OLD | NEW |
(Empty) | |
| 1 /* libFLAC - Free Lossless Audio Codec library |
| 2 * Copyright (C) 2000-2009 Josh Coalson |
| 3 * Copyright (C) 2011-2014 Xiph.Org Foundation |
| 4 * |
| 5 * Redistribution and use in source and binary forms, with or without |
| 6 * modification, are permitted provided that the following conditions |
| 7 * are met: |
| 8 * |
| 9 * - Redistributions of source code must retain the above copyright |
| 10 * notice, this list of conditions and the following disclaimer. |
| 11 * |
| 12 * - Redistributions in binary form must reproduce the above copyright |
| 13 * notice, this list of conditions and the following disclaimer in the |
| 14 * documentation and/or other materials provided with the distribution. |
| 15 * |
| 16 * - Neither the name of the Xiph.org Foundation nor the names of its |
| 17 * contributors may be used to endorse or promote products derived from |
| 18 * this software without specific prior written permission. |
| 19 * |
| 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| 24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 31 */ |
| 32 |
| 33 #ifdef HAVE_CONFIG_H |
| 34 # include <config.h> |
| 35 #endif |
| 36 |
| 37 #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| 38 #ifndef FLAC__NO_ASM |
| 39 #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X8
6INTRIN |
| 40 #include "private/fixed.h" |
| 41 #ifdef FLAC__SSE2_SUPPORTED |
| 42 |
| 43 #include <emmintrin.h> /* SSE2 */ |
| 44 #include <math.h> |
| 45 #include "private/macros.h" |
| 46 #include "share/compat.h" |
| 47 #include "FLAC/assert.h" |
| 48 |
| 49 #ifdef FLAC__CPU_IA32 |
| 50 #define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src) |
| 51 #else |
| 52 #define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src) |
| 53 #endif |
| 54 |
| 55 FLAC__SSE_TARGET("sse2") |
| 56 unsigned FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[]
, unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER
+ 1]) |
| 57 { |
| 58 FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3,
total_error_4; |
| 59 unsigned i, order; |
| 60 |
| 61 __m128i total_err0, total_err1, total_err2; |
| 62 |
| 63 { |
| 64 FLAC__int32 itmp; |
| 65 __m128i last_error; |
| 66 |
| 67 last_error = _mm_cvtsi32_si128(data[-1]);
// 0 0 0 le0 |
| 68 itmp = data[-2]; |
| 69 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0))
; |
| 70 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));
// 0 0 le0 le1 |
| 71 itmp -= data[-3]; |
| 72 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0))
; |
| 73 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));
// 0 le0 le1 le2 |
| 74 itmp -= data[-3] - data[-4]; |
| 75 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0))
; |
| 76 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));
// le0 le1 le2 le3 |
| 77 |
| 78 total_err0 = total_err1 = _mm_setzero_si128(); |
| 79 for(i = 0; i < data_len; i++) { |
| 80 __m128i err0, err1, tmp; |
| 81 err0 = _mm_cvtsi32_si128(data[i]);
// 0 0 0 e0 |
| 82 err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0));
// e0 e0 e0 e0 |
| 83 #if 1 /* OPT_SSE */ |
| 84 err1 = _mm_sub_epi32(err1, last_error); |
| 85 last_error = _mm_srli_si128(last_error, 4);
// 0 le0 le1 le2 |
| 86 err1 = _mm_sub_epi32(err1, last_error); |
| 87 last_error = _mm_srli_si128(last_error, 4);
// 0 0 le0 le1 |
| 88 err1 = _mm_sub_epi32(err1, last_error); |
| 89 last_error = _mm_srli_si128(last_error, 4);
// 0 0 0 le0 |
| 90 err1 = _mm_sub_epi32(err1, last_error);
// e1 e2 e3 e4 |
| 91 #else |
| 92 last_error = _mm_add_epi32(last_error, _mm_srli_si128(la
st_error, 8)); // le0 le1 le2+le0 le3+le1 |
| 93 last_error = _mm_add_epi32(last_error, _mm_srli_si128(la
st_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 |
| 94 err1 = _mm_sub_epi32(err1, last_error);
// e1 e2 e3 e4 |
| 95 #endif |
| 96 tmp = _mm_slli_si128(err0, 12);
// e0 0 0 0 |
| 97 last_error = _mm_srli_si128(err1, 4);
// 0 e1 e2 e3 |
| 98 last_error = _mm_or_si128(last_error, tmp);
