| Index: src/x64/lithium-codegen-x64.cc
|
| diff --git a/src/x64/lithium-codegen-x64.cc b/src/x64/lithium-codegen-x64.cc
|
| index 64366e2db46e7a3afeb96df0b2fc94930a4fe834..332c2ee31f027d8a0b78b9085b733c14942a796c 100644
|
| --- a/src/x64/lithium-codegen-x64.cc
|
| +++ b/src/x64/lithium-codegen-x64.cc
|
| @@ -154,10 +154,10 @@ bool LCodeGen::GeneratePrologue() {
|
| }
|
| #endif
|
|
|
| - // Classic mode functions need to replace the receiver with the global proxy
|
| + // Sloppy mode functions need to replace the receiver with the global proxy
|
| // when called as functions (without an explicit receiver object).
|
| if (info_->this_has_uses() &&
|
| - info_->is_classic_mode() &&
|
| + info_->strict_mode() == SLOPPY &&
|
| !info_->is_native()) {
|
| Label ok;
|
| StackArgumentsAccessor args(rsp, scope()->num_parameters());
|
| @@ -273,6 +273,13 @@ void LCodeGen::GenerateOsrPrologue() {
|
| }
|
|
|
|
|
| +void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
|
| + if (!instr->IsLazyBailout() && !instr->IsGap()) {
|
| + safepoints_.BumpLastLazySafepointIndex();
|
| + }
|
| +}
|
| +
|
| +
|
| bool LCodeGen::GenerateJumpTable() {
|
| Label needs_frame;
|
| if (jump_table_.length() > 0) {
|
| @@ -571,10 +578,6 @@ void LCodeGen::AddToTranslation(LEnvironment* environment,
|
| }
|
| } else if (op->IsDoubleStackSlot()) {
|
| translation->StoreDoubleStackSlot(op->index());
|
| - } else if (op->IsArgument()) {
|
| - ASSERT(is_tagged);
|
| - int src_index = GetStackSlotCount() + op->index();
|
| - translation->StoreStackSlot(src_index);
|
| } else if (op->IsRegister()) {
|
| Register reg = ToRegister(op);
|
| if (is_tagged) {
|
| @@ -987,264 +990,306 @@ void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
|
| }
|
|
|
|
|
| -void LCodeGen::DoModI(LModI* instr) {
|
| +void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
| +
|
| + // Theoretically, a variation of the branch-free code for integer division by
|
| + // a power of 2 (calculating the remainder via an additional multiplication
|
| + // (which gets simplified to an 'and') and subtraction) should be faster, and
|
| + // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
|
| + // indicate that positive dividends are heavily favored, so the branching
|
| + // version performs better.
|
| HMod* hmod = instr->hydrogen();
|
| - HValue* left = hmod->left();
|
| - HValue* right = hmod->right();
|
| - if (hmod->RightIsPowerOf2()) {
|
| - // TODO(svenpanne) We should really do the strength reduction on the
|
| - // Hydrogen level.
|
| - Register left_reg = ToRegister(instr->left());
|
| - ASSERT(left_reg.is(ToRegister(instr->result())));
|
| -
|
| - // Note: The code below even works when right contains kMinInt.
|
| - int32_t divisor = Abs(right->GetInteger32Constant());
|
| -
|
| - Label left_is_not_negative, done;
|
| - if (left->CanBeNegative()) {
|
| - __ testl(left_reg, left_reg);
|
| - __ j(not_sign, &left_is_not_negative, Label::kNear);
|
| - __ negl(left_reg);
|
| - __ andl(left_reg, Immediate(divisor - 1));
|
| - __ negl(left_reg);
|
| - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ jmp(&done, Label::kNear);
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + Label dividend_is_not_negative, done;
|
| + if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
|
| + __ testl(dividend, dividend);
|
| + __ j(not_sign, ÷nd_is_not_negative, Label::kNear);
|
| + // Note that this is correct even for kMinInt operands.
|
| + __ negl(dividend);
|
| + __ andl(dividend, Immediate(mask));
|
| + __ negl(dividend);
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(zero, instr->environment());
|
| }
|
| + __ jmp(&done, Label::kNear);
|
| + }
|
|
|
| - __ bind(&left_is_not_negative);
|
| - __ andl(left_reg, Immediate(divisor - 1));
|
| - __ bind(&done);
|
| - } else {
|
| - Register left_reg = ToRegister(instr->left());
|
| - ASSERT(left_reg.is(rax));
|
| - Register right_reg = ToRegister(instr->right());
|
| - ASSERT(!right_reg.is(rax));
|
| - ASSERT(!right_reg.is(rdx));
|
| - Register result_reg = ToRegister(instr->result());
|
| - ASSERT(result_reg.is(rdx));
|
| + __ bind(÷nd_is_not_negative);
|
| + __ andl(dividend, Immediate(mask));
|
| + __ bind(&done);
|
| +}
|
|
|
| - Label done;
|
| - // Check for x % 0, idiv would signal a divide error. We have to
|
| - // deopt in this case because we can't return a NaN.
