Index: src/libFLAC/fixed_intrin_ssse3.c |
diff --git a/src/libFLAC/fixed_intrin_ssse3.c b/src/libFLAC/fixed_intrin_ssse3.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..50c663d83bf2ffa8813910623da4d6f90281ad9d |
--- /dev/null |
+++ b/src/libFLAC/fixed_intrin_ssse3.c |
@@ -0,0 +1,241 @@ |
+/* libFLAC - Free Lossless Audio Codec library |
+ * Copyright (C) 2000-2009 Josh Coalson |
+ * Copyright (C) 2011-2014 Xiph.Org Foundation |
+ * |
+ * Redistribution and use in source and binary forms, with or without |
+ * modification, are permitted provided that the following conditions |
+ * are met: |
+ * |
+ * - Redistributions of source code must retain the above copyright |
+ * notice, this list of conditions and the following disclaimer. |
+ * |
+ * - Redistributions in binary form must reproduce the above copyright |
+ * notice, this list of conditions and the following disclaimer in the |
+ * documentation and/or other materials provided with the distribution. |
+ * |
+ * - Neither the name of the Xiph.org Foundation nor the names of its |
+ * contributors may be used to endorse or promote products derived from |
+ * this software without specific prior written permission. |
+ * |
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ */ |
+ |
+#ifdef HAVE_CONFIG_H |
+# include <config.h> |
+#endif |
+ |
+#ifndef FLAC__INTEGER_ONLY_LIBRARY |
+#ifndef FLAC__NO_ASM |
+#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN |
+#include "private/fixed.h" |
+#ifdef FLAC__SSSE3_SUPPORTED |
+ |
+#include <tmmintrin.h> /* SSSE3 */ |
+#include <math.h> |
+#include "private/macros.h" |
+#include "share/compat.h" |
+#include "FLAC/assert.h" |
+ |
+#ifdef FLAC__CPU_IA32 |
+#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src) |
+#else |
+#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src) |
+#endif |
+ |
+FLAC__SSE_TARGET("ssse3") |
+unsigned FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) |
+{ |
+ FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; |
+ unsigned i, order; |
+ |
+ __m128i total_err0, total_err1, total_err2; |
+ |
+ { |
+ FLAC__int32 itmp; |
+ __m128i last_error; |
+ |
+ last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0 |
+ itmp = data[-2]; |
+ last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); |
+ last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1 |
+ itmp -= data[-3]; |
+ last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); |
+ last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2 |
+ itmp -= data[-3] - data[-4]; |
+ last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); |
+ last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3 |
+ |
+ total_err0 = total_err1 = _mm_setzero_si128(); |
+ for(i = 0; i < data_len; i++) { |
+ __m128i err0, err1; |
+ err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0 |
+ err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0 |
+#if 1 /* OPT_SSE */ |
+ err1 = _mm_sub_epi32(err1, last_error); |
+ last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2 |
+ err1 = _mm_sub_epi32(err1, last_error); |
+ last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1 |
+ err1 = _mm_sub_epi32(err1, last_error); |
+ last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0 |
+ err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 |
+#else |
+ last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1 |
+ last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 |
+ err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 |
+#endif |
+ last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3 |
+ |
+ err0 = _mm_abs_epi32(err0); |
+ err1 = _mm_abs_epi32(err1); |
+ |
+ total_err0 = _mm_add_epi32(total_err0, err0); // 0 0 0 te0 |
+ total_err1 = _mm_add_epi32(total_err1, err1); // te1 te2 te3 te4 |
+ } |
+ } |
+ |
+ total_error_0 = _mm_cvtsi128_si32(total_err0); |
+ total_err2 = total_err1; // te1 te2 te3 te4 |
+ total_err1 = _mm_srli_si128(total_err1, 8); // 0 0 te1 te2 |
+ total_error_4 = _mm_cvtsi128_si32(total_err2); |
+ total_error_2 = _mm_cvtsi128_si32(total_err1); |
+ total_err2 = _mm_srli_si128(total_err2, 4); // 0 te1 te2 te3 |
+ total_err1 = _mm_srli_si128(total_err1, 4); // 0 0 0 te1 |
+ total_error_3 = _mm_cvtsi128_si32(total_err2); |
+ total_error_1 = _mm_cvtsi128_si32(total_err1); |
+ |
+ /* prefer higher order */ |
+ if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) |
+ order = 0; |
+ else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4)) |
+ order = 1; |
+ else if(total_error_2 < flac_min(total_error_3, total_error_4)) |
+ order = 2; |
+ else if(total_error_3 < total_error_4) |
+ order = 3; |
+ else |
+ order = 4; |
+ |
+ /* Estimate the expected number of bits per residual signal sample. */ |
+ /* 'total_error*' is linearly related to the variance of the residual */ |
+ /* signal, so we use it directly to compute E(|x|) */ |
+ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
+ |
+ residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ |
+ return order; |
+} |
+ |
+FLAC__SSE_TARGET("ssse3") |
+unsigned FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) |
+{ |
+ FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; |
+ unsigned i, order; |
+ |
+ __m128i total_err0, total_err1, total_err3; |
+ |
+ { |
+ FLAC__int32 itmp; |
+ __m128i last_error, zero = _mm_setzero_si128(); |
+ |
+ last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0 |
+ itmp = data[-2]; |
+ last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); |
+ last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1 |
+ itmp -= data[-3]; |
+ last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); |
+ last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2 |
+ itmp -= data[-3] - data[-4]; |
+ last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); |
+ last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3 |
+ |
+ total_err0 = total_err1 = total_err3 = _mm_setzero_si128(); |
+ for(i = 0; i < data_len; i++) { |
+ __m128i err0, err1; |
+ err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0 |
+ err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0 |
+#if 1 /* OPT_SSE */ |
+ err1 = _mm_sub_epi32(err1, last_error); |
+ last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2 |
+ err1 = _mm_sub_epi32(err1, last_error); |
+ last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1 |
+ err1 = _mm_sub_epi32(err1, last_error); |
+ last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0 |
+ err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 |
+#else |
+ last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1 |
+ last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 |
+ err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 |
+#endif |
+ last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3 |
+ |
+ err0 = _mm_abs_epi32(err0); |
+ err1 = _mm_abs_epi32(err1); // |e1| |e2| |e3| |e4| |
+ |
+ total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0 |
+ err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4| |
+ err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2| |
+ total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4 |
+ total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2 |
+ } |
+ } |
+ |
+ m128i_to_i64(total_error_0, total_err0); |
+ m128i_to_i64(total_error_4, total_err3); |
+ m128i_to_i64(total_error_2, total_err1); |
+ total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3 |
+ total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1 |
+ m128i_to_i64(total_error_3, total_err3); |
+ m128i_to_i64(total_error_1, total_err1); |
+ |
+ /* prefer higher order */ |
+ if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) |
+ order = 0; |
+ else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4)) |
+ order = 1; |
+ else if(total_error_2 < flac_min(total_error_3, total_error_4)) |
+ order = 2; |
+ else if(total_error_3 < total_error_4) |
+ order = 3; |
+ else |
+ order = 4; |
+ |
+ /* Estimate the expected number of bits per residual signal sample. */ |
+ /* 'total_error*' is linearly related to the variance of the residual */ |
+ /* signal, so we use it directly to compute E(|x|) */ |
+ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
+ FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
+ |
+ residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); |
+ |
+ return order; |
+} |
+ |
+#endif /* FLAC__SSSE3_SUPPORTED */ |
+#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ |
+#endif /* FLAC__NO_ASM */ |
+#endif /* FLAC__INTEGER_ONLY_LIBRARY */ |