// e0 e1 e2 e3 |
| 99 |
| 100 tmp = _mm_srai_epi32(err0, 31); |
| 101 err0 = _mm_xor_si128(err0, tmp); |
| 102 err0 = _mm_sub_epi32(err0, tmp); |
| 103 tmp = _mm_srai_epi32(err1, 31); |
| 104 err1 = _mm_xor_si128(err1, tmp); |
| 105 err1 = _mm_sub_epi32(err1, tmp); |
| 106 |
| 107 total_err0 = _mm_add_epi32(total_err0, err0);
// 0 0 0 te0 |
| 108 total_err1 = _mm_add_epi32(total_err1, err1);
// te1 te2 te3 te4 |
| 109 } |
| 110 } |
| 111 |
| 112 total_error_0 = _mm_cvtsi128_si32(total_err0); |
| 113 total_err2 = total_err1;
// te1 te2 te3 te4 |
| 114 total_err1 = _mm_srli_si128(total_err1, 8);
// 0 0 te1 te2 |
| 115 total_error_4 = _mm_cvtsi128_si32(total_err2); |
| 116 total_error_2 = _mm_cvtsi128_si32(total_err1); |
| 117 total_err2 = _mm_srli_si128(total_err2, 4);
// 0 te1 te2 te3 |
| 118 total_err1 = _mm_srli_si128(total_err1, 4);
// 0 0 0 te1 |
| 119 total_error_3 = _mm_cvtsi128_si32(total_err2); |
| 120 total_error_1 = _mm_cvtsi128_si32(total_err1); |
| 121 |
| 122 /* prefer higher order */ |
| 123 if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error
_2), total_error_3), total_error_4)) |
| 124 order = 0; |
| 125 else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3),
total_error_4)) |
| 126 order = 1; |
| 127 else if(total_error_2 < flac_min(total_error_3, total_error_4)) |
| 128 order = 2; |
| 129 else if(total_error_3 < total_error_4) |
| 130 order = 3; |
| 131 else |
| 132 order = 4; |
| 133 |
| 134 /* Estimate the expected number of bits per residual signal sample. */ |
| 135 /* 'total_error*' is linearly related to the variance of the residual */ |
| 136 /* signal, so we use it directly to compute E(|x|) */ |
| 137 FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
| 138 FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
| 139 FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
| 140 FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
| 141 FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
| 142 |
| 143 residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_
LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 144 residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_
LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 145 residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_
LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 146 residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_
LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 147 residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_
LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 148 |
| 149 return order; |
| 150 } |
| 151 |
| 152 FLAC__SSE_TARGET("sse2") |
| 153 unsigned FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 d
ata[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_O
RDER + 1]) |
| 154 { |
| 155 FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3,
total_error_4; |
| 156 unsigned i, order; |
| 157 |
| 158 __m128i total_err0, total_err1, total_err3; |
| 159 |
| 160 { |
| 161 FLAC__int32 itmp; |
| 162 __m128i last_error, zero = _mm_setzero_si128(); |
| 163 |
| 164 last_error = _mm_cvtsi32_si128(data[-1]);
// 0 0 0 le0 |
| 165 itmp = data[-2]; |
| 166 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0))
; |
| 167 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));
// 0 0 le0 le1 |
| 168 itmp -= data[-3]; |
| 169 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0))
; |
| 170 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));
// 0 le0 le1 le2 |
| 171 itmp -= data[-3] - data[-4]; |
| 172 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0))
; |
| 173 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));
// le0 le1 le2 le3 |
| 174 |
| 175 total_err0 = total_err1 = total_err3 = _mm_setzero_si128(); |
| 176 for(i = 0; i < data_len; i++) { |
| 177 __m128i err0, err1, tmp; |
| 178 err0 = _mm_cvtsi32_si128(data[i]);
// 0 0 0 e0 |
| 179 err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0));
// e0 e0 e0 e0 |