|
| - if (right->CanBeZero()) {
|
| - __ testl(right_reg, right_reg);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
|
|
| - // Check for kMinInt % -1, idiv would signal a divide error. We
|
| - // have to deopt if we care about -0, because we can't return that.
|
| - if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
|
| - Label no_overflow_possible;
|
| - __ cmpl(left_reg, Immediate(kMinInt));
|
| - __ j(not_zero, &no_overflow_possible, Label::kNear);
|
| - __ cmpl(right_reg, Immediate(-1));
|
| - if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(equal, instr->environment());
|
| - } else {
|
| - __ j(not_equal, &no_overflow_possible, Label::kNear);
|
| - __ Set(result_reg, 0);
|
| - __ jmp(&done, Label::kNear);
|
| - }
|
| - __ bind(&no_overflow_possible);
|
| - }
|
| +void LCodeGen::DoModByConstI(LModByConstI* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(ToRegister(instr->result()).is(rax));
|
|
|
| - // Sign extend dividend in eax into edx:eax, since we are using only the low
|
| - // 32 bits of the values.
|
| - __ cdq();
|
| -
|
| - // If we care about -0, test if the dividend is <0 and the result is 0.
|
| - if (left->CanBeNegative() &&
|
| - hmod->CanBeZero() &&
|
| - hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - Label positive_left;
|
| - __ testl(left_reg, left_reg);
|
| - __ j(not_sign, &positive_left, Label::kNear);
|
| - __ idivl(right_reg);
|
| - __ testl(result_reg, result_reg);
|
| - DeoptimizeIf(zero, instr->environment());
|
| + if (divisor == 0) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| + return;
|
| + }
|
| +
|
| + __ FlooringDiv(dividend, Abs(divisor));
|
| + __ movl(rax, dividend);
|
| + __ shrl(rax, Immediate(31));
|
| + __ addl(rdx, rax);
|
| + __ imull(rdx, rdx, Immediate(Abs(divisor)));
|
| + __ movl(rax, dividend);
|
| + __ subl(rax, rdx);
|
| +
|
| + // Check for negative zero.
|
| + HMod* hmod = instr->hydrogen();
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label remainder_not_zero;
|
| + __ j(not_zero, &remainder_not_zero, Label::kNear);
|
| + __ cmpl(dividend, Immediate(0));
|
| + DeoptimizeIf(less, instr->environment());
|
| + __ bind(&remainder_not_zero);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoModI(LModI* instr) {
|
| + HMod* hmod = instr->hydrogen();
|
| +
|
| + Register left_reg = ToRegister(instr->left());
|
| + ASSERT(left_reg.is(rax));
|
| + Register right_reg = ToRegister(instr->right());
|
| + ASSERT(!right_reg.is(rax));
|
| + ASSERT(!right_reg.is(rdx));
|
| + Register result_reg = ToRegister(instr->result());
|
| + ASSERT(result_reg.is(rdx));
|
| +
|
| + Label done;
|
| + // Check for x % 0, idiv would signal a divide error. We have to
|
| + // deopt in this case because we can't return a NaN.
|
| + if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
|
| + __ testl(right_reg, right_reg);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| +
|
| + // Check for kMinInt % -1, idiv would signal a divide error. We
|
| + // have to deopt if we care about -0, because we can't return that.
|
| + if (hmod->CheckFlag(HValue::kCanOverflow)) {
|
| + Label no_overflow_possible;
|
| + __ cmpl(left_reg, Immediate(kMinInt));
|
| + __ j(not_zero, &no_overflow_possible, Label::kNear);
|
| + __ cmpl(right_reg, Immediate(-1));
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(equal, instr->environment());
|
| + } else {
|
| + __ j(not_equal, &no_overflow_possible, Label::kNear);
|
| + __ Set(result_reg, 0);
|
| __ jmp(&done, Label::kNear);
|
| - __ bind(&positive_left);
|
| }
|
| + __ bind(&no_overflow_possible);
|
| + }
|
| +
|
| + // Sign extend dividend in eax into edx:eax, since we are using only the low
|
| + // 32 bits of the values.
|
| + __ cdq();
|
| +
|
| + // If we care about -0, test if the dividend is <0 and the result is 0.
