Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: src/libFLAC/md5.c

Issue 1961133002: Update FLAC to 1.3.1 (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/flac.git@master
Patch Set: build config tweaks for Windows Created 4 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/libFLAC/lpc_intrin_sse41.c ('k') | src/libFLAC/memory.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 #if HAVE_CONFIG_H 1 #ifdef HAVE_CONFIG_H
2 # include <config.h> 2 # include <config.h>
3 #endif 3 #endif
4 4
5 #include <stdlib.h> /* for malloc() */ 5 #include <stdlib.h> /* for malloc() */
6 #include <string.h> /* for memcpy() */ 6 #include <string.h> /* for memcpy() */
7 7
8 #include "private/md5.h" 8 #include "private/md5.h"
9 #include "share/alloc.h" 9 #include "share/alloc.h"
10 10 #include "share/endswap.h"
11 #ifndef FLaC__INLINE
12 #define FLaC__INLINE
13 #endif
14 11
15 /* 12 /*
16 * This code implements the MD5 message-digest algorithm. 13 * This code implements the MD5 message-digest algorithm.
17 * The algorithm is due to Ron Rivest. This code was 14 * The algorithm is due to Ron Rivest. This code was
18 * written by Colin Plumb in 1993, no copyright is claimed. 15 * written by Colin Plumb in 1993, no copyright is claimed.
19 * This code is in the public domain; do with it what you wish. 16 * This code is in the public domain; do with it what you wish.
20 * 17 *
21 * Equivalent code is available from RSA Data Security, Inc. 18 * Equivalent code is available from RSA Data Security, Inc.
22 * This code has been tested against that, and is equivalent, 19 * This code has been tested against that, and is equivalent,
23 * except that you don't need to include two pages of legalese 20 * except that you don't need to include two pages of legalese
(...skipping 112 matching lines...) Expand 10 before | Expand all | Expand 10 after
136 buf[2] += c; 133 buf[2] += c;
137 buf[3] += d; 134 buf[3] += d;
138 } 135 }
139 136
140 #if WORDS_BIGENDIAN 137 #if WORDS_BIGENDIAN
141 //@@@@@@ OPT: use bswap/intrinsics 138 //@@@@@@ OPT: use bswap/intrinsics
142 static void byteSwap(FLAC__uint32 *buf, unsigned words) 139 static void byteSwap(FLAC__uint32 *buf, unsigned words)
143 { 140 {
144 register FLAC__uint32 x; 141 register FLAC__uint32 x;
145 do { 142 do {
146 » » x = *buf; 143 » » x = *buf;
147 x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); 144 x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
148 *buf++ = (x >> 16) | (x << 16); 145 *buf++ = (x >> 16) | (x << 16);
149 } while (--words); 146 } while (--words);
150 } 147 }
151 static void byteSwapX16(FLAC__uint32 *buf) 148 static void byteSwapX16(FLAC__uint32 *buf)
152 { 149 {
153 register FLAC__uint32 x; 150 register FLAC__uint32 x;
154 151
155 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 152 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
156 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); 153 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after
220 void FLAC__MD5Init(FLAC__MD5Context *ctx) 217 void FLAC__MD5Init(FLAC__MD5Context *ctx)
221 { 218 {
222 ctx->buf[0] = 0x67452301; 219 ctx->buf[0] = 0x67452301;
223 ctx->buf[1] = 0xefcdab89; 220 ctx->buf[1] = 0xefcdab89;
224 ctx->buf[2] = 0x98badcfe; 221 ctx->buf[2] = 0x98badcfe;
225 ctx->buf[3] = 0x10325476; 222 ctx->buf[3] = 0x10325476;
226 223
227 ctx->bytes[0] = 0; 224 ctx->bytes[0] = 0;
228 ctx->bytes[1] = 0; 225 ctx->bytes[1] = 0;
229 226
230 » ctx->internal_buf = 0; 227 » ctx->internal_buf.p8= 0;
231 ctx->capacity = 0; 228 ctx->capacity = 0;
232 } 229 }
233 230
234 /* 231 /*
235 * Final wrapup - pad to 64-byte boundary with the bit pattern 232 * Final wrapup - pad to 64-byte boundary with the bit pattern
236 * 1 0* (64-bit count of bits processed, MSB-first) 233 * 1 0* (64-bit count of bits processed, MSB-first)
237 */ 234 */
