

Unified Diff: src/a64/simulator-a64.cc

Issue 196133017: Experimental parser: merge r19949 (Closed) Base URL: https://v8.googlecode.com/svn/branches/experimental/parser
Patch Set: Created 6 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/a64/simulator-a64.h ('k') | src/a64/stub-cache-a64.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/a64/simulator-a64.cc
diff --git a/src/a64/simulator-a64.cc b/src/a64/simulator-a64.cc
index 1ae0bf01a480181c0bd30e1a1f8b09e984930948..ca171058ba9e98abf7840560b6c187876ee6da3b 100644
--- a/src/a64/simulator-a64.cc
+++ b/src/a64/simulator-a64.cc
@@ -306,8 +306,8 @@ void Simulator::CorruptAllCallerSavedCPURegisters() {
// Extending the stack by 2 * 64 bits is required for stack alignment purposes.
// TODO(all): Insert a marker in the extra space allocated on the stack.
uintptr_t Simulator::PushAddress(uintptr_t address) {
- ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes);
- intptr_t new_sp = sp() - 2 * kXRegSizeInBytes;
+ ASSERT(sizeof(uintptr_t) < 2 * kXRegSize);
+ intptr_t new_sp = sp() - 2 * kXRegSize;
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
*stack_slot = address;
set_sp(new_sp);
@@ -319,8 +319,8 @@ uintptr_t Simulator::PopAddress() {
intptr_t current_sp = sp();
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
uintptr_t address = *stack_slot;
- ASSERT(sizeof(uintptr_t) < 2 * kXRegSizeInBytes);
- set_sp(current_sp + 2 * kXRegSizeInBytes);
+ ASSERT(sizeof(uintptr_t) < 2 * kXRegSize);
+ set_sp(current_sp + 2 * kXRegSize);
return address;
}
@@ -614,7 +614,7 @@ int64_t Simulator::AddWithCarry(unsigned reg_size,
int64_t src2,
int64_t carry_in) {
ASSERT((carry_in == 0) || (carry_in == 1));
- ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
+ ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
uint64_t u1, u2;
int64_t result;
@@ -622,7 +622,7 @@ int64_t Simulator::AddWithCarry(unsigned reg_size,
uint32_t N, Z, C, V;
- if (reg_size == kWRegSize) {
+ if (reg_size == kWRegSizeInBits) {
u1 = static_cast<uint64_t>(src1) & kWRegMask;
u2 = static_cast<uint64_t>(src2) & kWRegMask;
@@ -632,9 +632,9 @@ int64_t Simulator::AddWithCarry(unsigned reg_size,
((kWMaxUInt - u1 - carry_in) < u2);
// Overflow iff the sign bit is the same for the two inputs and different
// for the result.
- int64_t s_src1 = src1 << (kXRegSize - kWRegSize);
- int64_t s_src2 = src2 << (kXRegSize - kWRegSize);
- int64_t s_result = result << (kXRegSize - kWRegSize);
+ int64_t s_src1 = src1 << (kXRegSizeInBits - kWRegSizeInBits);
+ int64_t s_src2 = src2 << (kXRegSizeInBits - kWRegSizeInBits);
+ int64_t s_result = result << (kXRegSizeInBits - kWRegSizeInBits);
V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0);
} else {
@@ -670,7 +670,7 @@ int64_t Simulator::ShiftOperand(unsigned reg_size,
if (amount == 0) {
return value;
}
- int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask;
+ int64_t mask = reg_size == kXRegSizeInBits ? kXRegMask : kWRegMask;
switch (shift_type) {
case LSL:
return (value << amount) & mask;
@@ -678,13 +678,13 @@ int64_t Simulator::ShiftOperand(unsigned reg_size,
return static_cast<uint64_t>(value) >> amount;
case ASR: {
// Shift used to restore the sign.