|
| + if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label positive_left;
|
| + __ testl(left_reg, left_reg);
|
| + __ j(not_sign, &positive_left, Label::kNear);
|
| __ idivl(right_reg);
|
| - __ bind(&done);
|
| + __ testl(result_reg, result_reg);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + __ jmp(&done, Label::kNear);
|
| + __ bind(&positive_left);
|
| }
|
| + __ idivl(right_reg);
|
| + __ bind(&done);
|
| }
|
|
|
|
|
| -void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
|
| - ASSERT(instr->right()->IsConstantOperand());
|
| -
|
| - const Register dividend = ToRegister(instr->left());
|
| - int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
|
| - const Register result = ToRegister(instr->result());
|
| +void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(dividend.is(ToRegister(instr->result())));
|
|
|
| - switch (divisor) {
|
| - case 0:
|
| - DeoptimizeIf(no_condition, instr->environment());
|
| + // If the divisor is positive, things are easy: There can be no deopts and we
|
| + // can simply do an arithmetic right shift.
|
| + if (divisor == 1) return;
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (divisor > 1) {
|
| + __ sarl(dividend, Immediate(shift));
|
| return;
|
| + }
|
|
|
| - case 1:
|
| - if (!result.is(dividend)) {
|
| - __ movl(result, dividend);
|
| + // If the divisor is negative, we have to negate and handle edge cases.
|
| + Label not_kmin_int, done;
|
| + __ negl(dividend);
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
|
| + // Note that we could emit branch-free code, but that would need one more
|
| + // register.
|
| + __ j(no_overflow, ¬_kmin_int, Label::kNear);
|
| + if (divisor == -1) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| + } else {
|
| + __ movl(dividend, Immediate(kMinInt / divisor));
|
| + __ jmp(&done, Label::kNear);
|
| }
|
| - return;
|
| + }
|
| + __ bind(¬_kmin_int);
|
| + __ sarl(dividend, Immediate(shift));
|
| + __ bind(&done);
|
| +}
|
|
|
| - case -1:
|
| - if (!result.is(dividend)) {
|
| - __ movl(result, dividend);
|
| - }
|
| - __ negl(result);
|
| - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
| - DeoptimizeIf(overflow, instr->environment());
|
| - }
|
| +
|
| +void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(ToRegister(instr->result()).is(rdx));
|
| +
|
| + if (divisor == 0) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| return;
|
| }
|
|
|
| - uint32_t divisor_abs = abs(divisor);
|
| - if (IsPowerOf2(divisor_abs)) {
|
| - int32_t power = WhichPowerOf2(divisor_abs);
|
| - if (divisor < 0) {
|
| - __ movsxlq(result, dividend);
|
| - __ neg(result);
|
| - if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ sar(result, Immediate(power));
|
| - } else {
|
| - if (!result.is(dividend)) {
|
| - __ movl(result, dividend);
|
| - }
|
| - __ sarl(result, Immediate(power));
|
| - }
|
| - } else {
|
| - Register reg1 = ToRegister(instr->temp());
|
| - Register reg2 = ToRegister(instr->result());
|
| -
|
| - // Find b which: 2^b < divisor_abs < 2^(b+1).
|
| - unsigned b = 31 - CompilerIntrinsics::CountLeadingZeros(divisor_abs);
|
| - unsigned shift = 32 + b; // Precision +1bit (effectively).
|
| - double multiplier_f =
|
| - static_cast<double>(static_cast<uint64_t>(1) << shift) / divisor_abs;
|
| - int64_t multiplier;
|
| - if (multiplier_f - std::floor(multiplier_f) < 0.5) {
|
| - multiplier = static_cast<int64_t>(std::floor(multiplier_f));
|
| - } else {
|
| - multiplier = static_cast<int64_t>(std::floor(multiplier_f)) + 1;
|
| - }
|
| - // The multiplier is a uint32.
|
| - ASSERT(multiplier > 0 &&
|
| - multiplier < (static_cast<int64_t>(1) << 32));
|
| - // The multiply is int64, so sign-extend to r64.
|
| - __ movsxlq(reg1, dividend);
|
| - if (divisor < 0 &&
|
| - instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - __ neg(reg1);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - __ Set(reg2, multiplier);
|
| - // Result just fit in r64, because it's int32 * uint32.
|
| - __ imul(reg2, reg1);
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + HMathFloorOfDiv* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
|
| + __ testl(dividend, dividend);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| +
|
| + __ FlooringDiv(dividend, divisor);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(divisor == kMinInt || (divisor != 0 && IsPowerOf2(Abs(divisor))));
|
| + ASSERT(!result.is(dividend));
|
|
|
| - __ addq(reg2, Immediate(1 << 30));
|
| - __ sar(reg2, Immediate(shift));
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + HDiv* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
|
| + __ testl(dividend, dividend);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + // Check for (kMinInt / -1).
|
| + if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
|
| + __ cmpl(dividend, Immediate(kMinInt));
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
| + // Deoptimize if remainder will not be 0.