238 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx) 235 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
239 { 236 {
240 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ 237 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
(...skipping 15 matching lines...) Expand all
256 memset(p, 0, count); 253 memset(p, 0, count);
257 byteSwap(ctx->in, 14); 254 byteSwap(ctx->in, 14);
258 255
259 /* Append length in bits and transform */ 256 /* Append length in bits and transform */
260 ctx->in[14] = ctx->bytes[0] << 3; 257 ctx->in[14] = ctx->bytes[0] << 3;
261 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; 258 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
262 FLAC__MD5Transform(ctx->buf, ctx->in); 259 FLAC__MD5Transform(ctx->buf, ctx->in);
263 260
264 byteSwap(ctx->buf, 4); 261 byteSwap(ctx->buf, 4);
265 memcpy(digest, ctx->buf, 16); 262 memcpy(digest, ctx->buf, 16);
266 » if(0 != ctx->internal_buf) { 263 » if (0 != ctx->internal_buf.p8) {
267 » » free(ctx->internal_buf); 264 » » free(ctx->internal_buf.p8);
268 » » ctx->internal_buf = 0; 265 » » ctx->internal_buf.p8= 0;
269 ctx->capacity = 0; 266 ctx->capacity = 0;
270 } 267 }
271 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 268 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
272 } 269 }
273 270
274 /* 271 /*
275 * Convert the incoming audio signal to a byte stream 272 * Convert the incoming audio signal to a byte stream
276 */ 273 */
277 static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], u nsigned channels, unsigned samples, unsigned bytes_per_sample) 274 static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signa l[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
278 { 275 {
276 FLAC__byte *buf_ = mbuf->p8;
277 FLAC__int16 *buf16 = mbuf->p16;
278 FLAC__int32 *buf32 = mbuf->p32;
279 FLAC__int32 a_word;
279 unsigned channel, sample; 280 unsigned channel, sample;
280 register FLAC__int32 a_word;
281 register FLAC__byte *buf_ = buf;
282 281
283 #if WORDS_BIGENDIAN 282 » /* Storage in the output buffer, buf, is little endian. */
284 #else 283
285 » if(channels == 2 && bytes_per_sample == 2) { 284 #define BYTES_CHANNEL_SELECTOR(bytes, channels) (bytes * 100 + channels)
286 » » FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1; 285
287 » » memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples); 286 » /* First do the most commonly used combinations. */
288 » » for(sample = 0; sample < samples; sample++, buf1_+=2) 287 » switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) {
289 » » » *buf1_ = (FLAC__int16)signal[1][sample]; 288 » » /* One byte per sample. */
290 » } 289 » » case (BYTES_CHANNEL_SELECTOR (1, 1)):
291 » else if(channels == 1 && bytes_per_sample == 2) { 290 » » » for (sample = 0; sample < samples; sample++)
292 » » FLAC__int16 *buf1_ = (FLAC__int16*)buf_; 291 » » » » *buf_++ = signal[0][sample];
293 » » for(sample = 0; sample < samples; sample++) 292 » » » return;
294 » » » *buf1_++ = (FLAC__int16)signal[0][sample]; 293
295 » } 294 » » case (BYTES_CHANNEL_SELECTOR (1, 2)):
296 » else 295 » » » for (sample = 0; sample < samples; sample++) {
297 #endif 296 » » » » *buf_++ = signal[0][sample];
298 » if(bytes_per_sample == 2) { 297 » » » » *buf_++ = signal[1][sample];
299 » » if(channels == 2) { 298 » » » }
300 » » » for(sample = 0; sample < samples; sample++) { 299 » » » return;
300
301 » » case (BYTES_CHANNEL_SELECTOR (1, 4)):
302 » » » for (sample = 0; sample < samples; sample++) {
303 » » » » *buf_++ = signal[0][sample];
304 » » » » *buf_++ = signal[1][sample];
305 » » » » *buf_++ = signal[2][sample];
306 » » » » *buf_++ = signal[3][sample];
307 » » » }
308 » » » return;
309
310 » » case (BYTES_CHANNEL_SELECTOR (1, 6)):
311 » » » for (sample = 0; sample < samples; sample++) {
312 » » » » *buf_++ = signal[0][sample];
313 » » » » *buf_++ = signal[1][sample];
314 » » » » *buf_++ = signal[2][sample];