| 180 #if 1 /* OPT_SSE */ |
| 181 err1 = _mm_sub_epi32(err1, last_error); |
| 182 last_error = _mm_srli_si128(last_error, 4);
// 0 le0 le1 le2 |
| 183 err1 = _mm_sub_epi32(err1, last_error); |
| 184 last_error = _mm_srli_si128(last_error, 4);
// 0 0 le0 le1 |
| 185 err1 = _mm_sub_epi32(err1, last_error); |
| 186 last_error = _mm_srli_si128(last_error, 4);
// 0 0 0 le0 |
| 187 err1 = _mm_sub_epi32(err1, last_error);
// e1 e2 e3 e4 |
| 188 #else |
| 189 last_error = _mm_add_epi32(last_error, _mm_srli_si128(la
st_error, 8)); // le0 le1 le2+le0 le3+le1 |
| 190 last_error = _mm_add_epi32(last_error, _mm_srli_si128(la
st_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 |
| 191 err1 = _mm_sub_epi32(err1, last_error);
// e1 e2 e3 e4 |
| 192 #endif |
| 193 tmp = _mm_slli_si128(err0, 12);
// e0 0 0 0 |
| 194 last_error = _mm_srli_si128(err1, 4);
// 0 e1 e2 e3 |
| 195 last_error = _mm_or_si128(last_error, tmp);
// e0 e1 e2 e3 |
| 196 |
| 197 tmp = _mm_srai_epi32(err0, 31); |
| 198 err0 = _mm_xor_si128(err0, tmp); |
| 199 err0 = _mm_sub_epi32(err0, tmp); |
| 200 tmp = _mm_srai_epi32(err1, 31); |
| 201 err1 = _mm_xor_si128(err1, tmp); |
| 202 err1 = _mm_sub_epi32(err1, tmp); |
| 203 |
| 204 total_err0 = _mm_add_epi64(total_err0, err0);
// 0 te0 |
| 205 err0 = _mm_unpacklo_epi32(err1, zero);
// 0 |e3| 0 |e4| |
| 206 err1 = _mm_unpackhi_epi32(err1, zero);
// 0 |e1| 0 |e2| |
| 207 total_err3 = _mm_add_epi64(total_err3, err0);
// te3 te4 |
| 208 total_err1 = _mm_add_epi64(total_err1, err1);
// te1 te2 |
| 209 } |
| 210 } |
| 211 |
| 212 m128i_to_i64(total_error_0, total_err0); |
| 213 m128i_to_i64(total_error_4, total_err3); |
| 214 m128i_to_i64(total_error_2, total_err1); |
| 215 total_err3 = _mm_srli_si128(total_err3, 8);
// 0 te3 |
| 216 total_err1 = _mm_srli_si128(total_err1, 8);
// 0 te1 |
| 217 m128i_to_i64(total_error_3, total_err3); |
| 218 m128i_to_i64(total_error_1, total_err1); |
| 219 |
| 220 /* prefer higher order */ |
| 221 if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error
_2), total_error_3), total_error_4)) |
| 222 order = 0; |
| 223 else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3),
total_error_4)) |
| 224 order = 1; |
| 225 else if(total_error_2 < flac_min(total_error_3, total_error_4)) |
| 226 order = 2; |
| 227 else if(total_error_3 < total_error_4) |
| 228 order = 3; |
| 229 else |
| 230 order = 4; |
| 231 |
| 232 /* Estimate the expected number of bits per residual signal sample. */ |
| 233 /* 'total_error*' is linearly related to the variance of the residual */ |
| 234 /* signal, so we use it directly to compute E(|x|) */ |
| 235 FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
| 236 FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
| 237 FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
| 238 FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
| 239 FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
| 240 |
| 241 residual_bits_per_sample[0] = (FLAC__float)((total_error_0 > 0) ? log(M_
LN2 * (FLAC__double)total_error_0 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 242 residual_bits_per_sample[1] = (FLAC__float)((total_error_1 > 0) ? log(M_
LN2 * (FLAC__double)total_error_1 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 243 residual_bits_per_sample[2] = (FLAC__float)((total_error_2 > 0) ? log(M_
LN2 * (FLAC__double)total_error_2 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 244 residual_bits_per_sample[3] = (FLAC__float)((total_error_3 > 0) ? log(M_
LN2 * (FLAC__double)total_error_3 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 245 residual_bits_per_sample[4] = (FLAC__float)((total_error_4 > 0) ? log(M_
LN2 * (FLAC__double)total_error_4 / (FLAC__double)data_len) / M_LN2 : 0.0); |
| 246 |
| 247 return order; |
| 248 } |
| 249 |
| 250 #endif /* FLAC__SSE2_SUPPORTED */ |
| 251 #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ |
| 252 #endif /* FLAC__NO_ASM */ |
| 253 #endif /* FLAC__INTEGER_ONLY_LIBRARY */ |
OLD | NEW |