|
| + if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
|
| + divisor != 1 && divisor != -1) {
|
| + int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
|
| + __ testl(dividend, Immediate(mask));
|
| + DeoptimizeIf(not_zero, instr->environment());
|
| }
|
| + __ Move(result, dividend);
|
| + int32_t shift = WhichPowerOf2Abs(divisor);
|
| + if (shift > 0) {
|
| + // The arithmetic shift is always OK, the 'if' is an optimization only.
|
| + if (shift > 1) __ sarl(result, Immediate(31));
|
| + __ shrl(result, Immediate(32 - shift));
|
| + __ addl(result, dividend);
|
| + __ sarl(result, Immediate(shift));
|
| + }
|
| + if (divisor < 0) __ negl(result);
|
| }
|
|
|
|
|
| -void LCodeGen::DoDivI(LDivI* instr) {
|
| - if (!instr->is_flooring() && instr->hydrogen()->RightIsPowerOf2()) {
|
| - Register dividend = ToRegister(instr->left());
|
| - HDiv* hdiv = instr->hydrogen();
|
| - int32_t divisor = hdiv->right()->GetInteger32Constant();
|
| - Register result = ToRegister(instr->result());
|
| - ASSERT(!result.is(dividend));
|
| +void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
|
| + Register dividend = ToRegister(instr->dividend());
|
| + int32_t divisor = instr->divisor();
|
| + ASSERT(ToRegister(instr->result()).is(rdx));
|
|
|
| - // Check for (0 / -x) that will produce negative zero.
|
| - if (hdiv->left()->RangeCanInclude(0) && divisor < 0 &&
|
| - hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - __ testl(dividend, dividend);
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - // Check for (kMinInt / -1).
|
| - if (hdiv->left()->RangeCanInclude(kMinInt) && divisor == -1 &&
|
| - hdiv->CheckFlag(HValue::kCanOverflow)) {
|
| - __ cmpl(dividend, Immediate(kMinInt));
|
| - DeoptimizeIf(zero, instr->environment());
|
| - }
|
| - // Deoptimize if remainder will not be 0.
|
| - if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
|
| - __ testl(dividend, Immediate(Abs(divisor) - 1));
|
| - DeoptimizeIf(not_zero, instr->environment());
|
| - }
|
| - __ Move(result, dividend);
|
| - int32_t shift = WhichPowerOf2(Abs(divisor));
|
| - if (shift > 0) {
|
| - // The arithmetic shift is always OK, the 'if' is an optimization only.
|
| - if (shift > 1) __ sarl(result, Immediate(31));
|
| - __ shrl(result, Immediate(32 - shift));
|
| - __ addl(result, dividend);
|
| - __ sarl(result, Immediate(shift));
|
| - }
|
| - if (divisor < 0) __ negl(result);
|
| + if (divisor == 0) {
|
| + DeoptimizeIf(no_condition, instr->environment());
|
| return;
|
| }
|
|
|
| - LOperand* right = instr->right();
|
| - ASSERT(ToRegister(instr->result()).is(rax));
|
| - ASSERT(ToRegister(instr->left()).is(rax));
|
| - ASSERT(!ToRegister(instr->right()).is(rax));
|
| - ASSERT(!ToRegister(instr->right()).is(rdx));
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + HDiv* hdiv = instr->hydrogen();
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
|
| + __ testl(dividend, dividend);
|
| + DeoptimizeIf(zero, instr->environment());
|
| + }
|
|
|
| - Register left_reg = rax;
|
| + __ FlooringDiv(dividend, Abs(divisor));
|
| + __ movl(rax, dividend);
|
| + __ shrl(rax, Immediate(31));
|
| + __ addl(rdx, rax);
|
| + if (divisor < 0) __ neg(rdx);
|
| +
|
| + if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
|
| + __ movl(rax, rdx);
|
| + __ imull(rax, rax, Immediate(divisor));
|
| + __ subl(rax, dividend);
|
| + DeoptimizeIf(not_equal, instr->environment());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDivI(LDivI* instr) {
|
| + HBinaryOperation* hdiv = instr->hydrogen();
|
| + Register dividend = ToRegister(instr->left());
|
| + Register divisor = ToRegister(instr->right());
|
| + Register remainder = ToRegister(instr->temp());
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(dividend.is(rax));
|
| + ASSERT(remainder.is(rdx));
|
| + ASSERT(result.is(rax));
|
| + ASSERT(!divisor.is(rax));
|
| + ASSERT(!divisor.is(rdx));
|
|
|
| // Check for x / 0.
|
| - Register right_reg = ToRegister(right);
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
|
| - __ testl(right_reg, right_reg);
|
| + if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
|
| + __ testl(divisor, divisor);
|
| DeoptimizeIf(zero, instr->environment());
|
| }
|
|
|
| // Check for (0 / -x) that will produce negative zero.