- unsigned s_shift = kXRegSize - reg_size;
+ unsigned s_shift = kXRegSizeInBits - reg_size;
// Value with its sign restored.
int64_t s_value = (value << s_shift) >> s_shift;
return (s_value >> amount) & mask;
}
case ROR: {
- if (reg_size == kWRegSize) {
+ if (reg_size == kWRegSizeInBits) {
value &= kWRegMask;
}
return (static_cast<uint64_t>(value) >> amount) |
@@ -726,11 +726,21 @@ int64_t Simulator::ExtendValue(unsigned reg_size,
default:
UNREACHABLE();
}
- int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask;
+ int64_t mask = (reg_size == kXRegSizeInBits) ? kXRegMask : kWRegMask;
return (value << left_shift) & mask;
}
+template<> double Simulator::FPDefaultNaN<double>() const {
+ return kFP64DefaultNaN;
+}
+
+
+template<> float Simulator::FPDefaultNaN<float>() const {
+ return kFP32DefaultNaN;
+}
+
+
void Simulator::FPCompare(double val0, double val1) {
AssertSupportedFPCR();
@@ -1056,7 +1066,8 @@ void Simulator::VisitCompareBranch(Instruction* instr) {
void Simulator::AddSubHelper(Instruction* instr, int64_t op2) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
bool set_flags = instr->FlagsUpdate();
int64_t new_val = 0;
Instr operation = instr->Mask(AddSubOpMask);
@@ -1087,7 +1098,8 @@ void Simulator::AddSubHelper(Instruction* instr, int64_t op2) {
void Simulator::VisitAddSubShifted(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
int64_t op2 = ShiftOperand(reg_size,
reg(reg_size, instr->Rm()),
static_cast<Shift>(instr->ShiftDP()),
@@ -1103,7 +1115,8 @@ void Simulator::VisitAddSubImmediate(Instruction* instr) {
void Simulator::VisitAddSubExtended(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
int64_t op2 = ExtendValue(reg_size,
reg(reg_size, instr->Rm()),
static_cast<Extend>(instr->ExtendMode()),
@@ -1113,7 +1126,8 @@ void Simulator::VisitAddSubExtended(Instruction* instr) {
void Simulator::VisitAddSubWithCarry(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
int64_t op2 = reg(reg_size, instr->Rm());
int64_t new_val;
@@ -1132,7 +1146,8 @@ void Simulator::VisitAddSubWithCarry(Instruction* instr) {
void Simulator::VisitLogicalShifted(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
Shift shift_type = static_cast<Shift>(instr->ShiftDP());
unsigned shift_amount = instr->ImmDPShift();
int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type,
@@ -1150,7 +1165,8 @@ void Simulator::VisitLogicalImmediate(Instruction* instr) {
void Simulator::LogicalHelper(Instruction* instr, int64_t op2) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
int64_t op1 = reg(reg_size, instr->Rn());
int64_t result = 0;
bool update_flags = false;
@@ -1178,7 +1194,8 @@ void Simulator::LogicalHelper(Instruction* instr, int64_t op2) {
void Simulator::VisitConditionalCompareRegister(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
ConditionalCompareHelper(instr, reg(reg_size, instr->Rm()));
}
@@ -1189,7 +1206,8 @@ void Simulator::VisitConditionalCompareImmediate(Instruction* instr) {
void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
int64_t op1 = reg(reg_size, instr->Rn());
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
@@ -1234,7 +1252,7 @@ void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) {
ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX));
unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS();
- int64_t offset = ExtendValue(kXRegSize, xreg(instr->Rm()), ext,
+ int64_t offset = ExtendValue(kXRegSizeInBits, xreg(instr->Rm()), ext,
shift_amount);
LoadStoreHelper(instr, offset, Offset);
}
@@ -1275,23 +1293,28 @@ void Simulator::LoadStoreHelper(Instruction* instr,
case STR_w:
case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break;
