OLD | NEW |
(Empty) | |
| 1 /* libFLAC - Free Lossless Audio Codec library |
| 2 * Copyright (C) 2000-2009 Josh Coalson |
| 3 * Copyright (C) 2011-2014 Xiph.Org Foundation |
| 4 * |
| 5 * Redistribution and use in source and binary forms, with or without |
| 6 * modification, are permitted provided that the following conditions |
| 7 * are met: |
| 8 * |
| 9 * - Redistributions of source code must retain the above copyright |
| 10 * notice, this list of conditions and the following disclaimer. |
| 11 * |
| 12 * - Redistributions in binary form must reproduce the above copyright |
| 13 * notice, this list of conditions and the following disclaimer in the |
| 14 * documentation and/or other materials provided with the distribution. |
| 15 * |
| 16 * - Neither the name of the Xiph.org Foundation nor the names of its |
| 17 * contributors may be used to endorse or promote products derived from |
| 18 * this software without specific prior written permission. |
| 19 * |
| 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| 24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 31 */ |
| 32 |
| 33 #ifdef HAVE_CONFIG_H |
| 34 # include <config.h> |
| 35 #endif |
| 36 |
| 37 #ifndef FLAC__NO_ASM |
| 38 #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X8
6INTRIN |
| 39 #include "private/stream_encoder.h" |
| 40 #include "private/bitmath.h" |
| 41 #ifdef FLAC__SSE2_SUPPORTED |
| 42 |
| 43 #include <stdlib.h> /* for abs() */ |
| 44 #include <emmintrin.h> /* SSE2 */ |
| 45 #include "FLAC/assert.h" |
| 46 |
| 47 FLAC__SSE_TARGET("sse2") |
| 48 void FLAC__precompute_partition_info_sums_intrin_sse2(const FLAC__int32 residual
[], FLAC__uint64 abs_residual_partition_sums[], |
| 49 unsigned residual_samples, unsigned predictor_order, unsigned mi
n_partition_order, unsigned max_partition_order, unsigned bps) |
| 50 { |
| 51 const unsigned default_partition_samples = (residual_samples + predictor
_order) >> max_partition_order; |
| 52 unsigned partitions = 1u << max_partition_order; |
| 53 |
| 54 FLAC__ASSERT(default_partition_samples > predictor_order); |
| 55 |
| 56 /* first do max_partition_order */ |
| 57 { |
| 58 unsigned partition, residual_sample, end = (unsigned)(-(int)pred
ictor_order); |
| 59 unsigned e1, e3; |
| 60 __m128i mm_res, mm_sum, mm_mask; |
| 61 |
| 62 if(FLAC__bitmath_ilog2(default_partition_samples) + bps + FLAC__
MAX_EXTRA_RESIDUAL_BPS < 32) { |
| 63 for(partition = residual_sample = 0; partition < partiti
ons; partition++) { |
| 64 end += default_partition_samples; |
| 65 mm_sum = _mm_setzero_si128(); |
| 66 |
| 67 e1 = (residual_sample + 3) & ~3; e3 = end & ~3; |
| 68 if(e1 > end) |
| 69 e1 = end; /* try flac -l 1 -b 16 and you
'll be here */ |
| 70 |
| 71 /* assumption: residual[] is properly aligned so
(residual + e1) is properly aligned too and _mm_loadu_si128() is fast */ |
| 72 for( ; residual_sample < e1; residual_sample++)
{ |
| 73 mm_res = _mm_cvtsi32_si128(residual[resi
dual_sample]); |
| 74 mm_mask = _mm_srai_epi32(mm_res, 31); |
| 75 mm_res = _mm_xor_si128(mm_res, mm_mask); |
| 76 mm_res = _mm_sub_epi32(mm_res, mm_mask);
/* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger pro
blems */ |
| 77 mm_sum = _mm_add_epi32(mm_sum, mm_res); |
| 78 } |
| 79 |
| 80 for( ; residual_sample < e3; residual_sample+=4)
{ |
| 81 mm_res = _mm_loadu_si128((const __m128i*