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| - Label left_not_zero;
|
| - __ testl(left_reg, left_reg);
|
| - __ j(not_zero, &left_not_zero, Label::kNear);
|
| - __ testl(right_reg, right_reg);
|
| + if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label dividend_not_zero;
|
| + __ testl(dividend, dividend);
|
| + __ j(not_zero, ÷nd_not_zero, Label::kNear);
|
| + __ testl(divisor, divisor);
|
| DeoptimizeIf(sign, instr->environment());
|
| - __ bind(&left_not_zero);
|
| + __ bind(÷nd_not_zero);
|
| }
|
|
|
| // Check for (kMinInt / -1).
|
| - if (instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)) {
|
| - Label left_not_min_int;
|
| - __ cmpl(left_reg, Immediate(kMinInt));
|
| - __ j(not_zero, &left_not_min_int, Label::kNear);
|
| - __ cmpl(right_reg, Immediate(-1));
|
| + if (hdiv->CheckFlag(HValue::kCanOverflow)) {
|
| + Label dividend_not_min_int;
|
| + __ cmpl(dividend, Immediate(kMinInt));
|
| + __ j(not_zero, ÷nd_not_min_int, Label::kNear);
|
| + __ cmpl(divisor, Immediate(-1));
|
| DeoptimizeIf(zero, instr->environment());
|
| - __ bind(&left_not_min_int);
|
| + __ bind(÷nd_not_min_int);
|
| }
|
|
|
| - // Sign extend to rdx.
|
| + // Sign extend to rdx (= remainder).
|
| __ cdq();
|
| - __ idivl(right_reg);
|
| + __ idivl(divisor);
|
|
|
| - if (instr->is_flooring()) {
|
| + if (hdiv->IsMathFloorOfDiv()) {
|
| Label done;
|
| - __ testl(rdx, rdx);
|
| + __ testl(remainder, remainder);
|
| __ j(zero, &done, Label::kNear);
|
| - __ xorl(rdx, right_reg);
|
| - __ sarl(rdx, Immediate(31));
|
| - __ addl(rax, rdx);
|
| + __ xorl(remainder, divisor);
|
| + __ sarl(remainder, Immediate(31));
|
| + __ addl(result, remainder);
|
| __ bind(&done);
|
| - } else if (!instr->hydrogen()->CheckFlag(
|
| - HInstruction::kAllUsesTruncatingToInt32)) {
|
| + } else if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
|
| // Deoptimize if remainder is not 0.
|
| - __ testl(rdx, rdx);
|
| + __ testl(remainder, remainder);
|
| DeoptimizeIf(not_zero, instr->environment());
|
| }
|
| }
|
| @@ -1862,7 +1907,6 @@ void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
|
|
|
| BinaryOpICStub stub(instr->op(), NO_OVERWRITE);
|
| CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
| - __ nop(); // Signals no inlined code.
|
| }
|
|
|
|
|
| @@ -2950,7 +2994,7 @@ void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
|
| case FAST_HOLEY_SMI_ELEMENTS:
|
| case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| case DICTIONARY_ELEMENTS:
|
| - case NON_STRICT_ARGUMENTS_ELEMENTS:
|
| + case SLOPPY_ARGUMENTS_ELEMENTS:
|
| UNREACHABLE();
|
| break;
|
| }
|
| @@ -3560,10 +3604,11 @@ void LCodeGen::DoMathRound(LMathRound* instr) {
|
| const XMMRegister xmm_scratch = double_scratch0();
|
| Register output_reg = ToRegister(instr->result());
|
| XMMRegister input_reg = ToDoubleRegister(instr->value());
|
| + XMMRegister input_temp = ToDoubleRegister(instr->temp());
|
| static int64_t one_half = V8_INT64_C(0x3FE0000000000000); // 0.5
|
| static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000); // -0.5
|
|
|
| - Label done, round_to_zero, below_one_half, do_not_compensate, restore;
|
| + Label done, round_to_zero, below_one_half;
|
| Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
|
| __ movq(kScratchRegister, one_half);
|
| __ movq(xmm_scratch, kScratchRegister);
|
| @@ -3587,21 +3632,19 @@ void LCodeGen::DoMathRound(LMathRound* instr) {
|
|
|
| // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
|
| // compare and compensate.
|
| - __ movq(kScratchRegister, input_reg); // Back up input_reg.
|
| - __ subsd(input_reg, xmm_scratch);
|
| - __ cvttsd2si(output_reg, input_reg);
|
| + __ movq(input_temp, input_reg); // Do not alter input_reg.