case LDRSB_w: {
- set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead8(address), SXTB));
+ set_wreg(srcdst,
+ ExtendValue(kWRegSizeInBits, MemoryRead8(address), SXTB));
break;
}
case LDRSB_x: {
- set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead8(address), SXTB));
+ set_xreg(srcdst,
+ ExtendValue(kXRegSizeInBits, MemoryRead8(address), SXTB));
break;
}
case LDRSH_w: {
- set_wreg(srcdst, ExtendValue(kWRegSize, MemoryRead16(address), SXTH));
+ set_wreg(srcdst,
+ ExtendValue(kWRegSizeInBits, MemoryRead16(address), SXTH));
break;
}
case LDRSH_x: {
- set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead16(address), SXTH));
+ set_xreg(srcdst,
+ ExtendValue(kXRegSizeInBits, MemoryRead16(address), SXTH));
break;
}
case LDRSW_x: {
- set_xreg(srcdst, ExtendValue(kXRegSize, MemoryRead32(address), SXTW));
+ set_xreg(srcdst,
+ ExtendValue(kXRegSizeInBits, MemoryRead32(address), SXTW));
break;
}
case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break;
@@ -1372,48 +1395,48 @@ void Simulator::LoadStorePairHelper(Instruction* instr,
switch (op) {
case LDP_w: {
set_wreg(rt, MemoryRead32(address));
- set_wreg(rt2, MemoryRead32(address + kWRegSizeInBytes));
+ set_wreg(rt2, MemoryRead32(address + kWRegSize));
break;
}
case LDP_s: {
set_sreg(rt, MemoryReadFP32(address));
- set_sreg(rt2, MemoryReadFP32(address + kSRegSizeInBytes));
+ set_sreg(rt2, MemoryReadFP32(address + kSRegSize));
break;
}
case LDP_x: {
set_xreg(rt, MemoryRead64(address));
- set_xreg(rt2, MemoryRead64(address + kXRegSizeInBytes));
+ set_xreg(rt2, MemoryRead64(address + kXRegSize));
break;
}
case LDP_d: {
set_dreg(rt, MemoryReadFP64(address));
- set_dreg(rt2, MemoryReadFP64(address + kDRegSizeInBytes));
+ set_dreg(rt2, MemoryReadFP64(address + kDRegSize));
break;
}
case LDPSW_x: {
- set_xreg(rt, ExtendValue(kXRegSize, MemoryRead32(address), SXTW));
- set_xreg(rt2, ExtendValue(kXRegSize,
- MemoryRead32(address + kWRegSizeInBytes), SXTW));
+ set_xreg(rt, ExtendValue(kXRegSizeInBits, MemoryRead32(address), SXTW));
+ set_xreg(rt2, ExtendValue(kXRegSizeInBits,
+ MemoryRead32(address + kWRegSize), SXTW));
break;
}
case STP_w: {
MemoryWrite32(address, wreg(rt));
- MemoryWrite32(address + kWRegSizeInBytes, wreg(rt2));
+ MemoryWrite32(address + kWRegSize, wreg(rt2));
break;
}
case STP_s: {
MemoryWriteFP32(address, sreg(rt));
- MemoryWriteFP32(address + kSRegSizeInBytes, sreg(rt2));
+ MemoryWriteFP32(address + kSRegSize, sreg(rt2));
break;
}
case STP_x: {
MemoryWrite64(address, xreg(rt));
- MemoryWrite64(address + kXRegSizeInBytes, xreg(rt2));
+ MemoryWrite64(address + kXRegSize, xreg(rt2));
break;
}
case STP_d: {
MemoryWriteFP64(address, dreg(rt));
- MemoryWriteFP64(address + kDRegSizeInBytes, dreg(rt2));
+ MemoryWriteFP64(address + kDRegSize, dreg(rt2));
break;
}
default: UNREACHABLE();
@@ -1624,7 +1647,8 @@ void Simulator::VisitConditionalSelect(Instruction* instr) {
default: UNIMPLEMENTED();
}
}
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
set_reg(reg_size, instr->Rd(), new_val);
}
@@ -1634,21 +1658,23 @@ void Simulator::VisitDataProcessing1Source(Instruction* instr) {
unsigned src = instr->Rn();
switch (instr->Mask(DataProcessing1SourceMask)) {
- case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSize)); break;
- case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSize)); break;
+ case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSizeInBits)); break;
+ case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSizeInBits)); break;
case REV16_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse16)); break;