315 » » » » *buf_++ = signal[3][sample];
316 » » » » *buf_++ = signal[4][sample];
317 » » » » *buf_++ = signal[5][sample];
318 » » » }
319 » » » return;
320
321 » » case (BYTES_CHANNEL_SELECTOR (1, 8)):
322 » » » for (sample = 0; sample < samples; sample++) {
323 » » » » *buf_++ = signal[0][sample];
324 » » » » *buf_++ = signal[1][sample];
325 » » » » *buf_++ = signal[2][sample];
326 » » » » *buf_++ = signal[3][sample];
327 » » » » *buf_++ = signal[4][sample];
328 » » » » *buf_++ = signal[5][sample];
329 » » » » *buf_++ = signal[6][sample];
330 » » » » *buf_++ = signal[7][sample];
331 » » » }
332 » » » return;
333
334 » » /* Two bytes per sample. */
335 » » case (BYTES_CHANNEL_SELECTOR (2, 1)):
336 » » » for (sample = 0; sample < samples; sample++)
337 » » » » *buf16++ = H2LE_16(signal[0][sample]);
338 » » » return;
339
340 » » case (BYTES_CHANNEL_SELECTOR (2, 2)):
341 » » » for (sample = 0; sample < samples; sample++) {
342 » » » » *buf16++ = H2LE_16(signal[0][sample]);
343 » » » » *buf16++ = H2LE_16(signal[1][sample]);
344 » » » }
345 » » » return;
346
347 » » case (BYTES_CHANNEL_SELECTOR (2, 4)):
348 » » » for (sample = 0; sample < samples; sample++) {
349 » » » » *buf16++ = H2LE_16(signal[0][sample]);
350 » » » » *buf16++ = H2LE_16(signal[1][sample]);
351 » » » » *buf16++ = H2LE_16(signal[2][sample]);
352 » » » » *buf16++ = H2LE_16(signal[3][sample]);
353 » » » }
354 » » » return;
355
356 » » case (BYTES_CHANNEL_SELECTOR (2, 6)):
357 » » » for (sample = 0; sample < samples; sample++) {
358 » » » » *buf16++ = H2LE_16(signal[0][sample]);
359 » » » » *buf16++ = H2LE_16(signal[1][sample]);
360 » » » » *buf16++ = H2LE_16(signal[2][sample]);
361 » » » » *buf16++ = H2LE_16(signal[3][sample]);
362 » » » » *buf16++ = H2LE_16(signal[4][sample]);
363 » » » » *buf16++ = H2LE_16(signal[5][sample]);
364 » » » }
365 » » » return;
366
367 » » case (BYTES_CHANNEL_SELECTOR (2, 8)):
368 » » » for (sample = 0; sample < samples; sample++) {
369 » » » » *buf16++ = H2LE_16(signal[0][sample]);
370 » » » » *buf16++ = H2LE_16(signal[1][sample]);
371 » » » » *buf16++ = H2LE_16(signal[2][sample]);
372 » » » » *buf16++ = H2LE_16(signal[3][sample]);
373 » » » » *buf16++ = H2LE_16(signal[4][sample]);
374 » » » » *buf16++ = H2LE_16(signal[5][sample]);
375 » » » » *buf16++ = H2LE_16(signal[6][sample]);
376 » » » » *buf16++ = H2LE_16(signal[7][sample]);
377 » » » }
378 » » » return;
379
380 » » /* Three bytes per sample. */
381 » » case (BYTES_CHANNEL_SELECTOR (3, 1)):
382 » » » for (sample = 0; sample < samples; sample++) {
301 a_word = signal[0][sample]; 383 a_word = signal[0][sample];
302 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 384 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
303 *buf_++ = (FLAC__byte)a_word;
304 a_word = signal[1][sample];
305 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 385 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
306 *buf_++ = (FLAC__byte)a_word; 386 *buf_++ = (FLAC__byte)a_word;
307 } 387 }
308 » » } 388 » » » return;
309 » » else if(channels == 1) { 389
310 » » » for(sample = 0; sample < samples; sample++) { 390 » » case (BYTES_CHANNEL_SELECTOR (3, 2)):
311 » » » » a_word = signal[0][sample]; 391 » » » for (sample = 0; sample < samples; sample++) {
312 » » » » *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
313 » » » » *buf_++ = (FLAC__byte)a_word;
314 » » » }
315 » » }
316 » » else {
317 » » » for(sample = 0; sample < samples; sample++) {
318 » » » » for(channel = 0; channel < channels; channel++) {
319 » » » » » a_word = signal[channel][sample];
320 » » » » » *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
321 » » » » » *buf_++ = (FLAC__byte)a_word;
322 » » » » }
323 » » » }
324 » » }
325 » }
326 » else if(bytes_per_sample == 3) {
327 » » if(channels == 2) {
328 » » » for(sample = 0; sample < samples; sample++) {