|
| + __ subsd(input_temp, xmm_scratch);
|
| + __ cvttsd2si(output_reg, input_temp);
|
| // Catch minint due to overflow, and to prevent overflow when compensating.
|
| __ cmpl(output_reg, Immediate(0x80000000));
|
| __ RecordComment("D2I conversion overflow");
|
| DeoptimizeIf(equal, instr->environment());
|
|
|
| __ Cvtlsi2sd(xmm_scratch, output_reg);
|
| - __ ucomisd(input_reg, xmm_scratch);
|
| - __ j(equal, &restore, Label::kNear);
|
| + __ ucomisd(xmm_scratch, input_temp);
|
| + __ j(equal, &done, dist);
|
| __ subl(output_reg, Immediate(1));
|
| // No overflow because we already ruled out minint.
|
| - __ bind(&restore);
|
| - __ movq(input_reg, kScratchRegister); // Restore input_reg.
|
| __ jmp(&done, dist);
|
|
|
| __ bind(&round_to_zero);
|
| @@ -3789,8 +3832,9 @@ void LCodeGen::DoCallNew(LCallNew* instr) {
|
|
|
| __ Set(rax, instr->arity());
|
| // No cell in ebx for construct type feedback in optimized code
|
| - Handle<Object> undefined_value(isolate()->factory()->undefined_value());
|
| - __ Move(rbx, undefined_value);
|
| + Handle<Object> megamorphic_symbol =
|
| + TypeFeedbackInfo::MegamorphicSentinel(isolate());
|
| + __ Move(rbx, megamorphic_symbol);
|
| CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
|
| CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr);
|
| }
|
| @@ -3802,7 +3846,7 @@ void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
|
| ASSERT(ToRegister(instr->result()).is(rax));
|
|
|
| __ Set(rax, instr->arity());
|
| - __ Move(rbx, factory()->undefined_value());
|
| + __ Move(rbx, TypeFeedbackInfo::MegamorphicSentinel(isolate()));
|
| ElementsKind kind = instr->hydrogen()->elements_kind();
|
| AllocationSiteOverrideMode override_mode =
|
| (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
|
| @@ -3892,7 +3936,7 @@ void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
|
| SmiCheck check_needed = hinstr->value()->IsHeapObject()
|
| ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
|
|
| - if (FLAG_track_fields && representation.IsSmi()) {
|
| + if (representation.IsSmi()) {
|
| if (instr->value()->IsConstantOperand()) {
|
| LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
|
| if (!IsInteger32Constant(operand_value) &&
|
| @@ -3900,7 +3944,7 @@ void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
|
| DeoptimizeIf(no_condition, instr->environment());
|
| }
|
| }
|
| - } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
|
| + } else if (representation.IsHeapObject()) {
|
| if (instr->value()->IsConstantOperand()) {
|
| LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
|
| if (IsInteger32Constant(operand_value)) {
|
| @@ -4010,8 +4054,7 @@ void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
|
| ASSERT(ToRegister(instr->value()).is(rax));
|
|
|
| __ Move(rcx, instr->hydrogen()->name());
|
| - Handle<Code> ic = StoreIC::initialize_stub(isolate(),
|
| - instr->strict_mode_flag());
|
| + Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
|
| CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| }
|
|
|
| @@ -4029,44 +4072,51 @@ void LCodeGen::ApplyCheckIf(Condition cc, LBoundsCheck* check) {
|
|
|
|
|
| void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
|
| - if (instr->hydrogen()->skip_check()) return;
|
| + HBoundsCheck* hinstr = instr->hydrogen();
|
| + if (hinstr->skip_check()) return;
|
| +
|
| + Representation representation = hinstr->length()->representation();
|
| + ASSERT(representation.Equals(hinstr->index()->representation()));
|
| + ASSERT(representation.IsSmiOrInteger32());
|
|
|
| if (instr->length()->IsRegister()) {
|
| Register reg = ToRegister(instr->length());
|
| - if (!instr->hydrogen()->length()->representation().IsSmi()) {
|
| - __ AssertZeroExtended(reg);
|
| - }
|
| +
|
| if (instr->index()->IsConstantOperand()) {
|
| int32_t constant_index =
|
| ToInteger32(LConstantOperand::cast(instr->index()));
|
| - if (instr->hydrogen()->length()->representation().IsSmi()) {
|
| + if (representation.IsSmi()) {
|
| __ Cmp(reg, Smi::FromInt(constant_index));
|
| } else {
|
| - __ cmpq(reg, Immediate(constant_index));
|
| + __ cmpl(reg, Immediate(constant_index));
|
| }
|
| } else {
|
| Register reg2 = ToRegister(instr->index());
|
| - if (!instr->hydrogen()->index()->representation().IsSmi()) {
|