case REV16_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse16)); break;
case REV_w: set_wreg(dst, ReverseBytes(wreg(src), Reverse32)); break;
case REV32_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse32)); break;
case REV_x: set_xreg(dst, ReverseBytes(xreg(src), Reverse64)); break;
- case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSize)); break;
- case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSize)); break;
+ case CLZ_w: set_wreg(dst, CountLeadingZeros(wreg(src), kWRegSizeInBits));
+ break;
+ case CLZ_x: set_xreg(dst, CountLeadingZeros(xreg(src), kXRegSizeInBits));
+ break;
case CLS_w: {
- set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSize));
+ set_wreg(dst, CountLeadingSignBits(wreg(src), kWRegSizeInBits));
break;
}
case CLS_x: {
- set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSize));
+ set_xreg(dst, CountLeadingSignBits(xreg(src), kXRegSizeInBits));
break;
}
default: UNIMPLEMENTED();
@@ -1657,7 +1683,7 @@ void Simulator::VisitDataProcessing1Source(Instruction* instr) {
uint64_t Simulator::ReverseBits(uint64_t value, unsigned num_bits) {
- ASSERT((num_bits == kWRegSize) || (num_bits == kXRegSize));
+ ASSERT((num_bits == kWRegSizeInBits) || (num_bits == kXRegSizeInBits));
uint64_t result = 0;
for (unsigned i = 0; i < num_bits; i++) {
result = (result << 1) | (value & 1);
@@ -1762,7 +1788,8 @@ void Simulator::VisitDataProcessing2Source(Instruction* instr) {
default: UNIMPLEMENTED();
}
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
if (shift_op != NO_SHIFT) {
// Shift distance encoded in the least-significant five/six bits of the
// register.
@@ -1798,7 +1825,8 @@ static int64_t MultiplyHighSigned(int64_t u, int64_t v) {
void Simulator::VisitDataProcessing3Source(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
int64_t result = 0;
// Extract and sign- or zero-extend 32-bit arguments for widening operations.
@@ -1830,7 +1858,8 @@ void Simulator::VisitDataProcessing3Source(Instruction* instr) {
void Simulator::VisitBitfield(Instruction* instr) {
- unsigned reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
+ unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits
+ : kWRegSizeInBits;
int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask;
int64_t R = instr->ImmR();
int64_t S = instr->ImmS();
@@ -1884,8 +1913,8 @@ void Simulator::VisitBitfield(Instruction* instr) {
void Simulator::VisitExtract(Instruction* instr) {
unsigned lsb = instr->ImmS();
- unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
- : kWRegSize;
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSizeInBits
+ : kWRegSizeInBits;
set_reg(reg_size,
instr->Rd(),
(static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) |
@@ -2081,7 +2110,8 @@ uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
void Simulator::VisitFPCompare(Instruction* instr) {
AssertSupportedFPCR();
- unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize;
+ unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
+ : kSRegSizeInBits;
double fn_val = fpreg(reg_size, instr->Rn());
switch (instr->Mask(FPCompareMask)) {
@@ -2103,7 +2133,8 @@ void Simulator::VisitFPConditionalCompare(Instruction* instr) {
if (ConditionPassed(static_cast<Condition>(instr->Condition()))) {
// If the condition passes, set the status flags to the result of
// comparing the operands.
- unsigned reg_size = instr->FPType() == FP32 ? kSRegSize : kDRegSize;
+ unsigned reg_size = (instr->Mask(FP64) == FP64) ? kDRegSizeInBits
+ : kSRegSizeInBits;
FPCompare(fpreg(reg_size, instr->Rn()), fpreg(reg_size, instr->Rm()));
} else {
// If the condition fails, set the status flags to the nzcv immediate.