329 a_word = signal[0][sample]; 392 a_word = signal[0][sample];
330 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 393 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
331 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 394 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
332 *buf_++ = (FLAC__byte)a_word; 395 *buf_++ = (FLAC__byte)a_word;
333 a_word = signal[1][sample]; 396 a_word = signal[1][sample];
334 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 397 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
335 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 398 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
336 *buf_++ = (FLAC__byte)a_word; 399 *buf_++ = (FLAC__byte)a_word;
337 } 400 }
338 » » } 401 » » » return;
339 » » else if(channels == 1) { 402
340 » » » for(sample = 0; sample < samples; sample++) { 403 » » /* Four bytes per sample. */
341 » » » » a_word = signal[0][sample]; 404 » » case (BYTES_CHANNEL_SELECTOR (4, 1)):
342 » » » » *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 405 » » » for (sample = 0; sample < samples; sample++)
343 » » » » *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 406 » » » » *buf32++ = H2LE_32(signal[0][sample]);
344 » » » » *buf_++ = (FLAC__byte)a_word; 407 » » » return;
408
409 » » case (BYTES_CHANNEL_SELECTOR (4, 2)):
410 » » » for (sample = 0; sample < samples; sample++) {
411 » » » » *buf32++ = H2LE_32(signal[0][sample]);
412 » » » » *buf32++ = H2LE_32(signal[1][sample]);
345 } 413 }
346 » » } 414 » » » return;
347 » » else { 415
348 » » » for(sample = 0; sample < samples; sample++) { 416 » » case (BYTES_CHANNEL_SELECTOR (4, 4)):
349 » » » » for(channel = 0; channel < channels; channel++) { 417 » » » for (sample = 0; sample < samples; sample++) {
418 » » » » *buf32++ = H2LE_32(signal[0][sample]);
419 » » » » *buf32++ = H2LE_32(signal[1][sample]);
420 » » » » *buf32++ = H2LE_32(signal[2][sample]);
421 » » » » *buf32++ = H2LE_32(signal[3][sample]);
422 » » » }
423 » » » return;
424
425 » » case (BYTES_CHANNEL_SELECTOR (4, 6)):
426 » » » for (sample = 0; sample < samples; sample++) {
427 » » » » *buf32++ = H2LE_32(signal[0][sample]);
428 » » » » *buf32++ = H2LE_32(signal[1][sample]);
429 » » » » *buf32++ = H2LE_32(signal[2][sample]);
430 » » » » *buf32++ = H2LE_32(signal[3][sample]);
431 » » » » *buf32++ = H2LE_32(signal[4][sample]);
432 » » » » *buf32++ = H2LE_32(signal[5][sample]);
433 » » » }
434 » » » return;
435
436 » » case (BYTES_CHANNEL_SELECTOR (4, 8)):
437 » » » for (sample = 0; sample < samples; sample++) {
438 » » » » *buf32++ = H2LE_32(signal[0][sample]);
439 » » » » *buf32++ = H2LE_32(signal[1][sample]);
440 » » » » *buf32++ = H2LE_32(signal[2][sample]);
441 » » » » *buf32++ = H2LE_32(signal[3][sample]);
442 » » » » *buf32++ = H2LE_32(signal[4][sample]);
443 » » » » *buf32++ = H2LE_32(signal[5][sample]);
444 » » » » *buf32++ = H2LE_32(signal[6][sample]);
445 » » » » *buf32++ = H2LE_32(signal[7][sample]);
446 » » » }
447 » » » return;
448
449 » » default:
450 » » » break;
451 » }
452
453 » /* General version. */
454 » switch (bytes_per_sample) {
455 » » case 1:
456 » » » for (sample = 0; sample < samples; sample++)
457 » » » » for (channel = 0; channel < channels; channel++)
458 » » » » » *buf_++ = signal[channel][sample];
459 » » » return;
460
461 » » case 2:
462 » » » for (sample = 0; sample < samples; sample++)
463 » » » » for (channel = 0; channel < channels; channel++)
464 » » » » » *buf16++ = H2LE_16(signal[channel][sampl e]);
465 » » » return;
466
467 » » case 3:
468 » » » for (sample = 0; sample < samples; sample++)
469 » » » » for (channel = 0; channel < channels; channel++) {
350 a_word = signal[channel][sample]; 470 a_word = signal[channel][sample];
351 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 471 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