| - __ AssertZeroExtended(reg2);
|
| + if (representation.IsSmi()) {
|
| + __ cmpq(reg, reg2);
|
| + } else {
|
| + __ cmpl(reg, reg2);
|
| }
|
| - __ cmpq(reg, reg2);
|
| }
|
| } else {
|
| Operand length = ToOperand(instr->length());
|
| if (instr->index()->IsConstantOperand()) {
|
| int32_t constant_index =
|
| ToInteger32(LConstantOperand::cast(instr->index()));
|
| - if (instr->hydrogen()->length()->representation().IsSmi()) {
|
| + if (representation.IsSmi()) {
|
| __ Cmp(length, Smi::FromInt(constant_index));
|
| } else {
|
| - __ cmpq(length, Immediate(constant_index));
|
| + __ cmpl(length, Immediate(constant_index));
|
| }
|
| } else {
|
| - __ cmpq(length, ToRegister(instr->index()));
|
| + if (representation.IsSmi()) {
|
| + __ cmpq(length, ToRegister(instr->index()));
|
| + } else {
|
| + __ cmpl(length, ToRegister(instr->index()));
|
| + }
|
| }
|
| }
|
| - Condition condition =
|
| - instr->hydrogen()->allow_equality() ? below : below_equal;
|
| + Condition condition = hinstr->allow_equality() ? below : below_equal;
|
| ApplyCheckIf(condition, instr);
|
| }
|
|
|
| @@ -4139,7 +4189,7 @@ void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
|
| case FAST_HOLEY_SMI_ELEMENTS:
|
| case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| case DICTIONARY_ELEMENTS:
|
| - case NON_STRICT_ARGUMENTS_ELEMENTS:
|
| + case SLOPPY_ARGUMENTS_ELEMENTS:
|
| UNREACHABLE();
|
| break;
|
| }
|
| @@ -4290,7 +4340,7 @@ void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
|
| ASSERT(ToRegister(instr->key()).is(rcx));
|
| ASSERT(ToRegister(instr->value()).is(rax));
|
|
|
| - Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
|
| + Handle<Code> ic = instr->strict_mode() == STRICT
|
| ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
|
| : isolate()->builtins()->KeyedStoreIC_Initialize();
|
| CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| @@ -4471,18 +4521,6 @@ void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
|
| }
|
|
|
|
|
| -void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) {
|
| - LOperand* input = instr->value();
|
| - ASSERT(input->IsRegister());
|
| - LOperand* output = instr->result();
|
| - __ Integer32ToSmi(ToRegister(output), ToRegister(input));
|
| - if (!instr->hydrogen()->value()->HasRange() ||
|
| - !instr->hydrogen()->value()->range()->IsInSmiRange()) {
|
| - DeoptimizeIf(overflow, instr->environment());
|
| - }
|
| -}
|
| -
|
| -
|
| void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
|
| LOperand* input = instr->value();
|
| LOperand* output = instr->result();
|
| @@ -4494,22 +4532,6 @@ void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
|
| }
|
|
|
|
|
| -void LCodeGen::DoUint32ToSmi(LUint32ToSmi* instr) {
|
| - LOperand* input = instr->value();
|
| - ASSERT(input->IsRegister());
|
| - LOperand* output = instr->result();
|
| - if (!instr->hydrogen()->value()->HasRange() ||
|
| - !instr->hydrogen()->value()->range()->IsInSmiRange() ||
|
| - instr->hydrogen()->value()->range()->upper() == kMaxInt) {
|
| - // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
|
| - // interval, so we treat kMaxInt as a sentinel for this entire interval.
|
| - __ testl(ToRegister(input), Immediate(0x80000000));
|
| - DeoptimizeIf(not_zero, instr->environment());
|
| - }
|
| - __ Integer32ToSmi(ToRegister(output), ToRegister(input));
|
| -}
|
| -
|
| -
|
| void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
|
| LOperand* input = instr->value();
|
| ASSERT(input->IsRegister() && input->Equals(instr->result()));
|
| @@ -4545,15 +4567,11 @@ void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
|
|
|
|
|
| void LCodeGen::DoDeferredNumberTagU(LNumberTagU* instr) {
|
| - Label slow;
|
| + Label done, slow;
|
| Register reg = ToRegister(instr->value());
|
| - Register tmp = reg.is(rax) ? rcx : rax;
|
| - XMMRegister temp_xmm = ToDoubleRegister(instr->temp());
|
| -
|
| - // Preserve the value of all registers.
|
| - PushSafepointRegistersScope scope(this);
|
| + Register tmp = ToRegister(instr->temp1());
|
| + XMMRegister temp_xmm = ToDoubleRegister(instr->temp2());
|
|
|
| - Label done;
|
| // Load value into temp_xmm which will be preserved across potential call to
|
| // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
|
| // XMM registers on x64).