@@ -2147,8 +2178,8 @@ void Simulator::VisitFPDataProcessing1Source(Instruction* instr) {
case FABS_d: set_dreg(fd, std::fabs(dreg(fn))); break;
case FNEG_s: set_sreg(fd, -sreg(fn)); break;
case FNEG_d: set_dreg(fd, -dreg(fn)); break;
- case FSQRT_s: set_sreg(fd, std::sqrt(sreg(fn))); break;
- case FSQRT_d: set_dreg(fd, std::sqrt(dreg(fn))); break;
+ case FSQRT_s: set_sreg(fd, FPSqrt(sreg(fn))); break;
+ case FSQRT_d: set_dreg(fd, FPSqrt(dreg(fn))); break;
case FRINTA_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieAway)); break;
case FRINTA_d: set_dreg(fd, FPRoundInt(dreg(fn), FPTieAway)); break;
case FRINTN_s: set_sreg(fd, FPRoundInt(sreg(fn), FPTieEven)); break;
@@ -2407,8 +2438,10 @@ float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
double Simulator::FPRoundInt(double value, FPRounding round_mode) {
if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
- (value == kFP64NegativeInfinity) || std::isnan(value)) {
+ (value == kFP64NegativeInfinity)) {
return value;
+ } else if (std::isnan(value)) {
+ return FPProcessNaN(value);
}
double int_result = floor(value);
@@ -2452,8 +2485,9 @@ double Simulator::FPRoundInt(double value, FPRounding round_mode) {
double Simulator::FPToDouble(float value) {
switch (std::fpclassify(value)) {
case FP_NAN: {
- // Convert NaNs as the processor would, assuming that FPCR.DN (default
- // NaN) is not set:
+ if (DN()) return kFP64DefaultNaN;
+
+ // Convert NaNs as the processor would:
// - The sign is propagated.
// - The payload (mantissa) is transferred entirely, except that the top
// bit is forced to '1', making the result a quiet NaN. The unused
@@ -2492,8 +2526,9 @@ float Simulator::FPToFloat(double value, FPRounding round_mode) {
switch (std::fpclassify(value)) {
case FP_NAN: {
- // Convert NaNs as the processor would, assuming that FPCR.DN (default
- // NaN) is not set:
+ if (DN()) return kFP32DefaultNaN;
+
+ // Convert NaNs as the processor would:
// - The sign is propagated.
// - The payload (mantissa) is transferred as much as possible, except
// that the top bit is forced to '1', making the result a quiet NaN.
@@ -2544,23 +2579,37 @@ void Simulator::VisitFPDataProcessing2Source(Instruction* instr) {
unsigned fn = instr->Rn();
unsigned fm = instr->Rm();
+ // Fmaxnm and Fminnm have special NaN handling.
+ switch (instr->Mask(FPDataProcessing2SourceMask)) {
+ case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); return;
+ case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); return;
+ case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); return;
+ case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); return;
+ default:
+ break; // Fall through.
+ }
+
+ if (FPProcessNaNs(instr)) return;
+
switch (instr->Mask(FPDataProcessing2SourceMask)) {
- case FADD_s: set_sreg(fd, sreg(fn) + sreg(fm)); break;
- case FADD_d: set_dreg(fd, dreg(fn) + dreg(fm)); break;
- case FSUB_s: set_sreg(fd, sreg(fn) - sreg(fm)); break;
- case FSUB_d: set_dreg(fd, dreg(fn) - dreg(fm)); break;
- case FMUL_s: set_sreg(fd, sreg(fn) * sreg(fm)); break;
- case FMUL_d: set_dreg(fd, dreg(fn) * dreg(fm)); break;
- case FDIV_s: set_sreg(fd, sreg(fn) / sreg(fm)); break;