352 *buf_++ = (FLAC__byte)a_word; a_word >>= 8; 472 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
353 *buf_++ = (FLAC__byte)a_word; 473 *buf_++ = (FLAC__byte)a_word;
354 } 474 }
355 » » » } 475 » » » return;
356 » » } 476
357 » } 477 » » case 4:
358 » else if(bytes_per_sample == 1) { 478 » » » for (sample = 0; sample < samples; sample++)
359 » » if(channels == 2) { 479 » » » » for (channel = 0; channel < channels; channel++)
360 » » » for(sample = 0; sample < samples; sample++) { 480 » » » » » *buf32++ = H2LE_32(signal[channel][sampl e]);
361 » » » » a_word = signal[0][sample]; 481 » » » return;
362 » » » » *buf_++ = (FLAC__byte)a_word; 482
363 » » » » a_word = signal[1][sample]; 483 » » default:
364 » » » » *buf_++ = (FLAC__byte)a_word; 484 » » » break;
365 » » » }
366 » » }
367 » » else if(channels == 1) {
368 » » » for(sample = 0; sample < samples; sample++) {
369 » » » » a_word = signal[0][sample];
370 » » » » *buf_++ = (FLAC__byte)a_word;
371 » » » }
372 » » }
373 » » else {
374 » » » for(sample = 0; sample < samples; sample++) {
375 » » » » for(channel = 0; channel < channels; channel++) {
376 » » » » » a_word = signal[channel][sample];
377 » » » » » *buf_++ = (FLAC__byte)a_word;
378 » » » » }
379 » » » }
380 » » }
381 » }
382 » else { /* bytes_per_sample == 4, maybe optimize more later */
383 » » for(sample = 0; sample < samples; sample++) {
384 » » » for(channel = 0; channel < channels; channel++) {
385 » » » » a_word = signal[channel][sample];
386 » » » » *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
387 » » » » *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
388 » » » » *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
389 » » » » *buf_++ = (FLAC__byte)a_word;
390 » » » }
391 » » }
392 } 485 }
393 } 486 }
394 487
395 /* 488 /*
396 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. 489 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
397 */ 490 */
398 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample) 491 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
399 { 492 {
400 const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t )bytes_per_sample; 493 const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t )bytes_per_sample;
401 494
402 /* overflow check */ 495 /* overflow check */
403 » if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample) 496 » if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
404 return false; 497 return false;
405 » if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samp les) 498 » if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)sam ples)
406 return false; 499 return false;
407 500
408 » if(ctx->capacity < bytes_needed) { 501 » if (ctx->capacity < bytes_needed) {
409 » » FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_ needed); 502 » » FLAC__byte *tmp = realloc(ctx->internal_buf.p8, bytes_needed);
410 » » if(0 == tmp) { 503 » » if (0 == tmp) {
411 » » » free(ctx->internal_buf); 504 » » » free(ctx->internal_buf.p8);
412 » » » if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(b ytes_needed))) 505 » » » if (0 == (ctx->internal_buf.p8= safe_malloc_(bytes_neede d)))
413 return false; 506 return false;
414 } 507 }
415 » » ctx->internal_buf = tmp; 508 » » else
509 » » » ctx->internal_buf.p8= tmp;
416 ctx->capacity = bytes_needed; 510 ctx->capacity = bytes_needed;
417 } 511 }
418 512
419 » format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sa mple); 513 » format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_s ample);
420 514
421 » FLAC__MD5Update(ctx, ctx->internal_buf, (unsigned)bytes_needed); 515 » FLAC__MD5Update(ctx, ctx->internal_buf.p8, bytes_needed);
422 516
423 return true; 517 return true;
424 } 518 }
OLDNEW
« no previous file with comments | « src/libFLAC/lpc_intrin_sse41.c ('k') | src/libFLAC/memory.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698