|
| @@ -4567,29 +4585,31 @@ void LCodeGen::DoDeferredNumberTagU(LNumberTagU* instr) {
|
|
|
| // Slow case: Call the runtime system to do the number allocation.
|
| __ bind(&slow);
|
| + {
|
| + // Put a valid pointer value in the stack slot where the result
|
| + // register is stored, as this register is in the pointer map, but contains
|
| + // an integer value.
|
| + __ Set(reg, 0);
|
|
|
| - // Put a valid pointer value in the stack slot where the result
|
| - // register is stored, as this register is in the pointer map, but contains an
|
| - // integer value.
|
| - __ StoreToSafepointRegisterSlot(reg, Immediate(0));
|
| -
|
| - // NumberTagU uses the context from the frame, rather than
|
| - // the environment's HContext or HInlinedContext value.
|
| - // They only call Runtime::kAllocateHeapNumber.
|
| - // The corresponding HChange instructions are added in a phase that does
|
| - // not have easy access to the local context.
|
| - __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
|
| - __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
|
| - RecordSafepointWithRegisters(
|
| - instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
|
| + // Preserve the value of all registers.
|
| + PushSafepointRegistersScope scope(this);
|
|
|
| - if (!reg.is(rax)) __ movp(reg, rax);
|
| + // NumberTagU uses the context from the frame, rather than
|
| + // the environment's HContext or HInlinedContext value.
|
| + // They only call Runtime::kAllocateHeapNumber.
|
| + // The corresponding HChange instructions are added in a phase that does
|
| + // not have easy access to the local context.
|
| + __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
|
| + __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
|
| + __ StoreToSafepointRegisterSlot(reg, rax);
|
| + }
|
|
|
| // Done. Put the value in temp_xmm into the value of the allocated heap
|
| // number.
|
| __ bind(&done);
|
| __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
|
| - __ StoreToSafepointRegisterSlot(reg, reg);
|
| }
|
|
|
|
|
| @@ -4646,10 +4666,19 @@ void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
|
|
|
|
|
| void LCodeGen::DoSmiTag(LSmiTag* instr) {
|
| - ASSERT(instr->value()->Equals(instr->result()));
|
| + HChange* hchange = instr->hydrogen();
|
| Register input = ToRegister(instr->value());
|
| - ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
|
| - __ Integer32ToSmi(input, input);
|
| + Register output = ToRegister(instr->result());
|
| + if (hchange->CheckFlag(HValue::kCanOverflow) &&
|
| + hchange->value()->CheckFlag(HValue::kUint32)) {
|
| + __ testl(input, Immediate(0x80000000));
|
| + DeoptimizeIf(not_zero, instr->environment());
|
| + }
|
| + __ Integer32ToSmi(output, input);
|
| + if (hchange->CheckFlag(HValue::kCanOverflow) &&
|
| + !hchange->value()->CheckFlag(HValue::kUint32)) {
|
| + DeoptimizeIf(overflow, instr->environment());
|
| + }
|
| }
|
|
|
|
|
| @@ -5056,6 +5085,30 @@ void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
|
| }
|
|
|
|
|
| +void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
|
| + XMMRegister value_reg = ToDoubleRegister(instr->value());
|
| + Register result_reg = ToRegister(instr->result());
|
| + if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
|
| + __ movq(result_reg, value_reg);
|
| + __ shr(result_reg, Immediate(32));
|
| + } else {
|
| + __ movd(result_reg, value_reg);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
|
| + Register hi_reg = ToRegister(instr->hi());
|
| + Register lo_reg = ToRegister(instr->lo());
|
| + XMMRegister result_reg = ToDoubleRegister(instr->result());
|
| + XMMRegister xmm_scratch = double_scratch0();
|
| + __ movd(result_reg, hi_reg);
|
| + __ psllq(result_reg, 32);
|
| + __ movd(xmm_scratch, lo_reg);
|
| + __ orps(result_reg, xmm_scratch);
|
| +}
|
| +
|
| +
|
| void LCodeGen::DoAllocate(LAllocate* instr) {
|
| class DeferredAllocate V8_FINAL : public LDeferredCode {
|
| public:
|
| @@ -5224,7 +5277,7 @@ void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
|
| // space for nested functions that don't need literals cloning.
|
| bool pretenure = instr->hydrogen()->pretenure();
|
| if (!pretenure && instr->hydrogen()->has_no_literals()) {
|
| - FastNewClosureStub stub(instr->hydrogen()->language_mode(),
|
| + FastNewClosureStub stub(instr->hydrogen()->strict_mode(),
|
| instr->hydrogen()->is_generator());
|
| __ Move(rbx, instr->hydrogen()->shared_info());
|
| CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
|
|
|