- case FDIV_d: set_dreg(fd, dreg(fn) / dreg(fm)); break;
+ case FADD_s: set_sreg(fd, FPAdd(sreg(fn), sreg(fm))); break;
+ case FADD_d: set_dreg(fd, FPAdd(dreg(fn), dreg(fm))); break;
+ case FSUB_s: set_sreg(fd, FPSub(sreg(fn), sreg(fm))); break;
+ case FSUB_d: set_dreg(fd, FPSub(dreg(fn), dreg(fm))); break;
+ case FMUL_s: set_sreg(fd, FPMul(sreg(fn), sreg(fm))); break;
+ case FMUL_d: set_dreg(fd, FPMul(dreg(fn), dreg(fm))); break;
+ case FDIV_s: set_sreg(fd, FPDiv(sreg(fn), sreg(fm))); break;
+ case FDIV_d: set_dreg(fd, FPDiv(dreg(fn), dreg(fm))); break;
case FMAX_s: set_sreg(fd, FPMax(sreg(fn), sreg(fm))); break;
case FMAX_d: set_dreg(fd, FPMax(dreg(fn), dreg(fm))); break;
case FMIN_s: set_sreg(fd, FPMin(sreg(fn), sreg(fm))); break;
case FMIN_d: set_dreg(fd, FPMin(dreg(fn), dreg(fm))); break;
- case FMAXNM_s: set_sreg(fd, FPMaxNM(sreg(fn), sreg(fm))); break;
- case FMAXNM_d: set_dreg(fd, FPMaxNM(dreg(fn), dreg(fm))); break;
- case FMINNM_s: set_sreg(fd, FPMinNM(sreg(fn), sreg(fm))); break;
- case FMINNM_d: set_dreg(fd, FPMinNM(dreg(fn), dreg(fm))); break;
+ case FMAXNM_s:
+ case FMAXNM_d:
+ case FMINNM_s:
+ case FMINNM_d:
+ // These were handled before the standard FPProcessNaNs() stage.
+ UNREACHABLE();
default: UNIMPLEMENTED();
}
}
@@ -2577,33 +2626,62 @@ void Simulator::VisitFPDataProcessing3Source(Instruction* instr) {
// The C99 (and C++11) fma function performs a fused multiply-accumulate.
switch (instr->Mask(FPDataProcessing3SourceMask)) {
// fd = fa +/- (fn * fm)
- case FMADD_s: set_sreg(fd, fmaf(sreg(fn), sreg(fm), sreg(fa))); break;
- case FMSUB_s: set_sreg(fd, fmaf(-sreg(fn), sreg(fm), sreg(fa))); break;
- case FMADD_d: set_dreg(fd, fma(dreg(fn), dreg(fm), dreg(fa))); break;
- case FMSUB_d: set_dreg(fd, fma(-dreg(fn), dreg(fm), dreg(fa))); break;
- // Variants of the above where the result is negated.
- case FNMADD_s: set_sreg(fd, -fmaf(sreg(fn), sreg(fm), sreg(fa))); break;
- case FNMSUB_s: set_sreg(fd, -fmaf(-sreg(fn), sreg(fm), sreg(fa))); break;
- case FNMADD_d: set_dreg(fd, -fma(dreg(fn), dreg(fm), dreg(fa))); break;
- case FNMSUB_d: set_dreg(fd, -fma(-dreg(fn), dreg(fm), dreg(fa))); break;
+ case FMADD_s: set_sreg(fd, FPMulAdd(sreg(fa), sreg(fn), sreg(fm))); break;
+ case FMSUB_s: set_sreg(fd, FPMulAdd(sreg(fa), -sreg(fn), sreg(fm))); break;
+ case FMADD_d: set_dreg(fd, FPMulAdd(dreg(fa), dreg(fn), dreg(fm))); break;
+ case FMSUB_d: set_dreg(fd, FPMulAdd(dreg(fa), -dreg(fn), dreg(fm))); break;
+ // Negated variants of the above.
+ case FNMADD_s:
+ set_sreg(fd, FPMulAdd(-sreg(fa), -sreg(fn), sreg(fm)));
+ break;
+ case FNMSUB_s:
+ set_sreg(fd, FPMulAdd(-sreg(fa), sreg(fn), sreg(fm)));
+ break;
+ case FNMADD_d:
+ set_dreg(fd, FPMulAdd(-dreg(fa), -dreg(fn), dreg(fm)));
+ break;
+ case FNMSUB_d:
+ set_dreg(fd, FPMulAdd(-dreg(fa), dreg(fn), dreg(fm)));
+ break;
default: UNIMPLEMENTED();
}
}
template <typename T>
-T Simulator::FPMax(T a, T b) {
- if (IsSignallingNaN(a)) {
- return a;
- } else if (IsSignallingNaN(b)) {
- return b;
- } else if (std::isnan(a)) {
- ASSERT(IsQuietNaN(a));
- return a;
- } else if (std::isnan(b)) {
- ASSERT(IsQuietNaN(b));
- return b;
+T Simulator::FPAdd(T op1, T op2) {
+ // NaNs should be handled elsewhere.