)(residual+residual_sample)); |
| 82 mm_mask = _mm_srai_epi32(mm_res, 31); |
| 83 mm_res = _mm_xor_si128(mm_res, mm_mask); |
| 84 mm_res = _mm_sub_epi32(mm_res, mm_mask); |
| 85 mm_sum = _mm_add_epi32(mm_sum, mm_res); |
| 86 } |
| 87 |
| 88 for( ; residual_sample < end; residual_sample++)
{ |
| 89 mm_res = _mm_cvtsi32_si128(residual[resi
dual_sample]); |
| 90 mm_mask = _mm_srai_epi32(mm_res, 31); |
| 91 mm_res = _mm_xor_si128(mm_res, mm_mask); |
| 92 mm_res = _mm_sub_epi32(mm_res, mm_mask); |
| 93 mm_sum = _mm_add_epi32(mm_sum, mm_res); |
| 94 } |
| 95 |
| 96 mm_sum = _mm_add_epi32(mm_sum, _mm_srli_si128(mm
_sum, 8)); |
| 97 mm_sum = _mm_add_epi32(mm_sum, _mm_srli_si128(mm
_sum, 4)); |
| 98 abs_residual_partition_sums[partition] = (FLAC__
uint32)_mm_cvtsi128_si32(mm_sum); |
| 99 } |
| 100 } |
| 101 else { /* have to pessimistically use 64 bits for accumulator */ |
| 102 for(partition = residual_sample = 0; partition < partiti
ons; partition++) { |
| 103 end += default_partition_samples; |
| 104 mm_sum = _mm_setzero_si128(); |
| 105 |
| 106 e1 = (residual_sample + 1) & ~1; e3 = end & ~1; |
| 107 FLAC__ASSERT(e1 <= end); |
| 108 |
| 109 for( ; residual_sample < e1; residual_sample++)
{ |
| 110 mm_res = _mm_cvtsi32_si128(residual[resi
dual_sample]); /* 0 0 0 r0 */ |
| 111 mm_mask = _mm_srai_epi32(mm_res, 31); |
| 112 mm_res = _mm_xor_si128(mm_res, mm_mask); |
| 113 mm_res = _mm_sub_epi32(mm_res, mm_mask);
/* 0 0 0 |r0| == 00 |r0_64| */ |
| 114 mm_sum = _mm_add_epi64(mm_sum, mm_res); |
| 115 } |
| 116 |
| 117 for( ; residual_sample < e3; residual_sample+=2)
{ |
| 118 mm_res = _mm_loadl_epi64((const __m128i*
)(residual+residual_sample)); /* 0 0 r1 r0 */ |
| 119 mm_mask = _mm_srai_epi32(mm_res, 31); |
| 120 mm_res = _mm_xor_si128(mm_res, mm_mask); |
| 121 mm_res = _mm_sub_epi32(mm_res, mm_mask);
/* 0 0 |r1| |r0| */ |
| 122 mm_res = _mm_shuffle_epi32(mm_res, _MM_S
HUFFLE(3,1,2,0)); /* 0 |r1| 0 |r0| == |r1_64| |r0_64| */ |
| 123 mm_sum = _mm_add_epi64(mm_sum, mm_res); |
| 124 } |
| 125 |
| 126 for( ; residual_sample < end; residual_sample++)
{ |
| 127 mm_res = _mm_cvtsi32_si128(residual[resi
dual_sample]); |
| 128 mm_mask = _mm_srai_epi32(mm_res, 31); |
| 129 mm_res = _mm_xor_si128(mm_res, mm_mask); |
| 130 mm_res = _mm_sub_epi32(mm_res, mm_mask); |
| 131 mm_sum = _mm_add_epi64(mm_sum, mm_res); |
| 132 } |
| 133 |
| 134 mm_sum = _mm_add_epi64(mm_sum, _mm_srli_si128(mm
_sum, 8)); |
| 135 _mm_storel_epi64((__m128i*)(abs_residual_partiti
on_sums+partition), mm_sum); |
| 136 } |
| 137 } |
| 138 } |
| 139 |
| 140 /* now merge partitions for lower orders */ |
| 141 { |
| 142 unsigned from_partition = 0, to_partition = partitions; |
| 143 int partition_order; |
| 144 for(partition_order = (int)max_partition_order - 1; partition_or
der >= (int)min_partition_order; partition_order--) { |
| 145 unsigned i; |
| 146 partitions >>= 1; |
| 147 for(i = 0; i < partitions; i++) { |
| 148 abs_residual_partition_sums[to_partition++] = |
| 149 abs_residual_partition_sums[from_partiti
on ] + |
| 150 abs_residual_partition_sums[from_partiti
on+1]; |
| 151 from_partition += 2; |
| 152 } |
| 153 } |
| 154 } |
| 155 } |
| 156 |
| 157 #endif /* FLAC__SSE2_SUPPORTED */ |
| 158 #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ |
| 159 #endif /* FLAC__NO_ASM */ |
OLD | NEW |