+ ASSERT(!std::isnan(op1) && !std::isnan(op2));
+
+ if (isinf(op1) && isinf(op2) && (op1 != op2)) {
+ // inf + -inf returns the default NaN.
+ return FPDefaultNaN<T>();
+ } else {
+ // Other cases should be handled by standard arithmetic.
+ return op1 + op2;
+ }
+}
+
+
+template <typename T>
+T Simulator::FPDiv(T op1, T op2) {
+ // NaNs should be handled elsewhere.
+ ASSERT(!std::isnan(op1) && !std::isnan(op2));
+
+ if ((isinf(op1) && isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) {
+ // inf / inf and 0.0 / 0.0 return the default NaN.
+ return FPDefaultNaN<T>();
+ } else {
+ // Other cases should be handled by standard arithmetic.
+ return op1 / op2;
}
+}
+
+
+template <typename T>
+T Simulator::FPMax(T a, T b) {
+ // NaNs should be handled elsewhere.
+ ASSERT(!std::isnan(a) && !std::isnan(b));
if ((a == 0.0) && (b == 0.0) &&
(copysign(1.0, a) != copysign(1.0, b))) {
@@ -2622,22 +2700,15 @@ T Simulator::FPMaxNM(T a, T b) {
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
b = kFP64NegativeInfinity;
}
- return FPMax(a, b);
+
+ T result = FPProcessNaNs(a, b);
+ return std::isnan(result) ? result : FPMax(a, b);
}
template <typename T>
T Simulator::FPMin(T a, T b) {
- if (IsSignallingNaN(a)) {
- return a;
- } else if (IsSignallingNaN(b)) {
- return b;
- } else if (std::isnan(a)) {
- ASSERT(IsQuietNaN(a));
- return a;
- } else if (std::isnan(b)) {
- ASSERT(IsQuietNaN(b));
- return b;
- }
+ // NaNs should be handled elsewhere.
+ ASSERT(!isnan(a) && !isnan(b));
if ((a == 0.0) && (b == 0.0) &&
(copysign(1.0, a) != copysign(1.0, b))) {
@@ -2656,7 +2727,168 @@ T Simulator::FPMinNM(T a, T b) {
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
b = kFP64PositiveInfinity;
}
- return FPMin(a, b);
+
+ T result = FPProcessNaNs(a, b);
+ return isnan(result) ? result : FPMin(a, b);
+}
+
+
+template <typename T>
+T Simulator::FPMul(T op1, T op2) {
+ // NaNs should be handled elsewhere.
+ ASSERT(!std::isnan(op1) && !std::isnan(op2));
+
+ if ((isinf(op1) && (op2 == 0.0)) || (isinf(op2) && (op1 == 0.0))) {
+ // inf * 0.0 returns the default NaN.
+ return FPDefaultNaN<T>();
+ } else {
+ // Other cases should be handled by standard arithmetic.
+ return op1 * op2;
+ }
+}
+
+
+template<typename T>
+T Simulator::FPMulAdd(T a, T op1, T op2) {
+ T result = FPProcessNaNs3(a, op1, op2);
+
+ T sign_a = copysign(1.0, a);
+ T sign_prod = copysign(1.0, op1) * copysign(1.0, op2);
+ bool isinf_prod = std::isinf(op1) || std::isinf(op2);
+ bool operation_generates_nan =
+ (std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0
+ (std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf
+ (std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf
+
+ if (std::isnan(result)) {
+ // Generated NaNs override quiet NaNs propagated from a.
+ if (operation_generates_nan && IsQuietNaN(a)) {
+ return FPDefaultNaN<T>();
+ } else {
+ return result;
+ }
+ }
+
+ // If the operation would produce a NaN, return the default NaN.
+ if (operation_generates_nan) {
+ return FPDefaultNaN<T>();
+ }
+
+ // Work around broken fma implementations for exact zero results: The sign of
+ // exact 0.0 results is positive unless both a and op1 * op2 are negative.
+ if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) {
+ return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0;
+ }
+
+ result = FusedMultiplyAdd(op1, op2, a);
+ ASSERT(!std::isnan(result));
+
+ // Work around broken fma implementations for rounded zero results: If a is
+ // 0.0, the sign of the result is the sign of op1 * op2 before rounding.
+ if ((a == 0.0) && (result == 0.0)) {
+ return copysign(0.0, sign_prod);
+ }
+
+ return result;
+}
+
+
+template <typename T>
+T Simulator::FPSqrt(T op) {
+ if (std::isnan(op)) {
+ return FPProcessNaN(op);
+ } else if (op < 0.0) {
+ return FPDefaultNaN<T>();
+ } else {
+ return std::sqrt(op);
+ }
+}
+
+
+template <typename T>
+T Simulator::FPSub(T op1, T op2) {
+ // NaNs should be handled elsewhere.
+ ASSERT(!std::isnan(op1) && !std::isnan(op2));
+
+ if (isinf(op1) && isinf(op2) && (op1 == op2)) {
+ // inf - inf returns the default NaN.
+ return FPDefaultNaN<T>();
+ } else {
+ // Other cases should be handled by standard arithmetic.
+ return op1 - op2;
+ }
+}
+
+
+template <typename T>
+T Simulator::FPProcessNaN(T op) {
+ ASSERT(std::isnan(op));
+ return DN() ? FPDefaultNaN<T>() : ToQuietNaN(op);
+}
+
+
+template <typename T>
+T Simulator::FPProcessNaNs(T op1, T op2) {
+ if (IsSignallingNaN(op1)) {
+ return FPProcessNaN(op1);
+ } else if (IsSignallingNaN(op2)) {
+ return FPProcessNaN(op2);
+ } else if (std::isnan(op1)) {
+ ASSERT(IsQuietNaN(op1));
+ return FPProcessNaN(op1);
+ } else if (std::isnan(op2)) {
+ ASSERT(IsQuietNaN(op2));
+ return FPProcessNaN(op2);
+ } else {
+ return 0.0;
+ }
+}
+
+
+template <typename T>
+T Simulator::FPProcessNaNs3(T op1, T op2, T op3) {
+ if (IsSignallingNaN(op1)) {
+ return FPProcessNaN(op1);
+ } else if (IsSignallingNaN(op2)) {
+ return FPProcessNaN(op2);
+ } else if (IsSignallingNaN(op3)) {
+ return FPProcessNaN(op3);
+ } else if (std::isnan(op1)) {
+ ASSERT(IsQuietNaN(op1));
+ return FPProcessNaN(op1);
+ } else if (std::isnan(op2)) {
+ ASSERT(IsQuietNaN(op2));
+ return FPProcessNaN(op2);
+ } else if (std::isnan(op3)) {
+ ASSERT(IsQuietNaN(op3));
+ return FPProcessNaN(op3);
+ } else {
+ return 0.0;
+ }
+}
+
+
+bool Simulator::FPProcessNaNs(Instruction* instr) {
+ unsigned fd = instr->Rd();
+ unsigned fn = instr->Rn();
+ unsigned fm = instr->Rm();
+ bool done = false;
+
+ if (instr->Mask(FP64) == FP64) {
+ double result = FPProcessNaNs(dreg(fn), dreg(fm));
+ if (std::isnan(result)) {
+ set_dreg(fd, result);
+ done = true;
+ }
+ } else {
+ float result = FPProcessNaNs(sreg(fn), sreg(fm));
+ if (std::isnan(result)) {
+ set_sreg(fd, result);
+ done = true;
+ }
+ }
+
+ return done;
}
« no previous file with comments | « src/a64/simulator-a64.h ('k') | src/a64/stub-cache-a64.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698